
Made available by Hasselt University Library in https://documentserver.uhasselt.be

An interpretation of radial basis function networks as zero-mean

Gaussian process emulators in cluster space

Peer-reviewed author version

De Mulder, Wim; MOLENBERGHS, Geert & VERBEKE, Geert (2020) An

interpretation of radial basis function networks as zero-mean Gaussian process

emulators in cluster space. In: JOURNAL OF COMPUTATIONAL AND APPLIED

MATHEMATICS, 363, p. 249-255.

DOI: 10.1016/j.cam.2019.06.011

Handle: http://hdl.handle.net/1942/29969

An interpretation of radial basis function networks

as zero-mean Gaussian process emulators in

cluster space

Wim De Mulder1, Geert Molenberghs∗2,1, and Geert Verbeke1,2

1I-BioStat, KU Leuven, Leuven, Belgium
2I-BioStat, Universiteit Hasselt, Hasselt, Belgium

Abstract

Emulators provide approximations to computationally expensive

functions and are widely used in diverse domains, despite the ever in-

creasing speed of computational devices. In this paper we establish

a connection between two independently developed emulation meth-

ods: radial basis function networks and Gaussian process emulation.

The methodological relationship is established by starting from the ob-

servation that the concept of correlation between random variables in

Gaussian process emulation can be interpreted as a correlation func-

tion applied to points in input space. This correlation function is then

extended to apply to clusters, i.e. to sets of points. It is then shown

that the extended Gaussian process emulation method is equivalent to

radial basis function networks, provided that the prior mean in Gaus-

sian process emulation is chosen zero. This elegant connection might

increase understanding of the principles of both types of emulation, and

might act as a catalyst for mutually bene�cial research in emulation

domains that were hitherto considered independent.

Keywords� Radial basis function networks; cluster analysis; Gaussian
process emulation; correlation function.

1 Introduction

Bertrand Russell once expressed the importance of approximations in science
as follows: �Although this may seem a paradox, all exact science is dominated
by the idea of approximation�. The problem of approximative determination
of a given quantity is one of the oldest challenges of mathematics. As a
prime example, the formula for approximating the square root of a number

∗Corresponding author. Email address: geert.molenberghs@uhasselt.be

1

is usually attributed to the Babylonians [1]. There can be several good
reasons to be satis�ed with an approximation to the function or quantity
of interest. Emulators, also known as surrogate models, response surface
models or metamodels, are a class of models that have been developed to
provide approximations to models that are computationally too expensive
to be used directly in a certain analysis [2]. Emulators are frequently used
in, e.g., engineering, where simulation models are considered a key factor to
understanding complex system behavior [3]. Simulation models are typically
computationally expensive, requiring minutes if not hours or days to generate
a single simulation outcome corresponding to a given input. If a certain study
requires to obtain simulation outcomes for a very large number of inputs, it
is convenient to approximate the simulation model with an emulator, which
is supposed to generate an approximation to the output in the given input
point very fast. We adopt the common practice to refer to the model that
is approximated as the simulator.

Emulators are typically built in a purely data driven manner, i.e., their
construction solely relies on input-output pairs obtained from the simulator.
In fact, the rationale behind emulation can be summarized as follows. First,
given a simulator ν : X → Y , with X and Y certain sets, apply the compu-
tationally expensive simulator to a limited number of carefully chosen points
x1, . . . ,xn ∈ X, obtaining outputs ν(x1), . . . , ν(xn). Secondly, use these
input-output pairs to optimize the parameters of the emulator. Finally, use
the computationally cheap emulator to perform an analysis for which many,
i.e., much more than n, simulation outcomes are needed. We refer to the
set of points > = {x1, . . . ,xn} as the training data set. The corresponding
vector of output values is denoted as N(>) = [ν(x1), . . . , ν(xn)]T . The sim-
ulators ν we consider in this work are arbitrary mappings from Rp to R, for
some p ∈ N.

2 Overview of the paper

In this work we establish an interesting and elegant relationship between ra-
dial basis function networks and Gaussian process emulation, two emulation
methods that have been developed independently and for which research
still proceeds along separate lines. A brief review on radial basis function
networks and on Gaussian process emulation is provided in Sections 3 and
4 respectively. In Section 5 we stress the fact that correlation functions,
used in Gaussian process emulation, and radial functions, used in radial ba-
sis function networks, share similarities, and we consider a general class of
functions that can serve as correlation function and, at the same time, as
radial function. Section 6 introduces two metric spaces, one where points
are the main entities and one where clusters play the main role, called point
space and cluster space, respectively. This formalization is used in Section

2

7 to develop Gaussian process emulators in cluster space, by extending the
notion of correlation in point space to correlation in cluster space. In Sec-
tion 8 we then establish an elegant relationship between Gaussian process
emulators in cluster space and radial basis function networks. One partic-
ular use of the established relationship is the determination of a con�dence
interval for radial basis function networks, which is discussed in Section 9.
This particular use is then illustrated in Section 10.

