
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A framework for comparing query languages in their ability to express

boolean queries

Peer-reviewed author version

SURINX, Dimitri; VAN DEN BUSSCHE, Jan & Van Gucht, Dirk (2019) A framework

for comparing query languages in their ability to express boolean queries. In:

ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 87(1-2), p. 157-184.

DOI: 10.1007/s10472-019-09639-5

Handle: http://hdl.handle.net/1942/29982

Noname manuscript No.
(will be inserted by the editor)

A framework for comparing query languages in their
ability to express boolean queries?

Dimitri Surinx · Jan Van den Bussche ·
Dirk Van Gucht

Keywords Query Languages · Expressive Power · Graph Databases · Conjunctive
Queries · Boolean Query Modalities

Abstract For any query language F , we consider three natural families of boolean
queries. Nonemptiness queries are expressed as e 6= ∅ with e an F expression.
Emptiness queries are expressed as e = ∅. Containment queries are expressed as
e1 ⊆ e2. We refer to syntactic constructions of boolean queries as modalities. In
first order logic, the emptiness, nonemptiness and containment modalities have
exactly the same expressive power. For other classes of queries, e.g., expressed in
weaker query languages, the modalities may differ in expressiveness. We propose
a framework for studying the expressive power of boolean query modalities. Along
one dimension, one may work within a fixed query language and compare the three
modalities. Here, we identify crucial query features that enable us to go from one
modality to another. Furthermore, we identify semantical properties that reflect
the lack of these query features to establish separations. Along a second dimen-
sion, one may fix a modality and compare different query languages. This second
dimension is the one that has already received quite some attention in the liter-
ature, whereas in this paper we emphasize the first dimension. Combining both
dimensions, it is interesting to compare the expressive power of a weak query lan-
guage using a strong modality, against that of a seemingly stronger query language
but perhaps using a weaker modality. We present some initial results within this
theme. The two main query languages to which we apply our framework are the
algebra of binary relations, and the language of conjunctive queries.

? This is a post-peer-review, pre-copyedit version of an article accepted for publication in
Annals of Mathematics and Artificial Intelligence. The final authenticated version still has to
appear.

D. Surinx (corresponding author) · J. Van den Bussche
Hasselt University, School for Information Technology
Martelarenlaan 42, 3500 Hasselt, Belgium
E-mail: {dimitri.surinx,jan.vandenbussche}@uhasselt.be

D. Van Gucht
Indiana University, School of Informatics, Computing, and Engineering
Luddy Hall, 700 N Woodlawn Ave, Bloomington, Indiana 47408, United States

2 Dimitri Surinx et al.

1 Introduction

When a relational database is queried, the result is normally a relation. Some
queries, however, only require a yes/no answer; such queries are often called boolean

queries. We may ask, for example, “is student 14753 enrolled in course c209?” Also,
every integrity constraint is essentially a boolean query. Another application of
boolean queries is given by SQL conditions, as used in updates and triggers, or in
if-then-else statements of SQL/PSM (PL/SQL) programs.

In the theory of database query languages and in finite model theory [1,13,
21,20], it is standard practice to express boolean queries under what we call the
nonemptiness modality. Under this modality, boolean queries are expressed in the
form e 6= ∅ where e is a query expression in some query language. For example, un-
der the nonemptiness modality, the above boolean query “is student 14753 enrolled
in course c209?” is expressed by the nonemptiness of the query “give all students
with id 14753 that are enrolled in course c209”. The nonemptiness modality is
used in practice in the query language SPARQL. In that language, the result of
a boolean query ASK P is true if and only if the corresponding query SELECT * P

has a nonempty result. Another example of the nonemptiness modality in practice
is given by SQL conditions of the form EXISTS (Q).

Sometimes, however, an integrity constraint is more naturally expressed by a
query that looks for violations; then the constraint holds if the query returns no
answers. So, here we use the emptiness modality rather than nonemptiness. For
example, to express the integrity constraint that students can be enrolled in at
most ten courses, we write a query retrieving all students enrolled in more than ten
courses. The query must return an empty result; otherwise an error is raised. SQL
conditions of the form NOT EXISTS (Q), instrumental in formulating nonmonotone
queries, obviously use the emptiness modality.

Yet another natural modality is containment of the form e1 ⊆ e2, where e1 and
e2 are two query expressions. This boolean query returns true on a database D

if e1(D) is a subset of e2(D).1 For example, the integrity constraint “every stu-
dent taking course c209 should have passed course c106” is naturally expressed
by e1 ⊆ e2, where e1 is the query retrieving all students taking c209 and e2 is
the query retrieving all students that passed c106. An embedded tuple-generating
dependency [1,8] can be regarded as the containment of two conjunctive queries.
Similarly, an equality-generating dependency [1,8] can be regarded as the con-
tainment of a conjunctive query in the query returning all identical pairs of data
elements.

This brings us to the main motivation of this paper: by using the containment
modality, one can use a weaker query language, such as conjunctive queries, and
still be able to express integrity constraints that would not be expressible in the
language using, say, the nonemptiness modality. A weaker language is easier to
use and queries can be executed more efficiently. We find it an intriguing question
how different modalities compare to each other, under different circumstances de-

1 In this paper, e1 ⊆ e2 stands for a boolean query which, in general, may return true on
some databases and return false on the other databases. Thus e1 ⊆ e2 as considered in this
paper should not be misconstrued as an instance of the famous query containment problem [11,
1], where the task would be to verify statically if e1(D) is a subset of e2(D) on every database
D. Indeed, if e1 is contained in e2 in this latter sense, then the boolean query e1 ⊆ e2 is trivial
as it returns true on every database.

Expressing boolean queries 3

pending on the query language at hand. Furthermore, one may want to compare
the expressiveness of different query languages across different modalities for ex-
pressing boolean queries. Moreover, we can observe that the emptiness modality
is simply the negation of the nonemptiness modality. Inspired by this, we are in-
terested in understanding under what circumstances the containment modality is
closed under negation, or under other boolean connectives such as conjunction.

We can illustrate the above questions using well-known simple examples.

Example 1 A referential integrity constraint (inclusion dependency) is clearly ex-
pressible by a containment of conjunctive queries (CQs), but not by the nonempti-
ness of a CQ. This is simply because CQs are monotone, whereas an inclusion
dependency is not. On the other hand it is neither expressible by the emptiness
of a CQ, because such boolean queries are antimonotone whereas again inclusion
dependencies are not.

For another example, a key constraint (functional dependency, FD) is again not
monotone, so again not expressible by the nonemptiness of a monotone query. An
FD is, however, naturally expressed by the emptiness of a CQ with nonequalities.
For example, a relation R(A,B,C) satisfies the FD A→ B if and only if the result
of

()← R(x, y1, z1), R(x, y2, z2), y1 6= y2

is empty. An FD is also expressible as a containment of two CQs. For example,
the above FD holds if and only if the containment

(x, y1, y2)← R(x, y1, z1), R(x, y2, z2) ⊆ (x, y, y)← R(x, y, z)

is satisfied. ut

In this paper, we attack the above questions from several angles. We begin by
comparing the three basic modalities: emptiness, nonemptiness, containment, in
the general context of an arbitrary query language. In such a context it is possible
to formulate sufficient conditions for, say, emptiness queries to be convertible to
nonemptiness queries, or nonemptiness queries to be convertible to containment
queries. For example, if we have a sufficiently powerful query language that can
express cylindrification and complementation, such as full first-order logic, then
it does not really matter which boolean query modality one uses. Conversely, we
also formulate some general properties of query languages, like monotonicity or
additivity, that preclude the conversion of one modality into another.

Our second angle is to consider a range of specific query languages and charac-
terize how the different modalities compare to each other, for each language in this
range. It would be very natural to do this for Codd’s relational algebra, where we
obtain a range of fragments by varying the allowed operations. For example, we
may allow attribute renaming or not, or we may allow set difference or not. While
such an investigation remains to be done, in this paper, we have opted to work
with the algebra of binary relations. This algebra can be seen as a more controlled
setting of the relational algebra, and also serves as a well-established and adopted
formalization of graph query languages [4,30,6,23,10,14,22,3]. We will completely
characterize how the different boolean query modalities compare for each fragment
of the algebra of binary relations. Apart from this algebra, we will also look at
the popular class of conjunctive queries under the light of the three boolean query
modalities.

4 Dimitri Surinx et al.

Our third angle is to investigate how the expressiveness of two different query
languages can be compared when using a different modality for each language.
One can, for example, compare a stronger language under the weak emptiness
modality, to a weak language under the stronger containment modality. The FD
example in Example 1 clearly follows this pattern. In this theme we use earlier and
new results [29,26] to show separations between the nonemptiness modality and
the containment modality for different fragments of the algebra of binary relations.
There remain some open problems in this theme, which we will summarize.

Finally, we look at the question of when a class of boolean queries is closed
under conjunction, or under negation. Especially the question of closure under
conjunction for boolean queries expressed as containments is very interesting with
some open problems remaining.

