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Summary

Identification of peptides and proteins is a common task in mass spectrometry-based proteomics,

but often fails to deliver a comprehensive list of identifications. Downstream analysis, quantitative

or qualitative, depends on the outcome of this process. Despite continuous improvement of com-

putational methods, a large fraction of the screened peptides and/or proteins remains unidentified.

We introduce here pacMASS , a method that de novo predicts the elemental composition of peptides

and small proteins based on a single accurate mass, i.e., the observed monoisotopic or average mass.

This novel approach returns in a fast and memory efficient manner a limited number of elemental

compositions per queried peptide or protein.

1 Introduction

Protein and peptide identification is an important task in mass spectrometry-based proteomics.

Towards this aim, tandem MS spectra are commonly used, either in combination with a database [1,

2, 3, 4] or as input for de novo peptide sequencing [5, 6]. The results of these approaches depend

on the mass accuracy [4, 7, 8, 9], and can be inadequate when peptides and proteins contain amino

acid substitutions or insertions or deletions, or are post-translationally modified. Additionally,

database-driven identification methods depend on the completeness of the selected database.

Information from MS1 spectra can be used to complement the MS2 spectra. For instance, the

aggregated isotope distribution, observed in a full scan spectrum, can be used to validate identified

proteins or peptides [10, 11]. MS1 spectra can also be used to identify proteins and peptides.

Several methods have been proposed to predict the elemental composition based on the aggregated

isotope distribution [12] or based on the fine isotope distribution [13, 14, 15]. Note that the latter

can only be retrieved by ultra-high resolution mass spectrometers such as FTICR-MS.

Another type of information available in MS1 spectra is the observed monoisotopic or average mass.

In fact, in MS-based metabolomics, the elemental composition of a metabolite is often inferred
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based on its accurately measured mass [16]. When applied to peptide-centric MS, the approach

faces important limitations: the number of possible molecular formulae increases exponentially

with increasing m/z-values [17] (see Figure 1) and, due to the discrete nature of biomolecules, it is

impossible to assign a unique elemental composition for molecules with a mass above 126 daltons

with a mass error of 1 ppm [18]. Hence, although a large number of candidate compostions can

be excluded by applying the Seven Golden Rules [19] prediction of the elemental composition of

peptides and proteins is considered to be impractical and/or useless given the huge number of

candidate compositions.

Figure 1: Number of all theoretically possible elemental compositions within a 10ppm wide mass-
tolerance-window generated based upon the monoisotopic mass.

In this article, we take a critical look at the issue of prediction of elemental composition of a peptide

from its mass. In particular, we show that, by using two simple constraining rules, we can generate

in a time- and memory-efficient manner a manageable-size list of candidate compositions for pep-

tides and small proteins with a mass up to 4000 daltons. Our method, pacMASS (prediction of

the atomic composition based on a single accurate mass of peptides and small proteins), uses the

monoisotopic or average mass observed in MS1. It does not require any organism-specific peptide

or protein database, nor any information about the measured isotope distribution of a peptide.
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Hence, it is very simple to apply.

2 Methodology

In this section, we introduce the workflow implemented in pacMASS to de novo predict the el-

emental composition of peptides and proteins with a mass up to 4000 daltons (Figure 2). The

models used in the workflow have been trained on peptides and proteins with a monoisotopic mass

in the range of 400 to 4000 daltons.

Figure 2: Illustration of the pacMASS -algorithm.

pacMASS mostly consists of three steps. In rare situations a fourth step is required. First, the

range of C, H, N , and O-atoms for a given molecule is defined with the help of its predicted

isotope ratios. The second step refines the proposed ranges for H- and N -atoms with the help

of the nominal mass. In the third step, all possible elemental compositions are generated and
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subsequently a mass-based filter is applied. Additional filtering (Step 4) is only done when the

nominal mass could not be predicted precisely.

The workflow assumes that the number of S-atoms is specified. If a range of possible S-atoms is

defined, pacMASS is applied for each potential S-atom. In theory, it is possible to determine the

correct number of sulphur atoms from the isotope intensities (see Figure 3). We do not consider

this approach due to the limited accuracy of the measured isotope distribution intensities.

A similar approach can be used to identify post-translational modifications which consist of other

chemical elements than C, H, N , O, or S. For example, in case of phosphorylation, one can define

a range of the possible number of P -atoms. Other approaches to account for post-translational-

modifications are possible, and are a topic for further research.