3 Brief review on radial basis function networks

A radial basis function network (RBFN) is an emulator that is composed
of radial functions [4]. A radial function is de�ned as a function φ that is
radially symmetric around some point µ in input space. One commonly used
type of radial functions are Gaussian functions [5], e.g.

φ(x,µ) = exp
(
−γ
∣∣|x− µ|

∣∣2) (1)

where γ > 0 is a parameter, and where
∣∣|.|∣∣ denotes the Euclidean norm.

The point µ ∈ Rp is conveniently called the center of the basis function.
The radial basis function approach relies on r radial functions with di�er-

ent centers µ1, . . . ,µr, where r is chosen by the user and which is typically
much smaller than the training data set size n. One popular way to de-
termine appropriate centers is by using a cluster analysis method, such as
k-means [6]. Using k-means one can partition the training data set > into r
disjoint clusters, where each cluster has an associated centroid that is con-
sidered a prototype of the cluster. It is intuitive to use these centroids as
the centers of the basis functions.

A RBFN then approximates ν(x) as

ν̂(x) =
r∑

j=1

wj φ(x,µj) (2)

where w1, . . . , wr are parameters. It is convenient to introduce the vector
W = [w1, . . . , wr]

T and the n×r matrix Φ with elements Φ(i, j) = φ(xi,µj).
The parameter vectorW is typically determined as the vector that minimizes
the error function

E =
1

2

n∑
k=1

(
ν(x)− ν̂(x)

)2
(3)

It is well known that an analytical expression for the optimal coe�cient
vector exists [7] and is given by

W = Φ†N(>) (4)

3

where Φ† denotes the pseudo-inverse of Φ, provided that it exists.
A special case arises when n = r, such that there are n basis functions

with centers µj = xj . In this case the optimal weight vector is given by
W = Φ−1N(>), provided that Φ is non-singular.

RBFNs are especially well suited to handle very large training data sets
since it relies on cluster analysis.

4 Brief review on Gaussian process emulation

A Gaussian process (GP) emulator is, as the name implies, an emulator.
Over time researchers have developed variations on and extensions of the
originally developed GP emulator. In this work we will restrict attention
to the GP emulator as it was initially developed [8]. The essential idea
behind GP emulation is to consider the output of ν in a given input x as
the realization of a random variable ζ(x) in output space, which is justi�ed
by the fact that the output is unknown as long as the simulator has not
been applied to the given input. This allows to model the output in x as
a distribution, whose mean is then considered the best approximation for
ν(x) and whose variance can be interpreted as a measure for the degree of
uncertainty about the extent to which the mean agrees with the real output
value ν(x).

A central concept in the formulation of GP emulation is the correla-
tion matrix. The correlation matrix, denoted as A, is the matrix where
each entry contains the correlation between two random variables in out-
put space that are associated to inputs from the training data set. That
is, entry A(i, j) of this matrix equals the correlation between ζ(xi) and
ζ(xj), corresponding to the inputs xi and xj from the training data set
{x1, . . . ,xn}. Determining the correlation matrix requires the choice of a
correlation function c : Rp×Rp → R that takes as input the two points from
input space that are associated with the considered random variables, such
that A(i, j) = c(xi,xj). The Gaussian functions that are used in RBFNs
are also commonly employed in GP emulation. Thus c(x,x′) = φ(x,x′) is a
typical choice.

We will make extensive use of the fact that the description of the concept
of correlation in GP emulation allows an interpretation that is disconnected
from the statistical meaning of correlation as an association measure between
two random variables. Indeed, from the fact that c is a mapping from Rp×Rp

to R, it follows that the correlation function c(x,x′) does not make any
explicit reference to the random variables ζ(x) and ζ(x′). Instead, it applies
to points x and x′ in input space.