This article extends the conference paper [28] by providing full proofs, many
of which were missing from the conference paper.

Previous work. In our previous work we have compared the expressive power of
fragments of the algebra of binary relations under the nonemptiness modality [16,
15,29] and under the containment modality [27]. The present paper is complemen-
tary in that it emphasizes the comparison of different boolean query modalities, for
fixed fragments or across fragments. Moreover, this paper also deals with general
query languages over general relational databases, and also with the language of
conjunctive queries.

2 Preliminaries

A database schema S is a finite nonempty set of relation names. Every relation
name R is assigned an arity, which is a natural number. Assuming some fixed
infinite universe of data elements V , an instance I of a relation name R of arity k

is a finite k-ary relation on V , i.e., a subset of V k = V × · · · × V (k times). More
generally, an instance I of a database schema S assigns to each R ∈ S an instance
of R, denoted by I(R). The active domain of an instance I, denoted by adom(I),
is the set of all data elements from V that occur in I. For technical reasons we
exclude the empty instance, i.e., one of the relations in I must be nonempty. Thus,
adom(I) is never empty.

For a natural number k, a k-ary query over a database schema S is a function
that maps each instance I of S to a k-ary relation on adom(I). We require queries
to be generic [1]. A query q is generic if for any permutation f of the universe V ,
and any instance I, we have q(f(I)) = f(q(I)).

We assume familiarity with the standard relational query languages such as
first-order logic and relational algebra [1].

2.1 Tests, Cylindrification, Complementation.

Let q1 and q2 be queries over a common database schema. We define the query
(q1 if q2) as follows:

(q1 if q2)(I) =

{
q1(I) if q2(I) 6= ∅;
∅ otherwise.

Expressing boolean queries 5

Naturally, we say that a family F of queries over a common database schema is
closed under tests if for any two queries q1 and q2 in F , the query (q1 if q2) is also
in F .

Cylindrification is an operation on relations that, like projection, corresponds
to existential quantification, but, unlike projection, does not reduce the arity of
the relation [19,9]. We introduce an abstraction of this operation as follows. For
any natural number k and query q, we define the k-ary cylindrification of q, denoted
by γk(q), as follows:

γk(q)(I) =

{
adom(I)k if q(I) 6= ∅;
∅ otherwise.

This definition works for any query q; the arity of q need not be k. We say that a
family F of queries over a common database schema is closed under k-ary cylindri-

fication (k ≥ 1) if for any query q ∈ F , the query γk(q) is also in F .

Example 2 Let S be a schema with two ternary relations R and T , and let q be the
3-ary query that maps any instance I over S to I(R) − I(T). Then, γ1(q) is the
unary query that maps any instance I over S to adom(I) if I(R) 6⊆ I(T) and to ∅
otherwise. ut

For a k-ary query q, the complement of q, denoted by qc, is defined by qc(I) =
adom(I)k− q(I) (set difference). We say that a family F of queries over a common
database schema is closed under k-complementation if for any query q ∈ F of arity
k, the query qc is also in F .

Finally, we say that a family F of queries over a common database schema is
closed under set difference if for any two queries q1, q2 ∈ F of the same arity, the
query q that maps instances I onto q1(I)− q2(I) is also in F .

2.2 Navigational graph query languages.

Some of the general discussion, framework and results apply to general query lan-
guages over general relational databases, or to the language of conjunctive queries
over general relational databases. On the other hand, many technical results con-
cern graph databases, corresponding with the case where the database schema S

is restricted to only binary relation names. Any instance I of S can be considered
as a graph G, where the elements of the active domain are considered as nodes,
the pairs in the binary relations are directed edges, and the relation names are
edge labels.

Navigational queries on graph databases are formalized as binary queries on
graphs. The most basic navigational language we consider is the algebra NS . The
expressions of this algebra are built recursively from the relation names in S and
the primitives ∅ and id, using the operators composition (e1◦e2) and union (e1∪e2).
Semantically, each expression denotes a query in the following way.

id(G) = {(m,m) | m ∈ adom(G)}
R(G) = G(R) for relation name R ∈ S
∅(G) = ∅

e1 ◦ e2(G) = {(m,n) | ∃p : (m, p) ∈ e1(G) ∧ (p, n) ∈ e2(G)}
e1 ∪ e2(G) = e1(G) ∪ e2(G).

6 Dimitri Surinx et al.

Although the assumption of a basic language is a point of discussion, it can be
argued that our choice of basic language is not unreasonable [27].

The basic algebra NS can be extended by adding some of the following fea-
tures: the primitives diversity (di), and the full relation (all); and the operators
converse (e−1), intersection (e1 ∩ e2), set difference (e1 − e2), projections (π1(e)
and π2(e)), coprojections (π1(e) and π2(e)), and transitive closure (e+). We refer
to the operators in the basic algebra as basic features; we refer to the extensions
as nonbasic features. The semantics of the extensions are as follows:

di(G) = {(m,n) | m,n ∈ adom(G) ∧m 6= n}
all(G) = {(m,n) | m,n ∈ adom(G)}

e−1(G) = {(m,n) | (n,m) ∈ e(G)}
e1 ∩ e2(G) = e1(G) ∩ e2(G)

e1 − e2(G) = e1(G)− e2(G)

π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ ∃n : (m,n) ∈ e(G)}
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ ∃n : (n,m) ∈ e(G)}
π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬∃n : (m,n) ∈ e(G)}
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬∃n : (n,m) ∈ e(G)}

e+(G) = the transitive closure of e(G).

All the above operators are well-established in so-called “navigational” graph
querying [23,10,14,22,3].

A fragment is any set F of nonbasic features, in which we either take both
projections π1 and π2 or none of them, and the same for coprojection.2

If F is a fragment, we denote by NS(F) the language obtained by adding the
features in F to NS . For example, NS(∩) denotes the extension with intersection,
and NS(∩, π) denotes the extension with intersection and both projections. We
will omit the subscript S in NS(F) when the precise database schema is not of
importance. Two expressions e1 and e2 are called equivalent, denoted by e1 ≡ e2,
if they express the same path query, i.e., e1(G) = e2(G) for every graph G.

Various interdependencies exist between the nonbasic features [14]:

all ≡ di ∪ id

di ≡ all− id

e1 ∩ e2 ≡ e1 − (e1 − e2)

π1(e) ≡ (e ◦ e−1) ∩ id = (e ◦ all) ∩ id = π1(π1(e)) = π2(e−1)

π2(e) ≡ (e−1 ◦ e) ∩ id = (all ◦ e) ∩ id ≡ π2(π2(e)) = π1(e−1)

π1(e) ≡ id− π1(e)

π2(e) ≡ id− π2(e)

For example, by the third equation, when we add difference, we get intersection
for free. The closure of a fragment F by the above equations is denoted by F . For
example, {−, di} = {−, di, all,∩, π, π}. Clearly F and F are equivalent in expressive
power. This closure notation will be used extensively in what follows.

2 Some of our results can be refined to fragments containing just one of the two projections
or coprojections, but for others this remains a technical open problem [25].

Expressing boolean queries 7

2.3 Conjunctive Queries

To introduce conjunctive queries (CQs) we switch over to another perspective for
instances. Again, let V be some fixed infinite universe of data elements V and
let R be a relation name in S of arity n. An R-fact is an expression of the form
R(a1, . . . , an) where ai ∈ V for i = 1, . . . , n. An R-instance I is a finite set of R-
facts. More generally, an instance I of a database schema S is a union

⋃
R∈S I(R),

where I(R) denotes an R-instance. This definition for instances corresponds to the
logic-programming perspective [1]. Note that there is a one-to-one correspondence
between instances under the logic-programming perspective and the perspective
outlined in the beginning of Section 2. Indeed, a tuple t in the relation I(R) can
be seen as the R-fact R(t) and vice versa.

We formalize the notion of conjunctive queries as follows. A conjunctive query

is an expression of the form Q : H ← B where the head H is a tuple of vari-
ables and the body B is a set of atoms over S. An atom is an expression of the
form R(v1, . . . , vn) where R ∈ S and v1, . . . , vn are variables. We denote the set
of conjunctive queries over S with CQS . When the databases schema S is not of
importance we will omit the S subscript and write CQ instead. For a conjunctive
query Q, HQ denotes the head and BQ denotes the body of Q. We assume that
our queries are safe, i.e., the variables in the head are present somewhere in the
body. Semantically, for every instance I over S, Q(I) is defined as:

{f(HQ) | f is a homomorphism from Q into I}.

Here, a homomorphism f from Q into I is a function on the variables in HQ

and BQ to adom(I) such that f(BQ) ⊆ I. Since our queries are safe, and thus all
the variables of HQ are present in BQ we also write that f is a homomorphism
from BQ into I. Interchangeably, we write that BQ maps into I.