2.1 Step 1. Determining the ranges of C-, H-, N-, and O-atoms

The isotope distribution of a molecule is a function of the elemental composition. The aggregated

isotope distribution can be represented as a set of isotope ratios, i.e., the ratios between the

probability of occurrence of the (i + 1)th isotopologue (isotope variant) and the ith isotopologue.

As can been seen from Figure 3, the theoretical isotope ratios, Ri, can be used to specify the

number of C-, H-, N -, and O-atoms. A given combination of isotope ratios corresponds to a

specific number of C-, H-, N -, and O-atoms. For example, the “isotope ratio”-vector (R1=0.465,

R2=0.322, R3=0.241) (Figure 3, arrow) indicates a molecule with 36 C-atoms, 52 H-atoms, 22

O-atoms, and 12 N -atoms.

By comparing the theoretical isotope ratios with the isotope ratios derived from the measured

isotope-variant intensities, the elemental composition of a given peptide or protein can be deter-

mined. As mentioned earlier, due to the limited accuracy of the measured isotope-variant intensi-

ties, it is unlikely that the correct elemental composition would be found without acknowledging

this uncertainty. Therefore, instead of using the observed isotope ratios, we propose to estimate

the isotope ratios based upon the observed monoisotopic or average mass by applying a 4th order
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Figure 3: Theoretical isotope ratios of all peptides with a monoisotopic mass between 1000 and
1005Da. Each peptide is colored according to its number of carbons. The five different clouds of
points correspond to the number of sulphur-atoms (ranging from 0 (bottom) to 4 (top)).The black
arrow points at a molecule with atomic composition C36H52N12O22, and isotope ratios R1=0.465,
R2=0.322, R3=0.241. The blue square illustrates the proposed range of C-atoms. This range is
based on the predicted isotope ratios.

polynomial regression model proposed by [20]:

Ri = β0,i + β1,i ×m/1000 + β2,i × (m/1000)2 + β3,i × (m/1000)3 + β4,i × (m/1000)4, (1)

where Ri is the ith isotope ratio and m is the observed monoisotopic or average mass of the peptide.

The coefficients of (1) have been estimated based on the theoretical isotope distributions of an in-

silico digest of the human proteome (UniProtKB 9606, keyword 181, Release 2011-11) (Table S1

and S2).

Based on the observed monoisotopic or average mass of an unknown peptide, mx, the four isotope

ratios (R1, R2, R3, and R4) are estimated with (1). Their 95% prediction intervals are calculated

as follows:

R̂i ± 1.96 ×
√
MSEi × (1 + 1/n+

(mx/1000 − m̄/1000)2∑
j(mj/1000 − m̄/1000)2

) (2)

where MSEi is the mean squared error of model (1) for the ith isotope ratio, n is the total number

of peptides used to fit model (1), and m̄ is the mean mass of the peptides. The prediction intervals

are used to define the minimum and maximum number of the atoms of the selected peptide to be

checked in the theoretical isotope ratio lookup table created from the human proteome (UniProtKB
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9606) (Figure 3, blue square). The determined ranges of C, H, N and O are used in the subsequent

steps.

2.2 Step 2. Generating theoretically possible numbers for C-, H-, N-,

and O-atoms

Based on the predicted isotope ratios and the database of theoretical isotope ratios, the minimum

and maximum number of C-, H-, N -, and O-atoms is determined (Step 1). For carbon and

oxygen, each number within the determined range is in theory possible. However, this is not

the case for nitrogen- and hydrogen-atoms, as stated by the respective nitrogen-rule [19] and the

related hydrogen-rule. These rules are based on the nominal mass of a molecule, i.e., the sum of

the integer masses of the most abundant isotopes of each constituent element.

The nitrogen rule is commonly known and poses that the number of nitrogen atoms is even when

the nominal mass is even. A similar rule can be formulated for the hydrogen atoms of peptides

and proteins, i.e., a peptide or protein with an odd nominal mass has an odd number of H-atoms.

Figure 4 illustrates both rules. Based on Figure 4 (right), a refined hydrogen-rule can be stated:

peptides with a nominal mass that is divisible by four (e.g., 2040 Da) have an even number of

H-atoms that is divisible by four (e.g., 120, 124, . . . , 168). We are currently investigating if this

refined rule is true for all peptides. Therefore, we have chosen not to incorporate this “refined”

hydrogen-rule in pacMASS .