The distributions of the random variables in output space are modeled as
follows. In a �rst step the outputs are modeled via a Gaussian process [9]. A
particular consequence is that each distribution in output space is considered

4

Gaussian. For a given input point x, the mean m(x) = E[ζ(x) |β] of the
corresponding distribution in output space is modeled as a linear combination
of q user-chosen regression functions hj :

m(x) =

q∑
j=1

βj hj(x) (5)

where β is a vector of parameters βj . The variance of each Gaussian dis-
tribution is a parameter σ2 that is constant over input space. Its value is
estimated as

σ̂2 =
N(>)TA−1(I −HK)N(>)

n− q − 2
(6)

By the assumption of Gaussian process, any �nite collection of random vari-
ables in output space is considered to follow a multivariate Gaussian distribu-
tion. A special collection are the random variables associated to the training
data set. Their joint Gaussian distribution has mean [m(x1), . . . ,m(xn)]T

and covariance matrix σ2A. By introducing the matrix H with elements
H(i, j) = hj(xi) the mean of this distribution can be conveniently written
as

[m(x1), . . . ,m(xn)]T = Hβ (7)

In a next step parameters are optimized and the Gaussian process is updated
to a Student-t process [10] via a Bayesian analysis [11]. The mean of the
Student's t-distribution associated with the input point x is then taken as
the best approximation for ν(x) and is, therefore, denoted as ν̂(x). It is
given by [12]:

ν̂(x) = m(x) + < U(x), A−1(N(>)−Hβ̂) > (8)

where < ., . > denotes the Euclidean inner product and with β̂ an optimal
value for β, for example determined according to the maximum likelihood
principle [12]. Furthermore, the vector U(x) contains the correlations be-
tween ζ(x) and each ζ(xi):

U(x) = [c(x,x1), . . . , c(x,xn)]T (9)

We will refer to the quantity ν̂(x) as the GP emulator. There also exists
an explicit analytical expression for the posterior variance of the Student's
t-distributions [12],

In this paper, we will pay particular attention to GP emulators for which
the prior mean is zero, i.e. q = 0 and thus H = 0. We refer to these
emulators as zero-mean GP emulators, and their description is a special case
of (8), given by

ν̂(x) =< U(x), A−1N(>) > (10)

5

It can be shown, using Bayesian principles, that the posterior variance in
this special case is estimated as

V (x) = σ̂2
[
1− UT (x)A−1U(x)

]
(11)

=
N(>)TA−1N(>)

[
1− UT (x)A−1U(x)

]
n− 2

(12)

where we used (6) with q = 0 and H = 0.
It is an important strength of GP emulation that it provides a measure

of the variance, since this allows to construct a con�dence interval CI(x)
around any approximation ν̂(x). For example, a 95% con�dence interval is
given by

CI(x) = [ν̂(x)− 2V (x) , ν̂(x) + 2V (x)] (13)

However, GP emulation has as severe limitation that it can only be applied
to reasonably small training data sets, because the method relies on inverting
the n×n correlation matrixA, an operation that is computationally infeasible
for a large number of training data points n. Compare this to RBFN, which
relies on the pseudo-inverse of the n× r matrix Φ with r � n, where r refers
to the number of clusters.

5 Introduction of a general class of functions that

can be used as correlation function and radial

function

Consider any metric space of the form (Rp, d). The introduction of a metric
space is motivated by the interpretation of the correlation function in GP
emulation as a function that applies to points in input space, see Section 4.

Now, it is seen that the function c(x,x′) = exp
(
−γ
∣∣∣∣∣x− x′

∣∣∣∣∣2) can be seen

as the function Γ(r) = exp(−r2) applied to the distance r = d(x,x′), where

d is de�ned as d(x,x′) =
√
γ
∣∣∣∣∣x− x′

∣∣∣∣∣. It is easily veri�ed that this indeed

de�nes a distance measure, given that γ is positive. Thus c can be written
as c(x,x′) = Γ(d(x,x′)).

From now on we will let Γ denote any function for which Γ(d(x,x′))
and Γ(d(x,µ)) de�ne a suitable correlation function in GP emulation and a
suitable radial function in RBFN resp., for a chosen distance measure d. We
use the following shorthand notation:

ς(x,x′) = Γ(d(x,x′)) (14)

6

6 Cluster space and point space

In Section 3 it was outlined how cluster analysis might play an important role
in RBFN, namely to determine the centers of the radial functions. To formal-
ize this role a little bit more, we impose a certain structure on the clusters.
We consider clusters, determined by any clustering algorithm, C1, . . . , Cr

with each Ci ⊆ Rp for which the following holds:

1. > =

r⋃
i=1

Ci

2. Ci ∩ Cj = ∅ if i 6= j

The two conditions together imply that each training data point belongs to
exactly one cluster. Notice that any point x 6∈ > can also be considered a
cluster, namely the cluster {x}. It will turn out useful to think of the input
space as the following set of clusters ∆:

∆ =
r⋃

i=1

Ci ∪
⋃

x∈Rp

{x} (15)

Furthermore, it is convenient to have a notion of distance between two given
clusters. A distance measure between clusters can be de�ned in several ways
and we will generally denote such a measure as dc. Some measures can
be found in [13] and [14]. This provides us with a metric space (∆, dc) to
which we will refer as the cluster space. The metric space (Rp, d), which
provides another view on the input space in terms of vectors consisting of p
components, is then conveniently called the point space.

7 Introducing cluster-based GP emulation

We now extend the GP emulation method by extending the notion of cor-
relation in point space to correlation in cluster space. The extended GP
emulator can then be seen as an emulator living in cluster space, and we will
refer to it as a GP emulator in cluster space or, in short, a cluster-based GP
emulator.

7.1 Introducing correlation between clusters

The purpose of this section is to de�ne correlation between clusters, i.e.,
between members of (∆, dc), which extends correlation between points, i.e.
between members of (Rp, d). In Section 5 we gave the following general
de�nition for correlation between points: ς(x,x′) = Γ(d(x,x′)). It is then
natural to de�ne correlation between clusters C and C ′ from ∆ as ς(C,C ′) =
Γ(dc(C,C

′)). We use the same notation ς to denote the correlation between

7

clusters, since the context will make it clear whether correlation between
clusters or between points is considered. Although the given de�nition is
intuitive, it will turn out useful to consider the distance dc between certain
transformations of C and C ′ instead of calculating this distance directly
between C and C ′. Therefore we introduce the function G : ∆→ ∆ and we
de�ne

ς(C,C ′) = Γ(dc(G(C), G(C ′))) (16)

7.2 Cluster-based GP emulation

Having at our disposal a correlation function between clusters, it becomes
possible to extend some essential GP emulation concepts from point space
to cluster space, namely the correlation matrix A and the vector U(x). The
correlation matrix has as natural counterpart in cluster space the matrix A
with elements A(i, j) = ς(Ci, Cj), where ∪iCi = >. The vector U(x) with
components ς(x,xi) is naturally extended to

U(x) = [ς({x}, C1), . . . , ς({x}, Cr)]
T (17)

The zero-mean GP emulator, given by (10) can then be given a formulation
in cluster space:

ν̂(x) =< U(x),A−1N (>) > (18)

where N (>) is an as yet unspeci�ed vector with r components. Since it
is to be interpreted as the counterpart of N(>) = [ν(x1), . . . , ν(xn)]T , it
is clear that it should be determined by the true output values ν(xi). It
is convenient to refer to this GP emulator as a cluster-based GP emulator,
while the emulator described in (10) might be called a point-based emulator.

8 Interpretation of RBFN as a zero-mean cluster-

based GP emulator

If we consider clusters Ci that have an associated center µi, we may take
G : ∆→ ∆ as G(Ci) = {µi} for i = 1, . . . , r, and G({x}) = {x}. For this G
it holds that

ς({x}, Ci) = Γ(dc(G({x}), G(Ci)))

= Γ(dc({x}, {µi}))

Whatever distance measure dc is chosen, it is natural that dc({x}, {µi}) =
d(x,µi), as dc is an extension of the concept of distance between points to
distance between clusters, i.e. sets of points. This implies that with this

8

choice of G we have that ς({x}, Ci) = Γ(d(x,µi)) = φ(x,µi). It follows
from this result and from (17) that

U(x) = [φ(x,µ1), . . . , φ(x,µr)]
T (19)

and thus that a RBFN, as given by (2), can also be written as

ν̂(x) = < U(x),W > (20)

If we let N (>) in the zero-mean cluster-based GP emulator (18) be deter-
mined by the equation A−1N (>) = W , we see that a RBFN is a zero-mean
cluster-based GP emulator.

Furthermore, with W determined as W = Φ†N(>), see (4), it follows
that A−1N (>) = Φ†N(>). The left-hand side concerns operations in cluster
space, while the right-hand side refers to operations in point space. One
interesting loose interpretation of this equation is that the pseudo-inverse of
Φ is equivalent to an inverse correlation matrix in cluster space.