Remark 1 It is convenient to assume that variables are data elements in V . Then,
we can use the body of a conjunctive query as a database instance. As a conse-
quence, an R-atom can then be thought of as an R-fact.

For every two queries Q1 and Q2, we write Q1 v Q2 if Q1(I) ⊆ Q2(I) for every
database instance I over S. When Q1 and Q2 are conjunctive queries, it is well
know that Q1 v Q2 iff HQ1

∈ Q2(BQ1
).

3 Boolean query modalities

A boolean query over a database schema S is a mapping from instances of S to
{true, false}. As argued in the Introduction, boolean queries can be naturally ex-
pressed in terms of the emptiness, or the nonemptiness, of an ordinary query, or
by the containment of the results of two queries. Using these three base modalities
we can associate an array of boolean query families to any family of queries F on
a common database schema S:

family of boolean queries expressible in the form with

F=∅ q = ∅ q ∈ F

F 6=∅ q 6= ∅ q ∈ F
F⊆ q1 ⊆ q2 q1, q2 ∈ F

8 Dimitri Surinx et al.

For F⊆, it is understood that only two queries of the same arity can form a
containment boolean query.

When working in the algebra of binary relations, for any fragment F of non-
basic features, we abbreviate N (F)=∅, N (F) 6=∅ and N (F)⊆ by F=∅, F 6=∅ and F⊆,
respectively.

Obviously, these are by no means the only way to express boolean queries. We
could, for example, allow boolean connectives within a family of boolean queries.
Indeed, we can consider boolean queries of the form q1 6= ∅ ∧ . . . ∧ qn 6= ∅ where
qi 6= ∅ ∈ F 6=∅ where i = 1, . . . , n. Furthermore, we could even combine two different
families of boolean queries by using boolean connectives. For example, we can
consider boolean queries of the form q1 6= ∅ ∧ q2 ⊆ q3 where q1 6= ∅ ∈ F 6=∅ and
q2 ⊆ q3 ∈ F⊆. Our goal in this paper is to propose a framework along which we
can investigate and compare different ways of expressing boolean queries.

4 Comparing the modalities

The goal of this section is to compare F=∅, F 6=∅ and F⊆, for a fixed family of
queries (modeling a query language) F . This amounts to making six comparisons,
but we can immediately get one of them out of the way by noting that F=∅ is
the negation of F 6=∅. Formally, for a boolean query q, we define its negation ¬q
naturally as (¬q)(I) = ¬q(I), where ¬true = false and ¬false = true. For a family
of boolean queries A, we define its negation ¬A as {¬q | q ∈ A}.

Now clearly A ⊆ B if and only if ¬A ⊆ ¬B. Hence, we only have to investigate
whether F=∅ ⊆ F 6=∅; the other direction F 6=∅ ⊆ F=∅ then directly follows. This
amounts to investigating when the emptiness modality is closed under negation.
Formally, a family B of boolean queries is called closed under negation if ¬B ⊆ B
(or, equivalently, B ⊆ ¬B). Note that we define closure under negation semantically,
it thus applies to any family of boolean queries, so it is not a syntactic definition
as it would apply to a query language. (e.g., formulas that do not use certain
operators or connectives like difference or logical negation)

We first identify query features that enable the expression of one base modality
in terms of another one. We also identify general properties that reflect the absence
of these query features, notably, the properties of monotonicity and additivity. We
then observe how these properties indeed prevent going from one modality to
another.

The announced query features are summarized in the following theorem. We
leave out the comparison F⊆ ⊆ F 6=∅, since we know of no other general way of
going from containment to nonemptiness than via emptiness F⊆ ⊆ F=∅ ⊆ F 6=∅.
This leaves four comparisons, dealt with in the following theorem. We refer to the
notions introduced in Section 2.1.

Theorem 1 Let F be a family of queries.

1. F⊆ ⊆ F=∅ if F is closed under set difference (−).

2. F=∅ ⊆ F 6=∅ if there exists k such that F is closed under

– k-ary complementation, and

– k-ary cylindrification.

3. F 6=∅ ⊆ F⊆ if

Expressing boolean queries 9

– F contains a never-empty query (one that returns nonempty on every instance),

and

– F is closed under tests, or F is closed under k-ary cylindrification for some k.

4. F=∅ ⊆ F⊆ if F contains the empty query which always outputs the empty relation.

Proof 1. q1 ⊆ q2 is expressed by q1 − q2 = ∅.
2. q = ∅ is expressed by γk(q)c 6= ∅.
3. Let p be a never-empty query. Then q 6= ∅ is expressed by p ⊆ (p if q) as well

as by γk(p) ⊆ γk(q).
4. q = ∅ is expressed by q ⊆ empty. ut

Obviously, the above theorem only provides sufficient conditions under which
we can go from one modality to another. Since the conditions hold for any general
family F , we cannot expect the literal converses of these statements to hold in
general. Indeed, one could always concoct an artificial family F that is not closed
under set difference but for which F⊆ ⊆ F=∅.

Example 3 Over a schema with two unary relation names R and S, let F be the
set of queries

if C then e1 else e2

with C finite boolean combinations of expressions hi ⊆ hj and e1, e2, hi, hj are

taken from {∅, R, S,R ∪ S}. It can be verified that F⊆ ⊆ F=∅, and that F is not
closed under difference. ut

Our approach to still find a kind of converse of Theorem 1, is to come up
with general semantic properties of the queries in a family that would prevent
the sufficient conditions to hold. We can then proceed to show that the different
modalities become incomparable under these properties.

More concretely, we can observe two main themes in the sufficient conditions:
negation, in the forms of set difference and complementation, and global access to

the database, in the forms of cylindrification and tests. A well-known semantic
property of queries that runs counter to negation is monotonicity. Global access is
an intuitive notion. As a formal property that intuitively prevents global access,
we propose additivity.

4.1 Monotonicity

A query q is monotone if I ⊆ J implies q(I) ⊆ q(J), where I ⊆ J means that
I(R) ⊆ J(R) for each relation name R. In Theorem 1, we have seen that closure
under complementation or set difference, which typically destroys monotonicity,
is instrumental for the emptiness modality to be closed under negation, as well as
the containment modality to be subsumed by emptiness. We next show that both
fail under monotonicity.

The first failure is the strongest:

Lemma 1 Let MON denote the family of monotone queries. The only boolean queries

in MON=∅ ∩MON6=∅ are the constant true and false queries.

10 Dimitri Surinx et al.

Proof Suppose for the sake of contradiction that a nonconstant boolean query
q = ∅ ∈ MON=∅ is also in MON 6=∅. Then, there exists q′ ∈ MON6=∅ such that
for any instance I, q(I) = ∅ iff q′(I) 6= ∅. Since q is nonconstant, there exist two
instances I and J over S such that q(I) 6= ∅ and q(J) = ∅. Then, q′(I) = ∅ and
q′(J) 6= ∅. Thus since q and q′ are both in MON, we have ∅ 6= q(I) ⊆ q(I ∪ J) and
∅ 6= q′(J) ⊆ q′(I ∪ J). Therefore, q(I ∪ J) 6= ∅ and q′(I ∪ J) 6= ∅ which is clearly a
contradiction. ut

For example, let q1 be the query that always returns the unary empty set. Let
q2 be the unary query that always returns the active domain. Both q1 and q2 are
monotone. The constant true query is expressed by q1 = ∅, as well as by q2 6= ∅.

As a direct corollary of Lemma 1, we obtain:

Proposition 1 Let F be a family of monotone queries. As soon as F=∅ contains a

non-constant query, F=∅ 6⊆ F 6=∅.

This also implies that for any monotone family of queries F that contains the
empty query, we have F⊆ 6⊆ F 6=∅, since A=∅ ⊆ A⊆ for any family of queries A
that contains the empty query. We will apply Proposition 1 to conjunctive queries
in Section 4.3

We next turn to the failure of going from containment to emptiness. Whenever q
is monotone, the boolean query q = ∅ is antimonotone (meaning that if q(I) = false
and I ⊆ J , also q(J) = false). However, a boolean containment query is typically
not antimonotone. The following straightforward result gives two examples.

Proposition 2 Let F be a family of monotone queries over a database schema S.

1. If S contains two distinct relation names R and T of the same arity, and the two

queries R and T belong to F , then F⊆ 6⊆ F=∅. This is shown by the boolean query

R ⊆ T .

2. If R is a binary relation name in S and the two queries R ◦R and R belong to F ,

then F⊆ 6⊆ F=∅.

Proof 1. The query R ⊆ T is not antimonotone.
2. The query “R is transitive”, or R ◦R ⊆ R, is not antimonotone. ut

4.2 Additivity

A query q is additive if for any two instances I and J such that adom(I) and
adom(J) are disjoint, q(I ∪ J) = q(I) ∪ q(J). Additive queries (also known as
“queries distributing over components”) have been recently singled out as a family
of queries that are well amenable to distributed computation [2]. Indeed, additivity
means that a query can be separately computed on each connected component,
after which all the subresults can simply be combined by union to obtain the final
result.