In order to be able to apply the hydrogen- and nitrogen-rules as constraints for elemental compo-

sition prediction, the nominal mass has to be known. We propose to estimate the nominal mass

and its 95% prediction interval by using the following linear model:

mN = β0 + β1 ×m+ ε, (3)

with mN denoting the nominal mass, m denoting the observed monoisotopic or average mass of a

peptide, and ε ∼ N(0, σ2). The coefficients of (3) are estimated by using the nominal masses of
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Figure 4: Illustration of the nitrogen- and hydrogen-rule. The vertical lines correspond to even
nominal masses, the horizontal lines correspond to an even number of N - or H-atoms.

the human proteome considered in Step 1 (Table S3). The 95% prediction interval of a peptide

with mass mx is calculated as follows:

m̂N ± 1.96 ×
√
MSE × (1 + 1/n+

(mx − m̄)2∑
j(mj − m̄)2

) (4)

where MSE is the mean squared error of the model (3), n is the total number of peptides used to

fit model (3), and m̄ is the mean of mass of the peptides.

Whenever the rounded upper and lower limit of the predicted nominal mass are identical, the

hydrogen- and nitrogen-rules are applied to generate all theoretically possible numbers of H and

N . For example, for the peptide “TGGLADK” with monoisotopic mass 660.3443 Da, the lower and

upper limit of the 95% prediction interval is, respectively, 659.8780 and 660.1064 Da. Rounding

these limits to the nearest integer leads to identical values, and thus the hydrogen- and nitrogen-

rules can be applied. When the rounded prediction limits are not identical, every integer between

the minimum and maximum, determined in Step 1, is considered to be possible. In this case, an

additional filtering step is applied after generating all possible elemental compositions (Step 4).
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2.3 Step 3. Generating and filtering all possible elemental compositions

With the lists of potential carbon-, hydrogen-, nitrogen-, and oxygen-atoms, a long list of possible

elemental compositions is generated. A small fraction of these elemental compositions have a

mass similar to the observed mass. A mass-based-filter is used to retain the candidate elemental

compositions within a predefined mass tolerance window. The tolerance is chosen in function of

the reported mass accuracy of the mass spectrometer.

2.4 Step 4. Filtering the candidate elemental compositions

For the rare cases when the hydrogen- and nitrogen-rules cannot be applied, all numbers of ni-

trogens and hydrogens within the specified range are used to generate all possible elemental com-

positions. As a consequence, the list of possible elemental compositions becomes approximately

four times larger than when Step 2 can be used. Applying the mass filter of Step 3 reduces the

total number of elemental compositions, but not to the same extent as when the hydrogen- and

nitrogen-rules are applied. Therefore, we propose an extra filter based upon the first condition of

Senior’s theorem [21, 22]. The condition states that the sum of valences or the total number of

atoms having odd valences is even. Combining the first condition of Senior’s theorem together with

the mass filter results in exactly the same list of candidate elemental compositions as when using

the nitrogen- and hydrogen rules. Although using Step 4 returns the same outcome as when using

Step 2, it should not be the preferred choice when the hydrogen- and nitrogen-rules are applicable,

as Step 2 is more efficient with respect to memory usage and computation time.

3 Data

We illustrate the performance of pacMASS using three datasets. The first dataset is an in-silico

tryptic digest of bovine cytochrome C and six proteins and peptides commonly used as internal

standards (Table 1). We did not add measurement errors to the theoretical monoisotopic and

average masses. This dataset is added as a proof-of-concept to illustrate the potential of pacMASS
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in an ideal setting.

Table 1: Bovine cytochrome C tryptic digest and internal standards
Peptide Amino acid sequence Atomic composition monoisotopic mass Average mass
1 IFVQK C31H51N7O7 633.38500 633.78083
2 YIPGTK C32H51N7O9 677.37483 677.79037
3 MIFAGIK C37H62N8O8S 778.44113 779.00482
4 KYIPGTK C38H63N9O10 805.46979 805.96297
5 EDLIAYLK C45H73N9O14 963.52770 964.11515
6 TGPNLHGLFGR C52H81N17O14 1167.61489 1168.30777
7 GEREDLIAYLKK C64H107N17O20 1433.78783 1434.63949
8 TGQAPGFSYTDANK C63H93N17O23 1455.66302 1456.51580
9 KTGQAPGFSYTDANK C69H105N19O24 1583.75798 1584.68839
10 IFVQKCAQCHTVEK C71H116N20O20S2 1632.81162 1633.93851
11 GITWGEETLMEYLENPK C90H136N20O30S 2008.94519 2010.22927
12 GITWGEETLMEYLENPKK C96H148N22O31S 2137.04016 2138.40186
13 RPPGF C27H40N8O6 572.30708 572.65787
14 DRVYIHPF C50H71N13O12 1045.53451 1046.18111
15 QLYENKPRRPYIL C78H124N22O20 1688.93622 1689.95850
16 ELYENKPRRPYIL C78H123N21O21 1689.92024 1690.94322
17 RPVKVYPNGAEDESAEAFPLEF C112H165N27O36 2464.19105 2465.67328
18 FVNQHLCGSHLVEALYLVCGERGFFYTPKA C157H232N40O41S2 3397.67401 3399.90528