It is also interesting to notice that a zero-mean GP emulator is, at the
same time, a RBFN. Letting r = n it follows that each cluster contains
exactly one training data point, such that xi = µi. It is easily seen that
in this case we have that U(x) = U(x) = [ς(x,x1), . . . , ς(x,xn)]T and that,
as we already know from Section 3, W = Φ−1N(>). Furthermore, in this
case Φ(i, j) = φ(xi,µj) = φ(xi,xj) = ς(xi,xj) = A(i, j), where the last two
equalities follow from the results described in Section 5. Thus Φ = A, and
the RBFN, given by (20), then becomes ν̂(x) =< U(x), A−1N(>) >. This
is the zero-mean GP emulator, given by (10).

Thus a RBFN is a zero-mean GP emulator in cluster space, while a zero-
mean GP emulator in point space is an RBFN. In other words, RBFNs and
zero-mean GP emulators are equivalent, provided that the class of zero-mean
GP emulators is not restricted to point-based zero-mean GP emulators, but
also includes cluster-based zero-mean GP emulators.

9 Discussion of the use of the established relation-

ship

One of the strengths of Gaussian process emulation is that it not only pro-
vides an approximation to an unknown function, given a training data set,
but that it also allows to determine a con�dence interval around this ap-
proximation (see Section 4). However, GP emulation has the important dis-
advantage that it relies on inverting the correlation matrix A, which makes
GP emulation, as considered in point space, infeasible for large training data
sets. In a sense, the reverse holds for RBFNs. This method does not provide
a con�dence interval, but it is able to handle a very large number of training
data points since it relies on cluster analysis.

9

The advantages of both methods can be combined by taking into account
the established relationship between RBFN and GP emulation. Given a
large training data set, an approximation to an unknown function in a point
x can be obtained with the use of RBFN, as given by (2). Furthermore,
a con�dence interval can be derived by taking advantage of the established
fact that a RBFN is a zero-mean cluster-based GP emulator. This is done
by considering the con�dence interval (13), which holds for GP emulation in
point space, in cluster space:

CI(x) = [ν̂(x)− 2V(x) , ν̂(x) + 2V(x)] (21)

where V(x) denotes the posterior variance in cluster space, obtained by us-
ing the concepts developed in Section 7 in order to translate the posterior
variance in point space, given by (12), to cluster space:

V(x) =
N (>)TA−1N (>)

[
1− UT (x)A−1U(x)

]
r − 2

(22)

Notice that in translating (12) to (22) the number of training points n has
been replaced by the number of clusters r, since in cluster space the basic
entities are clusters.

Since the dimension of A is only r× r, compared to the n×n dimension
of the correlation matrix A in GP emulation in point space, it is clear that
very large training data sets should be considered in cluster space. In cluster
space, we obtain an approximation by standard application of RBFN, while
the established relationship between RBFN and GP emulation allows to
construct a con�dence interval CI(x), given by (21), something which is
lacking in the traditional description of RBFN.

10 Illustration of the use of the established rela-

tionship

The use of the established relationship, discussed in the previous section,
is illustrated using an arti�cially created training data set. The considered
true function is ν : R2 → R with ν(x, y) = x2 + y2. The training input data
consists of randomly generated points from 3 di�erent multivariate normal
distributions with means (0, 0), (6, 0) and (0, 6), and with each covariance
matrix chosen as the identity matrix. From each distribution we generate
300 points, implying that the training data set contains 900 points. This is
a relatively large training data set.

The purpose is to obtain an approximation to ν, which is presumably
unknown, and a con�dence interval around this approximation. Since the
training data is relatively large, we consider the problem in cluster space.
This means that we approximate ν with a RBFN (2) with φ chosen as in

10

(1) with γ = 0.15. Since our goal is merely to illustrate how the established
relationship can be used in practical applications, we simply chose γ by trial
and error. Furthermore, we choose r = 50, meaning that the training input
data set is divided into 50 clusters, which are obtained by k-means. Next,
we compute A and U as given in Section 7.2, and we obtain N (>) from the
relation A−1N (>) = Φ†N(>) (see Section 8). From this we can compute
the posterior variance in cluster space in any point x, given by (22), and this
then allows to compute the con�dence interval CI(x) given by (21).

For convenience, we display the results for a line segment in the input
space R. We choose the segment (x, y) with x ∈ [0, 3] and y = −x + 3,
because this line segment is well surrounded by training data input points.
The result is shown in Fig. 1. Notice that the true function is completely
within the con�dence interval. It is also striking that the con�dence interval
is especially narrow around x ∈ [2.5, 3], exactly where the approximation is
very close to the true function.