Additivity and monotonicity are orthogonal properties. For example, the ad-
ditive queries are closed under set difference. Thus, additive queries may involve
negation and need not be monotone. On the other hand, computing the Cartesian
product of two relations is monotone but not additive.

Expressing boolean queries 11

CQ⊆

CQ=∅

CQ 6=∅

UCQ⊆

UCQ=∅

UCQ6=∅

Fig. 1 These diagrams visualize Theorem 2. The arrows in the diagrams depict the subsump-
tion relation of boolean query families.

Both cylindrification and tests run counter to additivity. For example, just
computing adom(I) × adom(I) is not additive. Also tests of the form (q1 if q2)
are not additive, since testing if q2 is nonempty takes part in the entire instance,
across connected components. We have seen that cylindrification (together with
complementation) can be used to close the emptiness modality under negation;
moreover, cylindrification or tests suffice to move from nonemptiness to contain-
ment. We next show that this all fails under additivity.

The following lemma is of a similar nature as Lemma 1.

Lemma 2 Let ADD denote the family of additive queries. The only boolean queries

in ADD 6=∅ ∩ADD⊆ are the constant true and false queries.

Proof Suppose for the sake of contradiction that a nonconstant boolean query
q 6= ∅ ∈ ADD6=∅ is also in ADD⊆. Then, there exist two k-ary queries q1 and q2
in ADD such that for any instance I we have q1(I) ⊆ q2(I) iff q(I) 6= ∅. Since q is
nonconstant, there exist two instances I and J such that q(I) 6= ∅ and q(J) = ∅.
Hence q1(I) ⊆ q2(I) and q1(J) * q2(J). We may assume that adom(I) and adom(J)
are disjoint since queries are defined to be generic. Therefore, since q is additive,
we have q(I ∪ J) = q(I)∪ q(J) 6= ∅, whence we have q1(I ∪ J) ⊆ q2(I ∪ J). Thus we
have q1(I) ∪ q1(J) ⊆ q2(I) ∪ q2(J). However, this implies that q1(J) ⊆ q2(J) since
q1(J) ⊆ adom(J)k and q2(I) ⊆ adom(I)k, which is a contradiction. ut

As a direct corollary, we obtain:

Proposition 3 Let F be a family of additive queries.

1. As soon as F⊆ contains a non-constant query, F⊆ 6⊆ F 6=∅.
2. As soon as F 6=∅ contains a non-constant query, F 6=∅ 6⊆ F⊆ and F=∅ 6⊆ F 6=∅.

4.3 Conjunctive queries

In this brief section we compare the three base modalities for the popular languages
CQ (conjunctive queries) and UCQ (unions of conjunctive queries). The result is
that nonemptiness is strictly subsumed by containment, and that all other pairs
of modalities are incomparable (cf. Fig. 1).

Theorem 2 Let F be CQ or UCQ. Then

1. F⊆ 6⊆ F=∅ and F=∅ 6⊆ F⊆.

12 Dimitri Surinx et al.

2. F=∅ 6⊆ F 6=∅.
3. F 6=∅ ⊆ F⊆.

4. F⊆ 6⊆ F 6=∅.

Proof 1. Consider the instance Z where Z(R) = {(1, . . . , 1)} for each relation R.
Every query in F⊆ returns true on Z, whereas every query in F=∅ returns
false.

2. By Proposition 1.
3. By Theorem 1(3). Indeed, a CQ with an empty body is never empty. CQs and

UCQs are also closed under tests. Indeed, let q1 and q2 be UCQs. Then (q1 if
q2) is expressed by the UCQ consisting of the following rules. Take a rule r of
q1 and a rule s of q2. Produce the rule obtained from r by conjoining to the
body a variable-renamed copy of the body of s. If q1 has n rules and q2 has
m rules, we obtain nm rules. In particular, if q1 and q2 are CQs, we obtain a
single rule so again a CQ.

4. Let R be a relation name in the database schema, and consider the two queries

q1(x, y)← R(x, , . . . ,), R(y, , . . . ,)

q2(x, x)← R(x, , . . . ,).

Here, the underscores stand for fresh nondistinguished variables (Prolog nota-
tion). Then q1 ⊆ q2 returns true on an instance I iff the first column of R(I)
holds at most one distinct element. This boolean query is not monotone and
thus not in F 6=∅. ut

Remark 2 In the proof of Theorem 2(4) we make convenient use of repeated vari-
ables in the head. For the version of CQs where this is disallowed, the result can
still be proven by using

q1(x1, . . . , xk)← R(x1, . . . , xk)

q2(x1, . . . , xk)← R(x1, . . . , xk), R(xk, , . . . ,).

This does not work if R is unary; if there are two different relation names R and
T , we can use

q1(x)← R(x, , . . . ,)

q2(x)← T (x, . . . ,).

These arguments only fail when the database schema consists of just one single
unary relation name, and we cannot use repeated variables in the head. In this
extreme case, both CQ⊆ and CQ 6=∅ consist only of the constant true query, so the
subsumption becomes trivial. ut

4.4 Navigational graph query languages

In this section we compare the three base modalities for the navigational graph
query languages introduced in the Preliminaries.

The results are summarized in the following theorem. This theorem can be
seen as a version of our earlier Theorem 1, specialized to navigational graph query

Expressing boolean queries 13

language fragments. However, now, every statement is a characterization, showing
that the sufficient condition is also necessary for subsumption to hold. Particularly
satisfying is that, with a few exceptions, almost the entire theorem can be proven
from the general results given earlier.

Theorem 3 Let F be a navigational graph query language fragment.

1. F⊆ ⊆ F=∅ if and only if − ∈ F .

2. F=∅ ⊆ F 6=∅ if and only if all ∈ F and (− ∈ F or π ∈ F).

3. F 6=∅ ⊆ F⊆ if and only if all ∈ F .

4. F⊆ ⊆ F 6=∅ if and only if all ∈ F and − ∈ F .

Notice that Theorem 3 no longer contains an adapted version for Theorem 1(4).
This is because the empty query is in N (F) for any fragment F by definition,
whence F=∅ ⊆ F⊆ always holds. Instead, we now do provide in item 4 an explicit
characterization for when the subsumption from containment to nonemptiness
holds.

In every part of the above theorem, the if-direction can be seen by showing
that N (F) fulfills the conditions of Theorem 1.

1. This follows immediately from Theorem 1(1).
2. When set difference is present, the binary complementation of q is expressible

by all−q. Also the binary cylindrification of q is expressible by all◦q◦all. Hence,
Theorem 1(2) readily applies with k = 2.
When set difference is not present, we have coprojection. We can now apply
Theorem 1(2) with k = 1. We simulate unary relations by subsets of the identity
relation id. In particular, the unary cylindrification of q is expressed by π1(all◦q)
and π2(q ◦ all), and unary complement is provided by coprojection.

3. We have already seen how binary cylindrification is expressible using all. Fur-
thermore, all also provides a never-empty query. Hence, Theorem 1(3) readily
applies.

4. We have F⊆ ⊆ F=∅ ⊆ F 6=∅.

4.4.1 Inexpressibility results

To prove the only-if directions of Theorem 3, we will exhibit inexpressibility results.
For the first part, it is sufficient to show that F⊆ is not subsumed by F=∅ for

every fragment F without set difference. Thereto we introduce NoDiff, the largest
fragment without set difference, which is defined as {di,−1,∩, π,+}. The following
lemma establishes the first part of the theorem by exhibiting, for every fragment
F , a boolean query in F⊆ but not in NoDiff=∅.

Lemma 3 Let R be a relation schema in S. Then the boolean query “R is transitive”,

formally, R ◦R ⊆ R, is neither in NoDiff=∅ nor in NoDiff 6=∅.

Proof Over the single relation name R, consider the complete directed graph on
three nodes K3, and a graph B in the form of a bow tie, i.e., two K3 copies
with one shared node. (Both K3 and B are displayed in Fig. 2.) There is a self-
loop at every node. It is known that K3 and B are indistinguishable by boolean
queries in NoDiff 6=∅ [16, Proposition 5.6(1)]. This implies that both graphs are

also indistinguishable by boolean queries in NoDiff=∅. However, K3 is transitive
while B is not. ut

14 Dimitri Surinx et al.

(K3)

(B)

Fig. 2 The complete graph with 3 nodes (K3) and bow-tie (B) graphs.

The only-if directions of the remaining parts of the theorem all revolve around
the fragment NoAll = {−1,−,+}, the largest fragment without the full relation
all. This fragment lacks the only two features (di and all) that allow to jump from
one connected component to another. The following lemma also follows from the
additivity of connected stratified Datalog [2]. We, however, also give a direct proof:

Additivity Lemma Every binary-relation query in N (NoAll) is additive.