The second dataset is a tryptic digest of bovine serum albumin A. One vial of bovine serum albumin

(BSA) digest (Bruker part number 8217498) was taken in 500 µl of 2% ACN, with 0.1 FA in water.

From this 1pmol/µl solution 1µl was loaded onto a reverse phase C18 column. The HPLC system

was directly coupled to an Impact II ESI-Q-TOF system. Peptides eluting from the reverse phase

chromatography were measured and fragmented.

We use this dataset to illustrate the potential of using pacMASS to improve the level of identi-

fication obtained by using database search-engines such as MASCOT. In particular, we use the

results of a MASCOT [3] search that was performed on 3122 precursor ions with a 10ppm pep-

tide mass tolerance on the monoisotopic mass and a 0.05Da fragment mass tolerance against the

SwissProt database 2017.05, allowing for at most one missed cleavage, and returning at most ten

possible identifications per precursor ion. Two modifications have been included in the search,

i.e., carbamidomethylation of cysteine and oxidation of methionine. Sixty three peptides have

been identified with MASCOT version 1.0 (Table 2). The average masses of these peptides were

calculated from their measured aggregated isotope distributions: the masses of the isotopologues

were multiplied by their respective peak heights, and this product was divided by the sum of the

considered peak heights.

Finally, we analyzed a publicly available HeLa cell tryptic digest-dataset (PXD001592, [23]) mea-
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Table 2: Bovine serum albumin A tryptic digest. The theoretical monoisotopic and average masses
are calculated without accounting for the reported post-translational modifications.