Figure 1: Approximation and con�dence interval around approximation for
ν(x, y) = x2+y2 with x ∈ [0, 3] and y = −x+3. This illustrates a zero-mean
cluster-based GP emulator.

11 Conclusion

By generalizing correlation between points to correlation between clusters,
we were able to establish that RBFNs and zero-mean GP emulators are
equivalent. This relationship was derived by restricting to certain kinds of
GP emulators and RBFNs. In essence, our entire attention centered on the
originally developed GP emulators and RBFNs, although a lot of diverse
extensions of both methods have been developed. Nevertheless, there are
two important contributions of our work. First, it increases insight into the

11

principles of both RBFN and GP emulation. For example, a RBFN can be
considered as an arti�cial neural network [7], which has an intuitive repre-
sentation as a diagram with interconnected nodes, and this mental picture
might make interpretation of certain concepts in GP emulation easier. On
the other hand, the fact that the pseudo-inverse of the matrix Φ in RBFN
can be viewed as an inverse correlation matrix in cluster space might re-
sult in a deeper understanding of RBFNs. Increased understanding of and a
broader perspective on both methods bring us to a second main contribution.
The fact that both methods are directly related results in cross-fertilization.
For example, a GP emulator not only provides a best approximation of the
output of a given simulator in a given input point, but it also produces a
measure of uncertainty of this approximation. Such a measure of uncer-
tainty is absent in RBFN, and the relationship we have established can be
used to introduce a con�dence interval for a RBFN, as we have show in
our work. In the other direction, GP emulation can also bene�t from the
derived connection. One of the main problems with GP emulation lies in
numerical instabilities in inverting the correlation matrix (for a discussion,
see, e.g., [15] and [16]). This problem becomes worse as the training data
set size increases, since the number of entries of the correlation matrix A is
quadratic in the number of training data points. However, the cluster-based
GP emulator, which is equivalent to a RBFN, has a correlation matrix A
whose dimension is only quadratic in the number of clusters.

References

[1] K.-G. Ste�ens, The history of approximation theory: from Euler to
Bernstein, Birkhauser, 2006.

[2] S. Koziel, L. Leifsson, Surrogate-based modeling and optimization,
Springer-Verlag, 2013.

[3] J. Clymer, Simulation-based engineering of complex systems, Wiley-
Interscience, 2009.

[4] M. Powell, Radial basis functions for multivariable interpolation: a re-
view, in: IMA Conference on Algorithms for the Approximation of Func-
tions and Data, 1985, pp. 143�167.

[5] B. Fornberg, E. L. N. Flyer, Stable computations with gaussian radial
basis functions, SIAM Journal on Scienti�c Computing 33 (2) (2011)
869�892.

[6] A. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition
Letters 31 (8) (2010) 651�666.

12

[7] C. Bishop, Neural networks for pattern recognition, Clarendon Press,
1996.

[8] J. Oakley, A. O'Hagan, Bayesian inference for the uncertainty distribu-
tion of computer model outputs, Biometrika 89 (4) (2002) 769�784.

[9] C. Rasmussen, C. Williams, Gaussian processes for machine learning,
MIT Press, 2006.

[10] B. Grigelionis, Student's t-distribution and related stochastic processes,
Springer, 2012.

[11] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, D. Rubin,
Bayesian data analysis, Chapman and Hall/CRC, 2013.

[12] A. O'Hagan, Bayesian analysis of computer code outputs: A tutorial,
Reliability Engineering & System Safety 91 (10-11) (2006) 1290�1300.

[13] A. Gardner, J. Kanno, C. Duncan, R. Selmic, Measuring distance be-
tween unordered sets of di�erent sizes, in: IEEE Conference on Com-
puter Vision and Pattern Recognition, 2014.

[14] M. Goldberg, M. Hayvanovych, Measuring similarity between sets of
overlapping clusters, in: Proceedings of the 2010 IEEE Second Interna-
tional Conference on Social Computing, 2010.

[15] J. Ramon, K. Driessens, On the numeric stability of gaussian processes
regression for relational reinforcement learning, in: ICML-2004 Work-
shop on Relational Reinforcement Learning pages, 2004, pp. 10�14.

[16] P. Ranjan, R. Haynes, R. Karsten, A computationally stable approach
to gaussian process interpolation of deterministic computer simulation
data, Technometrics 53 (4) (2011) 366�378.

13