Proof Let e be an expression in N (NoAll), and let G and H be graphs such that
adom(G)∩adom(H) = ∅. We must show that e(G∪H) = e(G)∪ e(H). We proceed
by structural induction on e. The case where e is a relation name is trivial and the
case where e is id is clear.

If e = e1 ◦ e2, then

(x, y) ∈ e1 ◦ e2(G ∪H)

iff ∃z : (x, z) ∈ e1(G ∪H) ∧ (z, y) ∈ e2(G ∪H)
∗
iff ∃z : (x, z) ∈ e1(G) ∪ e1(H)

∧ (z, y) ∈ e2(G) ∪ e2(H)

iff ∃z : ((x, z) ∈ e1(G) ∨ (x, z) ∈ e1(H))

∧ ((z, y) ∈ e2(G) ∨ (z, y) ∈ e2(H))
∗∗
iff ∃z : ((x, z) ∈ e1(G) ∧ (z, y) ∈ e2(G))

∨ ((x, z) ∈ e1(H) ∧ (z, y) ∈ e2(H))

iff (x, y) ∈ e1 ◦ e2(G) ∨ (x, y) ∈ e1 ◦ e2(H).

The equivalence marked with a single * follows from the induction hypothesis.
Furthermore, the equivalence marked with ** holds because e1(G) ⊆ adom(G)2,

Expressing boolean queries 15

e1(H) ⊆ adom(H)2, and adom(G)∩adom(H) = ∅. Indeed, because of this observa-
tion we can drop the cases (x, z) ∈ e1(G)∧(z, y) ∈ e2(H) and (x, z) ∈ e1(H)∧(z, y) ∈
e2(G).

If e is of the form e−1
1 , then

e−1
1 (G ∪H)

= {(y, x) ∈ adom(G ∪H)2 | (x, y) ∈ e1(G ∪H)}

= {(y, x) ∈ adom(G ∪H)2 | (x, y) ∈ e1(G) ∪ e1(H)}

= {(y, x) ∈ adom(G ∪H)2 | (x, y) ∈ e1(G)}

∪ {(y, x) ∈ adom(G ∪H)2 | (x, y) ∈ e1(H))}

= {(y, x) ∈ adom(G)2 | (x, y) ∈ e1(G)}

∪ {(y, x) ∈ adom(H)2 | (x, y) ∈ e1(H))}

= e−1
1 (G) ∪ e−1

1 (H).

If e = e1 ∪ e2, then

e1 ∪ e2(G ∪H) = e1(G ∪H) ∪ e2(G ∪H)

= e1(G) ∪ e1(H) ∪ e2(G) ∪ e2(H)

= (e1 ∪ e2)(G) ∪ (e1 ∪ e2)(H).

If e = e1 − e2, then

e1 − e2(G ∪H) = e1(G ∪H)− e2(G ∪H)

= (e1(G) ∪ e1(H))− (e2(G) ∪ e2(H))

= (e1(G)− e2(G)) ∪ (e1(H)− e2(H))

= (e1 − e2)(G) ∪ (e1 − e2)(H).

If e = e+1 then e+1 (G∪H) = (e1(G)∪e1(H))+ by induction. Now since adom(G)∩
adom(H) = ∅ we also have that (e1(G) ∪ e1(H))+ = e+1 (G) ∪ e+1 (H). ut

The Additivity Lemma allows an easy proof for the second and third parts of
the theorem, as we next demonstrate. Also the proofs of several later results hinge
upon additivity.

For the second part, we must prove that F=∅ is not subsumed by F 6=∅ for
any fragment F without all, as well as any fragment having neither difference nor
coprojection. The latter case is clear. Indeed, difference and coprojection are the
only two nonmonotone operators. Thus N (F) is monotone, whence Proposition 1
proves the result.

For a fragment F without all but possibly with difference or coprojection, we
have that N (F) is additive. Hence, Proposition 3 establishes the second as well as
the third parts when all 6∈ F .

Finally, for the fourth part, we must prove that F⊆ is not subsumed by F 6=∅

for any fragment F without all or without set difference. The case without set
difference already follows from Lemma 3. The case without all already follows
from the second part.

16 Dimitri Surinx et al.

Regular path queries. The fragment {+} corresponds to a well known family of
graph queries called regular path queries (RPQ) [12]. Theorem 3 directly tells

us that RPQ=∅ 6⊆ RPQ6=∅, RPQ 6=∅ 6⊆ RPQ⊆, RPQ⊆ 6⊆ RPQ=∅ and RPQ⊆ 6⊆
RPQ6=∅.

5 Cross-language comparisons

In the previous section, we have compared different modalities within a given
family of queries (query language). Dually, one may investigate how different query
languages compare for a given modality. In the context of navigational graph query
languages, we have already done this research [29,27].

The next step, then, is to see how different query languages relate when using
different modalities. This question is particularly interesting since nonemptiness
is the standard modality for expressing boolean queries and containment is a fun-
damentally different but also very natural modality. Then it is interesting, e.g., to
try to understand to what extent the containment modality, using some language
F2, can be used to express nonemptiness queries using some other language F1.
For example, R ◦R 6= ∅ in {} 6=∅ is expressed by all ⊆ all ◦R ◦R ◦ all in {all}⊆.

In this paper, we only do this in the context of navigational graph query lan-
guages. First, we compare containment to (non)emptiness; and nonemptiness to
emptiness.

Theorem 4 Let F1 and F2 be fragments. Then, we have:

1. F⊆1 ⊆ F
=∅
2 iff F⊆1 ⊆ F

⊆
2 and F⊆2 ⊆ F

=∅
2 ;

2. F⊆1 ⊆ F
6=∅
2 iff F⊆1 ⊆ F

⊆
2 and F⊆2 ⊆ F

6=∅
2 ;

3. F 6=∅1 ⊆ F=∅
2 iff F 6=∅1 ⊆ F 6=∅2 and F 6=∅2 = F=∅

2 .

Proof The if directions hold due to the transitivity of ⊆. For the only if direction,
we consider the contrapositives. We then have:

1. If F⊆2 6⊆ F=∅
2 , then − 6∈ F2 by Theorem 3. Hence, R2 ⊆ R is not in F=∅

2 by
Lemma 3.
Conversely, If F⊆2 ⊆ F

=∅
2 , then − ∈ F2 by Theorem 3, whence F=∅

2 = F⊆2 ;

2. If F⊆2 6⊆ F
6=∅
2 , then − 6∈ F2 or all 6∈ F2 by Theorem 3. If − 6∈ F2, then R2 ⊆ R is

not in F 6=∅2 by Lemma 3. On the other hand, if all 6∈ F2, then N (F2) is additive

by the additivity lemma. Hence, R2 ⊆ R is not in F 6=∅2 .

Conversely, if F⊆2 ⊆ F
6=∅
2 , then −, all ∈ F2 by Theorem 3, whence F 6=∅2 = F⊆2 .

3. If F 6=∅2 6= F=∅
2 , then −, π 6∈ F2 or all 6∈ F2 by 3. In the former case, N (F2) is

monotone, whence the result directly follows from Proposition 1. In the latter
case, N (F2) is additive, whence the result directly follows from Lemma 2. ut

Next, we turn our attention to when the inclusion F 6=∅1 ⊆ F⊆2 holds, for different
navigational graph query language fragments F1 and F2.

Example 4 For a positive example, consider the query R2 ◦R−1 ◦R2 6= ∅ in {−1} 6=∅.
This query is expressed by all ⊆ all ◦ π1(R2 ◦ π2(π1(R2) ◦R)) ◦ all in {π, all}⊆. For a
negative example, we can show that R2 ◦R−1 ◦R2 6= ∅ is not in {all}⊆. ut

Expressing boolean queries 17

5.1 Comparing nonemptiness to containment

Similar to the structure of Theorem 4, whenever we can move from F1 to F2

staying with the nonemptiness modality, i.e., F 6=∅1 ⊆ F 6=∅2 , and moreover, we can

switch from nonemptiness to containment within F2, i.e., F 6=∅2 ⊆ F⊆2 , we obviously

obtain F 6=∅1 ⊆ F⊆2 by transitivity. Actually, our conjecture is that nothing else can
happen:

Conjecture 1 Let F1 and F2 be fragments. If F 6=∅1 ⊆ F⊆2 , then F 6=∅2 ⊆ F⊆2 and

F 6=∅1 ⊆ F 6=∅2 .

We can prove large parts of this conjecture; the only open case revolves around
the fragments F1 = {π} and F2 ⊆ {di, all,−1,+}. In particular, if one could show
that

{π} 6=∅ 6⊆ {di,−1,+}⊆

then Conjecture 1 would be entirely resolved.
It is sufficient to prove the conjecture under the following two assumptions:

– If F 6=∅2 6⊆ F⊆2 , our proof of Theorem 3(3) actually impliesN 6=∅ 6⊆ F⊆2 (recall that

N is the most basic fragment). Hence, certainly F 6=∅1 6⊆ F⊆2 , so the conjecture is

void in this case. Thus, we may assume that F 6=∅2 ⊆ F⊆2 , i.e., that all is present
in F2.