Peptide Amino-acid sequence Atomic Composition mtheor
0 mtheor

avg Post-translational modifications mobs
0 mobs

avg

1 AFDEK C27H40N6O10 608.28059 608.64201 608.28036 608.67836
2 CASIQK C26H48N8O9S 648.32650 648.77496 Carbamidomethylation 705.34715 705.82109
3 IETMR C26H48N8O9S 648.32650 648.77496 648.32522 648.77178
4 QEPER C26H43N9O11 657.30820 657.67473 657.30475 657.64297
5 TPVSEK C28H49N7O11 659.34901 659.73036 659.34877 659.75798
6 KFWGK C34H48N8O6 664.36968 664.79655 664.37032 664.77259
7 AWSVAR C31H48N10O8 688.36566 688.77664 688.36526 688.78194
8 GACLLPK C31H56N8O8S 700.39418 700.89276 Carbamidomethylation 757.41590 757.93043
9 SEIAHR C29H49N11O10 711.36639 711.76866 711.36423 711.84129
10 CCAADDK C26H44N8O12S2 724.25201 724.80750 Carbamidomethylation (2x) 838.29508 838.83065
11 NYQEAK C32H49N9O12 751.35007 751.78619 751.35000 751.79511
12 LVTDLTK C35H64N8O12 788.46437 788.93077 788.46506 788.96524
13 ATEEQLK C34H59N9O14 817.41815 817.88588 817.41848 817.89818
14 LCVLHEK C37H64N10O10S 840.45276 841.03300 Carbamidomethylation 897.47456 898.07933
15 LSQKFPK C40H66N10O10 846.49634 847.01501 846.49808 846.97161
16 DDSPDLPK C37H59N9O16 885.40798 885.91690 885.40803 885.92888
17 AEFVEVTK C42H67N9O14 921.48075 922.03529 921.48240 922.08071
18 YLYEIAR C44H66N10O12 926.48617 927.05676 926.48610 927.06178
19 DLGEEHFK C43H63N11O15 973.45051 974.02716 973.45162 974.02875
20 LVVSTQTALA C44H79N11O15 1001.57571 1002.16495 1001.57656 1002.16940
21 QNCDQFEK C41H62N12O16S 1010.41274 1011.06998 Carbamidomethylation 1067.43527 1068.10797
22 QTALVELLK C46H83N11O14 1013.61210 1014.21878 1013.61274 1014.23427
23 SHCIAEVEK C42H70N12O15S 1014.48043 1015.14484 Carbamidomethylation 1071.50185 1072.20142
24 CCTESLVNR C39H69N13O15S2 1023.44775 1024.17752 Carbamidomethylation (2x) 1137.49310 1138.22224
25 EACFAVEGPK C46H71N11O15S 1049.48518 1050.18898 Carbamidomethylation 1106.50873 1107.26694
26 CCTKPESER C40H69N13O16S2 1051.44266 1052.18766 Carbamidomethylation (2x) 1165.48737 1166.33718
27 KQTALVELLK C52H95N13O15 1141.70706 1142.39137 1141.70914 1142.38990
28 LVNELTEFAK C53H86N12O17 1162.62339 1163.32271 1162.62306 1163.32623
29 ECCDKPLLEK C49H84N12O17S2 1176.55188 1177.39605 Carbamidomethylation (2x) 1290.59769 1291.42123
30 FKDLGEEHFK C58H84N14O17 1248.61389 1249.37399 1248.61458 1249.34814
31 HPEYAVSVLLR C59H94N16O16 1282.70337 1283.47822 1282.70230 1283.49637
32 HLVDEPQNLIK C58H96N16O18 1304.70885 1305.48217 1304.70959 1305.49243
33 TCVADESHAGCEK C52H84N16O22S2 1348.53875 1349.45226 Carbamidomethylation (2x) 1462.58533 1463.46962
34 SLHTLFGDELCK C60H95N15O19S 1361.66494 1362.55445 Carbamidomethylation 1418.68667 1419.56772
35 ETYGDMADCCEK C53H81N13O23S3 1363.47304 1364.48443 Carbamidomethylation (2x) and Oxidation 1493.51104 1494.63324
36 ETYGDMADCCEK C53H81N13O23S3 1363.47304 1364.48443 Carbamidomethylation (2x) 1477.51741 1478.42509
37 YICDNQDTISSK C57H91N15O23S 1385.61329 1386.48810 Carbamidomethylation 1442.63727 1443.50166
38 EYEATLEECCAK C57H89N13O23S2 1387.56357 1388.52482 Carbamidomethylation (2x) 1501.60806 1502.54542
39 TVMENFVAFVDK C64H98N14O19S 1398.68534 1399.61447 Oxidation 1414.68049 1415.52420
40 TVMENFVAFVDK C64H98N14O19S 1398.68534 1399.61447 1398.68570 1399.59726
41 RHPEYAVSVLLR C65H106N20O17 1438.80448 1439.66430 1438.80590 1439.61026
42 LGEYGFQNALIVR C68H106N18O19 1478.78816 1479.68183 1478.79056 1479.67732
43 DDPHACYSTVFDK C65H92N16O23S 1496.62419 1497.58867 Carbamidomethylation 1553.64934 1554.57771
44 VPQVSTPTLVEVSR C66H114N18O22 1510.83551 1511.72210 1510.83674 1511.72899
45 LKPDPNTLCDEFK C67H106N16O22S 1518.73883 1519.72191 Carbamidomethylation 1575.76256 1576.68842
46 DAFLGSFLYEYSR C74H102N16O22 1566.73546 1567.69921 1566.73710 1567.65519
47 ECCHGDLLECADDR C60H95N19O25S3 1577.59086 1578.71002 Carbamidomethylation (3x) 1748.65780 1749.70773
48 QEPERNECFLSHK C68H105N21O23S 1615.74129 1616.75782 Carbamidomethylation 1672.76391 1673.61538
49 YNGVFQECCQAEDK C68H100N18O25S2 1632.65484 1633.76278 Carbamidomethylation (2x) 1746.70183 1747.71956
50 KVPQVSTPTLVEVSR C72H126N20O23 1638.93047 1639.89469 1638.93429 1639.84518
51 PCFSALTPDETYVPK C76H114N16O24S 1666.79126 1667.88087 Carbamidomethylation 1723.81572 1724.90578
52 MPCTEDYLSLILNR C72H118N18O23S2 1666.80586 1667.94985 Carbamidomethylation and Oxidation 1739.82500 1740.93782
53 MPCTEDYLSLILNR C72H118N18O23S2 1666.80586 1667.94985 Carbamidomethylation 1723.83023 1724.87285
54 CCAADDKEACFAVEGPK C72H113N19O26S3 1755.72663 1756.98119 Carbamidomethylation (3x) 1926.79487 1927.94128
55 RPCFSALTPDETYVPK C82H126N20O25S 1822.89237 1824.06695 Carbamidomethylation 1879.91688 1881.00649
56 NECFLSHKDDSPDLPK C79H121N21O28S 1843.84106 1844.99999 Carbamidomethylation 1900.86783 1901.94629
57 LFTFHADICTLPDTEK C84H127N19O26S 1849.89204 1851.08902 Carbamidomethylation 1906.91929 1908.01754
58 HPYFYAPELLYYANK C94H125N19O23 1887.91957 1889.11620 1887.92499 1889.03375
59 RHPYFYAPELLYYANK C100H137N23O24 2044.02068 2045.30228 2044.02160 2045.17196
60 ECCHGDLLECADDRADLAK C82H133N25O32S3 2075.87106 2077.28425 Carbamidomethylation (3x) 2246.94033 2248.17853
61 YNGVFQECCQAEDKGACLLPK C99H154N26O32S3 2315.03846 2316.64026 Carbamidomethylation (3x) 2486.11151 2487.33361
62 DAIPENLPPLTADFAEDKDVCK C105H165N25O37S 2400.15189 2401.65014 Carbamidomethylation 2457.18080 2458.43924
63 GLVLIAFSQYLQQCPFDEHVK C113H171N27O31S 2434.23550 2435.80073 Carbamidomethylation 2491.26461 2492.59891