– If moreover − is in F2, then F⊆2 = F 6=∅2 , and the conjecture becomes trivial
again. Thus, we may assume that − is not in F2.

Under the above assumptions we propose to prove the conjecture by its contra-

positive. So we assume F 6=∅1 6⊆ F 6=∅2 and try to establish F 6=∅1 6⊆ F⊆2 . Now the given

F 6=∅1 6⊆ F 6=∅2 has been precisely characterized in our previous work [29]. We refer

to the paper [29], which shows that F 6=∅1 6⊆ F 6=∅2 can only happen in the following
cases:

Transitive closure: Transitive closure is present in F 1 but not in F 2, and either
the database schema has at least two relation names, or F 1 contains at least
one of ∩, π or −1.

Converse: Converse is in F 1 but not in F 2, and
(a) ∩ is in F 1;
(b) + is in F 1; or
(c) F1 ⊆ {−1, di, all, π, π} and F2 ⊆ {all, di,+}.

Intersection, difference, diversity, coprojection, or projection: One of these is in
F 1 but not in F 2.

We can deal completely with all cases, except for projection, which we will
discuss last. We devote one section to each feature.

5.1.1 Intersection

The largest fragment for F2 we need to consider is NoInt = {di, π,−1,+} (“no
intersection”). We show that the query R ∩ id 6= ∅ (“the graph has self-loops”)
is not in NoInt⊆. To prove this proposition it suffices to reason on the two finite
graphs in Fig. 3.

18 Dimitri Surinx et al.

Fig. 3 The graphs used to prove Proposition 4.

Lemma 4 Let e be an expression in N (di,−1). On the graphs A1 (left) and A2 (right)

shown in Fig. 3, e is equivalent to ∅, id, di, R or all simultaneously.

Proof We prove this lemma by structural induction on e. For id, di and R this is
trivial. For R−1 note that A1 and A2 are symmetrical.

Suppose e = e1 ∪ e2. Then the only troublesome cases are:

– e1 = id and e2 = R or vice versa. Here, e1 ∪ e2(A1) = all(A1) and e1 ∪ e2(A2) =
all(A2).

– e1 = R and e2 = di or vice versa. Here, e1 ∪ e2(A1) = R(A1) and e1 ∪ e2(A2) =
R(A2).

Suppose e = e1 ◦ e2. Since composing with ∅ results in ∅, and composing with
id does nothing, we may focus on e1, e2 ∈ {di, R, all}. It is clear that R ∩ di(A1) ⊆
ei(A1) and R ∩ di(A2) ⊆ ei(A2). Hence (R ∩ di) ◦ (R ∩ di)(A1) ⊆ e1 ◦ e2(A1) and
(R ∩ di) ◦ (R ∩ di)(A2) ⊆ e1 ◦ e2(A2). Therefore, since (R ∩ di) ◦ (R ∩ di)(A1) =
all(A1) and (R ∩ di) ◦ (R ∩ di)(A2) = all(A2), we obtain e1 ◦ e2(A1) = all(A1) and
e1 ◦ e2(A2) = all(A2). ut

We are now ready to establish the separation.

Proposition 4 Let R be a relation schema in S. Then the boolean query “R contains

a self-loop”, formally, R ∩ id 6= ∅, is not in NoInt⊆.

Proof Let us denote the query R ∩ id 6= ∅ with Q. Suppose for the sake of con-
tradiction that e1 ⊆ e2 expresses Q. We will only work with A1 (left) and A2

(right) displayed in Fig. 3. We know that Q(A2) is false, thus e1(A1) 6⊆ e2(A1),
whence e2(A1) 6= all(A1). Since we only work on A1 and A2, we know that + can
be replaced by unions of compositions. Moreover, since A1 and A2 are complete up
to the self-loops, we know that the π(h) for every expression h ∈ NoInt is always
empty or the identity. Thus, we may assume that e1 and e2 are expressions in
N (di,−1). By Lemma 4, we know that e2(A1) is ∅(A1), id(A1), di(A1), R(A1) or
all(A1).

If e2(A1) = ∅, then e2(A2) = ∅ by Lemma 4. Moreover, since e1(A1) 6⊆ e2(A1),
it must be that e1(A1) is id(A1), R(A1), di(A1) or all(A1). Hence by Lemma 4, also
e1(A2) 6= ∅, which contradictions that Q(A2) is true.

If e2(A1) = id(A1), then e2(A2) = id(A2) by Lemma 4. Since e1(A1) 6⊆ e2(A2),
we know that e1(A1) equals R(A1), di(A1) or all(A1). Hence, e1(A2) also equals
R(A1), di(A1) or all(A1) by the same lemma. This contradicts that Q(A2) is true.

If e2(A1) = R(A1) = di(A1), then e2(A2) equals di(A2) or R(A2) by Lemma 4.
Since e1(A1) 6⊆ e2(A1), it must be that e1(A1) = id(A1) or all(A1) by Lemma. 4.

Expressing boolean queries 19

Fig. 4 Graph used to establish separation in Section 5.1.4 for the coprojection when comparing
nonemptiness to containment for different languages.

Thus, we also have e1(A2) = id(A2) or all(A2), which contradicts that Q(A2) is
true. ut

5.1.2 Difference

The largest fragment we have to consider is NoDiff = {di,−1,∩, π,+}. Let B be the
bow-tie and K3 be the complete graph displayed in Fig. 2. The proof of Proposi-
tion VI.1 in [27] shows that.

Lemma 5 ([27]) Any boolean query in NoDiff⊆ cannot be true on B and false on

K3.

This shows that R2 −R 6= ∅ (“the graph is not transitive”) is not in NoDiff⊆,
since it is true on B and false on K3.

5.1.3 Diversity

The largest fragment we have to consider is {all,−1, π,∩,+}. Let id1 be the graph
that consists of a single self-loop. The proof of Proposition IX.1 in [27] shows that
id1 and K3 are indistinguishable in {all,−1, π,∩,+}⊆. As a direct corollary, we
obtain that di 6= ∅ (“the graph has at least two nodes”) is not in {all,−1, π,∩,+}⊆.

5.1.4 Coprojection

The largest fragment we have to consider is {di,−1,∩,+}. Let G be the graph in
Fig. 4. In the proof of Proposition IV.1 in [27] it is shown that every query in
{di,−1,∩,+}⊆ cannot be true on G and false on K3 simultaneously. As a direct
corollary we obtain that π1(R) 6= ∅ (“the graph has at least one sink node”) is not
in {di,−1,∩,+}⊆ since it is true on G and false on K3.

5.1.5 Transitive Closure

From our earlier work [29] we know that F 6=∅1 can express some query not express-

ible in first-order logic (FO), whereas F⊆2 is clearly subsumed by FO.

20 Dimitri Surinx et al.

Fig. 5 Graphs used in the proof of Proposition 5.

5.1.6 Converse

The largest fragment without converse is NoConv = {di, π,+,−}. Since NoConv

has both all and −, we have NoConv 6=∅ = NoConv⊆. Now in case (a), we already

know [16, Proposition 6.6] that the query (R2◦R−1◦R)∩R 6= ∅ is not in NoConv 6=∅.
In case (b), we already know [29, Proposition 5.4] that R2 ◦ (R ◦ R−1)+ ◦ R2 6= ∅
is not in NoConv 6=∅. The following lemma settles case (c):

Proposition 5 Let R be a relation name. The query R2 ◦ R−1 ◦ R2 6= ∅ is not in

{di,+}⊆.

Proof Let Q be the query R2 ◦ R−1 ◦ R2 6= ∅. Let G1 be the top and G2 be the
bottom graph in Fig. 5. Since our graphs are finite, the set E = {(e(G1), e(G2)) |
e ∈ N (di,+)} is finite. Hence, it can be computed by a terminating computer
program:

1. Start with the set E = {(R(G1), R(G2)), (di(G1), di(G2)), (id(G1), id(G2))}
2. For every two pairs (A,B), (C,D) in E, add (A ∪ C,B ∪D) and (A ◦ C,B ◦D)

to E;
3. For every pair (A,B) in E, add (A+, B+) to E;
4. Repeat step 2 and 3 until E no longer changes.

Thus, we can also compute {(e1 ⊆ e2(G1), e1 ⊆ e2(G2)) | e1, e2 ∈ N (di,+)}. We
have verified that (true, false) is not in this set. Therefore, Q is not in {di,+}⊆
since Q is true on G1 and false on G2. ut

5.1.7 Projection

In the case of projection, the largest fragment for F2 we need to consider is
{di,−1,+}. We would like to show that {π} 6=∅ 6⊆ {di,−1,+}⊆.

We already know [16] that there are queries in {π} 6=∅ but not in {di,−1,+} 6=∅.
Furthermore, note that queries in {π} 6=∅ are always monotone. Hence, if we could
show that monotone queries in {di,−1,+}⊆ are always in {di,−1,+} 6=∅, the conjec-
ture would be proved.

We can give a partial answer for the union-free fragment of {all,−1}.

Theorem 5 There is a boolean query in {π} 6=∅ that is not in F⊆2 , where F2 is the

union-free sublanguage of N (all,−1).

Expressing boolean queries 21

Proof Path queries expressed in the union-free fragment of N (all,−1) are express-
ible as conjunctive queries, where the conjunctive queries might be unsafe (an
unsafe conjunctive query has variables in its head that do not occur in its body).
Elsewhere [26] we have shown the following result:

For any database schema S, CQ⊆S ∩MON = CQ6=∅S . Specifically, every mono-
tone query Q1 ⊆ Q2, where Q1 and Q2 are CQs, is equivalent to a query
of the form (() ← B) 6= ∅, where B is empty or B consists of some of the
connected components of BQ2

.

This directly implies a similar preservation result for F2, i.e., F⊆2 ∩MON = F 6=∅2

(?). As mentioned above, we already know [16] that there is a query Q in {π} 6=∅

that is not in {di,−1,+}6=∅, whence Q is not in F 6=∅2 either. Therefore, Q is not in

F⊆2 ∩MON by (?). Since Q is monotone, we may conclude that Q is not in F⊆2 , as
desired. ut

It is an interesting challenge to try to extend this corollary to the full fragment
{di,−1,+}.

6 Closure under boolean connectives

6.1 Closure under negation

In Section 4 we already observed that the question whether F=∅ is subsumed by
F 6=∅ is equivalent to whether F 6=∅ is closed under negation. One may now also
wonder about the logical negation of F⊆. It turns out, however, that F⊆ is seldom
closed under negation. We denote ¬F⊆ (negation is defined in the beginning of
Section 4) by F 6⊆.

For all family of queries F , we can infer F 6⊆ ⊆ F⊆ if F 6⊆ ⊆ F 6=∅ ⊆ F⊆. The first
inequality is equivalent to F⊆ ⊆ F=∅. Hence, from Proposition 1 we can infer that
the containment modality is closed under negation if F has set difference, contains
a never-empty query, and has tests or cylindrification. An alternative route could
be taken using F 6⊆ ⊆ F 6=∅ ⊆ F=∅ ⊆ F⊆, which can be done if F has set difference,
complementation and cylindrification, and contains the empty query. Both routes
suggest that closure under negation for the containment modality requires quite a
strong query language. We will confirm this in the paragraphs below by showing
that it does not hold for CQs or UCQs (as may be expected), and that it holds
only for graph query language fragments that include both set difference and all.

In terms of a general negative result, we can only offer the straightforward
inference that F 6⊆ 6⊆ F⊆ whenever F is additive and contains the empty query,
and F 6=∅ contains a non-constant query. Indeed, using the empty query we have
F 6=∅ ⊆ F 6⊆, and Proposition 3 yields F 6=∅ 6⊆ F⊆, whence we also have F 6⊆ 6⊆ F⊆.

Turning to conjunctive queries, (U)CQ 6⊆ 6⊆ (U)CQ⊆ follows immediately from
the instance Z used in the proof of Theorem 2. On Z, every boolean query in
UCQ⊆ returns true, whereas the constant false query is easily expressed in CQ6⊆.

For navigational graph query language fragments F , we have the following
characterization.

Theorem 6 Let F be a fragment. Then, F 6⊆ ⊆ F⊆ iff all ∈ F and − ∈ F .

22 Dimitri Surinx et al.

Proof The if-direction follows from the general observation in the beginning of this
section.

To prove the only-if direction, recall that N (NoAll) is an additive query lan-
guage. Hence, NoAll6⊆ 6⊆ NoAll⊆ also follows from the general observations made
in the beginning of the section.

So, the only thing left to show is that NoDiff 6⊆ 6⊆ NoDiff⊆. Let B be the bow
tie and K3 be the complete graph with three nodes both displayed in Fig. 2. Notice
that all 6⊆ R is true on B and false on K3. By Lemma 5, this is not possible in
NoDiff⊆. ut

6.2 Closure under Conjunction

Closure under conjunction is more interesting. Since we often enforce a set (con-
junction) of integrity constraints, or specify logical theories consisting of sets of
axioms, it is a natural question to ask if such conjunctions can be written as single
boolean queries in the same language.

6.2.1 Navigational graph query languages

Under the emptiness modality, closure under conjunction is trivial, since (q1 =
∅) ∧ (q2 = ∅) is equivalent to q1 ∪ q2 = ∅.

Under the nonemptiness modality, we have the following.

Theorem 7 Let F be a fragment. Then F 6=∅ is closed under conjunction if and only

if either all ∈ F , or the database schema S consists of a single binary relation name

and F ⊆ {+}.

Proof If F has all, then we can directly express (e1 6= ∅)∧(e2 6= ∅) by e1◦all◦e2 6= ∅.
If F ⊆ {+} and S is a singleton {R}, it is easy to see that for every expression
e in this language there exists a natural number k such that e 6= ∅ is equivalent
to Rk 6= ∅. The conjunction of e1 6= ∅ and e2 6= ∅ is then expressed using the
maximum of the two numbers.

For the only-if direction, first assume F does not have all and S contains at
least two relation names, say R and T . Now by the Additivity Lemma, the boolean
query R 6= ∅ ∧ T 6= ∅ is not in NoAll6=∅.

The other possibility is that F does not have all and F * {+}. Then F must
contain at least one of the features converse, projection, or intersection. The case
with intersection is proven by Lemma 6 and the case with converse and projection
are covered by Lemma 7.

Lemma 6 For every binary relation name R ∈ S, the boolean query R2 ∩ R 6= ∅ ∧
R3 ∩R 6= ∅ is not in NoAll6=∅.

Proof Denote the boolean query R2 ∩ R 6= ∅ ∧ R3 ∩ R 6= ∅ by q, and suppose q

belongs to NoAll6=∅ as e 6= ∅. Let G be the left and H be the right graph in Fig. 6.
Since q(G) = q(H) = false and q(G ∪H) = true, we have e(G) = ∅, e(H) = ∅ and
e(G ∪H) 6= ∅. By the Additivity Lemma, however, e(G ∪H) = e(G) ∪ e(H) = ∅, a
contradiction.

Expressing boolean queries 23

1 32 4 75 6

Fig. 6 Graphs used to prove Lemma 6 and Theorem 9.

Fig. 7 Graphs used for the proof of Lemma 7.

Using converse, we show that R2 ◦ R−1 ◦ R3 6= ∅ ∧ R3 ◦ R−1 ◦ R2 6= ∅ is not in
NoAll6=∅. This result also covers the case with projection. Indeed, both conjuncts
are in {−1} 6=∅, which is subsumed by {π} 6=∅ [16]. Hence, the Lemma 7 also gives a

conjunction of {π} 6=∅ queries that is not in NoAll6=∅. We first show the following
short Lemma.

Lemma 7 For every binary relation name R ∈ S, the boolean query R2 ◦R−1 ◦R3 6=
∅ ∧R3 ◦R−1 ◦R2 6= ∅ is not in NoAll6=∅.

Before we can prove this we need the following technical lemma.

Lemma 8 ([17]) There is no homomorphism from G1 to G2 and vice versa, where

G1 and G2 are the top and bottom graphs of Fig. 7.

The lemma follows from the fact that different directed paths of the same length
are cores which are not comparable with respect to homomorphisms [17].

Proof (of Lemma 7) Denote the boolean queries R2◦R−1◦R3 6= ∅ and R3◦R−1◦R2 6=
∅ by q1 and q2 respectively. Consider the graphs G1 and G2 shown at the top
and bottom of Fig. 7. For every graph G, we have q1(G) = true iff there is a
homomorphism G1 → G, and similarly for q2 and G2. Hence, q1(G2) = false and
q2(G1) = false by Lemma 8.

24 Dimitri Surinx et al.

On the other hand, q1 ∧ q2(G1 ∪ G2) = true. Now suppose that q1 ∧ q2 is

expressed by e 6= ∅ ∈ NoAll6=∅. Then, e(G1) = e(G1) = ∅ and e(G1 ∪ G2) 6= ∅. By
the Additivity Lemma, however, e(G1 ∪G2) = e(G1) ∪ e(G2) = ∅, a contradiction.

ut

Turning to the containment modality, we can only offer the general observation
that F⊆ is closed under conjunction whenever F has set difference. Indeed, we can
express e1 ⊆ e2 ∧ e3 ⊆ e4 as (e1 − e2) ∪ (e3 − e4) ⊆ ∅.

At this point we have not been able to prove the converse direction, although
we conjecture that set difference in F is indeed necessary for F⊆ to be closed under
conjunction. We have proven two partial results that contribute to the conjecture.
Before we can prove them, we need the following two results.