sured with an Impact II ESI-Q-TOF. We use the dataset to investigate the question whether,

based on a spectrum for a complex peptide mixture, the lists of candidate compositions provided

by pacMASS do include the compositions of putative amino acid sequences.
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4 Results

4.1 Bovine cytochrome C

pacMASS was applied to the 18 peptides and internal standards. We used the theoretical monoiso-

topic mass and average mass as input. We defined, for each peptide, a range of S-atoms, i.e., 0,

1, 2, and 3. We also set the mass tolerance of pacMASS for the monoisotopic and the average

mass equal to 5ppm. A relatively small number of elemental compositions was returned by pac-

MASS with the monoisotopic and average mass as input (Table 3). For example, for peptide #18,

with monoisotopic mass 3397.67Da, 354 and 361 potential atomic compositions were found for the

monoisotopic and average mass, respectively. For each peptide, the list of candidate elemental

compositions always included the correct one.

Table 3: pacMASS results for bovine cytochrome C tryptic digest and internal standards, with
5ppm as tolerance. The numbers in brackets are the numbers of combinations when the correct
number of S-atoms is specified.

Peptide pacMASS m0 pacMASS mavg

Candidates Candidates
1 C31H51N7O7 5 (3) 16 (10)
2 C32H51N7O9 7 (3) 17 (14)
3 C37H62N8O8S 13 (4) 17 (12)
4 C38H63N9O10 17 (7) 22 (14)
5 C45H73N9O14 23 (9) 33 (14)
6 C52H81N17O14 41 (12) 40 (20)
7 C64H107N17O20 71 (25) 69 (29)
8 C63H93N17O23 79 (23) 53 (27)
9 C69H105N19O24 82 (23) 74 (27)
10 C71H116N20O20S2 98 (19) 94 (25)
11 C90H136N20O30S 132 (37) 42 (42)
12 C96H148N22O31S 152 (40) 156 (42)
13 C27H40N8O6 4 (2) 8 (6)
14 C50H71N13O12 33 (13) 32 (20)
15 C78H124N22O20 88 (28) 100 (34)
16 C78H123N21O21 86 (26) 97 (35)
17 C112H165N27O36 195 (54) 196 (53)
18 C157H232N40O41S2 354 (78) 361 (73)
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4.2 Bovine serum albumin A

We selected all 2988 precursor ions with a monoisotopic mass between 400 and 4000 daltons. We

used pacMASS to predict, based on the observed monoisotopic mass with a tolerance of 5ppm,

elemental compositions for the precursor ions. Separate predictions were obtained by assuming the

presence of 0, 1, 2, or 3 S-atoms. For 2906 ions, the use of pacMASS resulted in multiple candidate

compositions. As expected, the number of candidate formulae increased when the monoisotopic

mass increased (Figure 5).

Figure 5: Number of possible elemental compositions for the bovine serum albumin A precursor
ions within a 10ppm wide mass-tolerance-window.

For 1735 ions out of the 2988 selected precursor ions, the MASCOT search returned 6979 candi-

date amino acid sequences, with ion scores ranging from 0.0 to 145.5. We compared the amino

acid sequences suggested by MASCOT with the atomic formulae predicted with pacMASS . For
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1136 precursor ions, we found an overlap between the MASCOT-generated candidate amino acid

sequences and the predicted elemental compositions of pacMASS . In particular, for those precursor

ions, pacMASS suggested 3263 putative amino acid sequences. By intersecting pacMASS sugges-

tions with MASCOT identifications, the total number of candidate sequences could be considerably

limited. In particular, the fraction of unique identifications increased from 32.2% to 47.4%, i.e.,

by 15.2% (Table 4). For example, for an ion with a monoisotopic mass of 664.371648 daltons, ten

candidate MASCOT identifications were reduced, based on pacMASS results, to just one amino

acid sequence, i.e., KFWGK with C34H48N8O6 as the atomic composition.

We expect that the number of matches between MASCOT and pacMASS would further increase

if we increased the mass tolerance, or if we could check for carbamidomethylation as modification.

However, the latter information could not be extracted from the available MASCOT .dat file.

Table 4: Candidate amino acid sequences for bovine serum albumin. The numbers at the bottom
indicate the total number of precursor ions with one or more Aa sequences, and the total number
of candidate Aa sequences (in brackets).

MASCOT MASCOT and pacMASS
# potential Aa sequences # precursor ions # precursor ions

1 559 (32.2%) 538 (47.4%)
2 318 (18.3%) 179 (15.8%)
3 182 (10.5%) 106 (9.3%)
4 104 (6.0%) 78 (6.9%)
5 95 (5.5%) 57 (5.0%)
6 43 (2.5%) 48 (4.2%)
7 47 (2.7%) 25 (2.2%)
8 38 (2.2%) 20 (1.8%)
9 34 (2.0%) 21 (1.8%)
10 315 (18.2%) 64 (5.6%)

total 1735 (6979) 1136 (3263)

The computation time of pacMASS with the monoisotopic mass as input, for 2988 peptides within

the range of 400 to 4000 Da while repeating Step 1 to Step 4 for S=0, S=1, and S=2, was around

9.5 minutes. The computations were executed in R (version 3.4.4) on a laptop with Windows10,

an i7-7700HQ processor, and 16GB of RAM.

Sixty three peptides were identified with high confidence by MASCOT. For these peptides, we

extracted the isotope distributions from the corresponding MS1 spectra. These distributions were

used to determine the average mass. A mass tolerance of 50ppm was specified. The reason for this
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raised tolerance is the increased inaccuracy of the observed isotope intensities and, consequently,

an increased uncertainty about the average mass.

Similarly to bovine cytochrome C, a relatively small number of potential elemental compositions

was found for each peptide when using pacMASS with the monoisotopic mass as input (Table 5).

The list of candidate elemental compositions contained the correct atomic formula for every peptide

except of peptide #4. For this peptide, the mass tolerance was not sufficient, as the difference

between the observed and the theoretical monoisotopic mass is 5.25ppm. Increasing the mass

tolerance to 7.5ppm for this peptide resulted in 15 candidates, including the correct one.

When using the average mass as input, the number of potential atomic compositions increased due

to the inflated tolerance. However, as illustrated by Figure S1, the tolerance was not high enough to

identify all peptides, with 40 out of 63 being correctly identified. Raising the tolerance increased

the number of identifications, but at the cost of an increased number of candidate elemental

compositions (results not shown).

4.3 HeLa cell tryptic digest

The HeLa cell tryptic digest dataset contains 48,355 uniquely identified peptide sequences. The

identification search included carbamidomethylation of cysteine as fixed modifications, and N-

terminal protein acetylation and methionine oxidation as variable modifications. Prior to identifi-

cation, the m/z-values were recalibrated by MaxQuant [24].

We selected all 48,033 identified peptides with a monoisotopic mass between 400 and 4000 daltons.

The recalibrated monoisotopic m/z-values were used as input for pacMASS . The allowed mass

tolerance was set to 5ppm, and a range of S-atoms from 0 to 5 was chosen.

For 47,630 peptides (99.2%) we found a match between the identified amino acid sequence and the

candidate elemental compositions of pacMASS . Five out of the 403 peptides, for which no matching

atomic composition was found, had more than five S-atoms. Increasing the mass tolerance had no

effect on the number of matches. Changing the 95% prediction interval of the polynomial model (1)
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Table 5: pacMASS results for bovine serum albumin A. The checkmark (X) indicates that the list
of candidates contains the correct atomic composition.

Peptide pacMASS m0 pacMASS mavg

Candidates Candidates
1 C27H40N6O10 7 X 65
2 C26H48N8O9S + C2H3NO 9 X 120 X
3 C26H48N8O9S 8 X 101 X
4 C26H43N9O11 9 41 X
5 C28H49N7O11 6 X 92 X
6 C34H48N8O6 8 X 93 X
7 C31H48N10O8 7 X 99 X
8 C31H56N8O8S + C2H3NO 14 X 153 X
9 C29H49N11O10 13 X 126
10 C26H44N8O12S2 + 2 × C2H3NO 12 X 103
11 C32H49N9O12 12 X 115 X
12 C35H64N8O12 12 X 164 X
13 C34H59N9O14 19 X 166 X
14 C37H64N10O10S + C2H3NO 23 X 250 X
15 C40H66N10O10 17 X 198
16 C37H59N9O16 23 X 178 X
17 C42H67N9O14 23 X 260 X
18 C44H66N10O12 27 X 256 X
19 C43H63N11O15 28 X 236 X
20 C44H79N11O15 24 X 322 X
21 C41H62N12O16S + C2H3NO 39 X 283 X
22 C46H83N11O14 25 X 323 X
23 C42H70N12O15S + C2H3NO 41 X 374 X
24 C39H69N13O15S2 + 2 × C2H3NO 45 X 325 X
25 C46H71N11O15S + C2H3NO 40 X 426 X
26 C40H69N13O16S2 + 2 × C2H3NO 46 X 438 X
27 C52H95N13O15 27 X 401 X
28 C53H86N12O17 48 X 475 X
29 C49H84N12O17S2 + 2 × C2H3NO 58 X 512
30 C58H84N14O17 52 X 444 X
31 C59H94N16O16 51 X 560 X
32 C58H96N16O18 54 X 571 X
33 C52H84N16O22S2 + 2 × C2H3NO 74 X 416
34 C60H95N15O19S + C2H3NO 73 X 715 X
35 C53H81N13O23S3 + 3 × C2H3NO +O 42 X 788 X
36 C53H81N13O23S3 + 2 × C2H3NO 45 X 226
37 C57H91N15O23S + C2H3NO 78 X 586 X
38 C57H89N13O23S2 + 2 × C2H3NO 84 X 584
39 C64H98N14O19S +O 72 X 685
40 C64H98N14O19S 73 X 746 X
41 C65H106N20O17 75 X 757 X
42 C68H106N18O19 69 X 740 X
43 C65H92N16O23S + C2H3NO 88 X 555 X
44 C66H114N18O22 71 X 822 X
45 C67H106N16O22 + C2H3NOS 82 X 707
46 C74H102N16O22 88 X 717 X
47 C60H95N19O25S3 + 3 × C2H3NO 92 X 437
48 C68H105N21O23S + C2H3NO 101 X 332
49 C68H100N18O25S2 + 2 × C2H3NO 112 X 505
50 C72H126N20O23 77 X 968 X
51 C76H114N16O24S + C2H3NO 100 X 982 X
52 C72H118N18O23S2 + C2H3NO +O 108 X 1076 X
53 C72H118N18O23S2 + C2H3NO 99 X 942
54 C72H113N19O26S3 + 3 × C2H3NO 135 X 776
55 C82H126N20O25S + C2H3NO 118 X 1084
56 C79H121N21O28S + C2H3NO 129 X 879
57 C84H127N19O26S + C2H3NO 131 X 1117
58 C94H125N19O23 125 X 1135 X
59 C100H137N23O24 130 X 1237
60 C82H133N25O32S3 + 3 × C2H3NO 177 X 714
61 C99H154N26O32S3 + 3 × C2H3NO 196 X 433
62 C105H165N25O37S + C2H3NO 199 X 1113
63 C113H171N27O31S + C2H3NO 199 X 1679
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to 99% decreased the number of mismatches from 403 to 190 at the cost of obtaining more lengthy

lists of candidate compositions.
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5 Conclusion

pacMASS is a memory-efficient and computationally fast de novo predictor of the elemental com-

position of peptides and small proteins based upon the observed mass. It uses constraints based

on theoretical isotope ratios and the nitrogen- and hydrogen-rules to limit the number of possible

atomic formulae. When using high-accuracy masses, a limited list of candidate molecular formulas

includes the correct one.

While pacMASS cannot (yet) serve to obtain unique identifications in every case, it can be ap-

plied in validation of protein- and peptide-identification methods, or to reduce the search space of

database-driven identification tools. In this case, the predicted atomic compositions can be used

to reduce the number of the amino acid sequences in the protein- or peptide-database suggested

by the identification tool. This reduction may lead to a unique identification.
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