Lemma 9 ([27]) On the class of complete graphs with at least 3 nodes, every expres-

sion in N (di,−1,−) is equivalent to ∅, id, di or all.

Lemma 10 ([27]) Let e be an expression in N (di,−1).

1. If e(K3) = ∅ then e ≡ ∅.
2. If e(K3) = di(K3) then e ≡ di.

3. If e(K3) = id(K3) then e ≡ id.

We are now ready for the partial results concerning the failure of closure under
conjunction for the containment modality.

Proposition 6 Let R be a relation name. The boolean query R3 ⊆ id∧R2 ⊆ R is not

in {di,−1,+}⊆.

Proof Let Q be the boolean query R3 ⊆ id∧R2 ⊆ R, id1 be the graph that consists of
a single self-loop and c2 = {R(1, 2), R(2, 3)}. Suppose for the sake of contradiction
that e1 ⊆ e2 ∈ {di,−1,+}⊆ expresses Q. Then, e2(K3) equals all(K3), di(K3), id(K3)
or ∅(K3) by Lemma 9. In the remainder of the proof we will only work on the graphs
K3, c2, c+2 and id2, whence we can replace + with unions of compositions. We will
now cover each of these scenarios and obtain a contradiction.

If e2(K3) = all(K3), then e1(K3) ⊆ e2(K3). We have thus obtained a contra-
diction, since Q(K3) = false.

If e2(K3) = id(K3), then e2 ≡ id by Lemma 10. Since Q(c2) = false, e1(c2) 6⊆
e2(c2), whence we have e1(c2)∩di(c2) 6= ∅. Therefore, e1(c+2)∩di(c+2) 6= ∅. We have
thus obtained a contradiction, since Q(c+2) = true.

The case where e2(K3) = di(K3) is analogous.
If e2(K3) = ∅, then e2 ≡ ∅ Lemma 10. Clearly, when e1 6≡ ∅, then e1(id2) 6= ∅.

We have thus obtained a contradiction, since Q(id2) = true. ut

Unfortunately, we cannot generalize this result to include coprojection. This is
because every query e1 ⊆ e2 ∧ e3 ⊆ id, such that e1(G) 6= ∅ if e3(G) 6⊆ id(G), does
not work to establish separation. Indeed, then e1 ⊆ e2 ∧ e3 ⊆ id is equivalent with
e1 ⊆ e2 ◦ π1(all ◦ (e3 ∩ di)).

Next we look at another subfragment of NoDiff⊆ that is not closed under
conjunction.

Proposition 7 Let R be a relation name. The boolean query R3 ⊆ ∅ ∧R2 ⊆ R is not

in {∩, id, π,−1 ,+}⊆.

Expressing boolean queries 25

Proof Let Q be the boolean query R3 ⊆ ∅∧R2 ⊆ R, id1 be the graph that consists of
a single self-loop and c2 = {R(1, 2), R(2, 3)}. Suppose for the sake of contradiction
that e1 ⊆ e2 ∈ {∩, id, π,−1 ,+}⊆ expresses Q. In the remainder of the proof we will
only work on the graphs c2, c+2 and id1, whence we can replace + with unions of
compositions. Remember that ei(id1) = R(id1) unless ei ≡ ∅ for i = 1, 2. Therefore,
if e2 6≡ ∅ then e1(id1) ⊆ e2(id1). We may thus conclude that e2 ≡ ∅. Furthermore, if
e1(c2) = ∅, then e1 ⊆ e2 does not express Q since Q(c2) = false. On the other hand,
if e1(c2) 6= ∅, then e1(c+2) 6= ∅ since the language is monotone. Hence, e1 ⊆ e2 does
not express Q since Q(c+2) = true. ut

Unfortunately, we cannot include coprojection here either. Every query of the
form e1 ⊆ e2 ∧ e3 ⊆ ∅, such that e1(G) 6= ∅ if e3(G) = ∅, does not work to establish
separation. Indeed, then e1 ⊆ e2 ∧ e3 ⊆ ∅ is equivalent with e1 ⊆ e2 ◦ π1(all ◦ e3).

6.2.2 Conjunctive queries.

Under nonemptiness, both CQ and UCQ are closed under conjunction, using the
same construction as the one used to express tests (proof of Theorem 2).

Under emptiness, note that a family of emptiness queries is closed under con-
junction if and only if the corresponding family of nonemptiness queries is closed
under disjunction. This is clearly the case for UCQ nonemptiness queries. For CQs
this happens only rarely:

Theorem 8 Let S be a database schema. Then, CQ6=∅S is closed under disjunction if

and only if S only contains at most two unary relations and no other n-ary relation

names with n ≥ 2.

Proof First, assume that S only contains unary relations, say U1, . . . , Un. Then,
boolean queries in CQS

6=∅ are equivalent to finite conjunctions of queries that
test whether the intersection

⋂
U∈A U is nonempty for some A ⊆ S. Thus, if S

only contains two unary relations, say U1 and U2, then CQS
6=∅ only contains four

boolean queries.

– U1 and U2 are both nonempty;
– U1 is nonempty;
– U2 is nonempty;
– U1 ∩ U2 is nonempty;

Now consider Q : Q1 6= ∅ ∨Q2 6= ∅ where Q1 and Q2 are both conjunctive queries
over U1 and/or U2. Then Q is equivalent to one of the following:

– U1 and U2 are both nonempty;
– U1 is nonempty;
– U2 is nonempty;
– U1 ∩ U2 is nonempty;
– U1 or U2 is nonempty.

The first four queries are respectively expressed by ()← U1(x), U2(y), ()← U1(x),
()← U2(x) and ()← U1(x), U2(x). The last query, on the other hand, is equivalent
to the constant true query since the empty instance is not allowed and there are

only two relation names. We may thus conclude that Q is also in CQ 6=∅S as desired.

26 Dimitri Surinx et al.

On the other hand, if S contains at least three unary relations, say U1, U2 and
U3, then we can consider the CQs Q1 = () ← U1(x), U2(x) and Q2 = () ← U3(x).
Clearly, Q1 ∨Q2 6= ∅ cannot be expressed by the conjunction of intersection tests.

Finally, suppose that S contains an n > 1-ary relation name. The queries
Q1 = ()← R3 ◦R−1 ◦R2 and Q2 = ()← R2 ◦R−1 ◦R3 are isomorphic to a query
over S since we can transform them by replacing R(x, y) with R(z, . . . , z, x, y).
So we may assume that Q1 and Q2 are expressible in CQS . Suppose now that

Q1 6= ∅ ∨ Q2 6= ∅ is expressible by a nonemptiness Q 6= ∅ in CQ 6=∅S . Notice that
Q1 6= ∅ ∨ Q2 6= ∅ ≡ Q1 ∪ Q2 6= ∅, whence it is a UCQS . Since Q v Q1 ∪ Q2, we
have by the Sagiv–Yannakakis theorem [24] that, either Q v Q1 or Q v Q2. This,
however, implies that Q1(BQ2

) 6= ∅ or Q2(BQ1
) 6= ∅ (Recall that BQ denotes the

body of Q). Hence, there is a homomorphism from BQ1
to BQ2

or vice versa. This
contradicts Lemma 8 since BQ1

and BQ2
are isomorphic to the top and bottom

graphs in Fig. 7 respectively. ut

When S contains a binary relation, the result already follows from technical con-
siderations regarding principal filters in the lattice of cores [17]. Indeed, a boolean
CQ is a principal filter and the disjunction of two boolean CQs corresponds to the
union of two principal filters. The result then follows from the fact that the union
of two principal filters of incomparable cores is not principal.

Finally, we consider CQs under containment. Here closure under conjunction
happens only in the most trivial setting. We first establish the following lemma.

Lemma 11 There is no homomorphism from G1 to G2 and vice versa, where G1 and

G2 are the left and right graphs of Fig. 6.

Proof There cannot be homomorphism from G2 to G1 since there is a path of
length 3 in G2 but not in G1.

Suppose for the sake of contradiction that there is a homomorphism h : G1 →
G2. Then h has to map 1 to 4 or 1 to 5 since only in 4 and 5 there start paths
of length 2. In the former, 3 has to be mapped to 6 and in the latter 3 has to be
mapped to 7. However, (4, 6) and (5, 7) are not in G2. So such a homomorphism
cannot exist. ut

Theorem 9 Let S be a database schema. Then, CQ⊆S is closed under conjunction if

and only if S only contains one unary relation and no other n-ary relation names with

n ≥ 2.

Proof First, suppose that S = {U} where U is unary. We show that in this case
CQS

⊆ only contains two boolean queries:

1. Q1 : true
2. Q2 : (x, y)← U(x), U(y) ⊆ (x, x)← U(x).

Suppose that e1 ⊆ e2 ∈ CQS
⊆ where e1 and e2 have heads (x1, . . . , xn) and

(y1, . . . , yn) respectively. If e1 ⊆ e2 is not the constant true boolean query, there
exists an instance A such that e1(A) 6⊆ e2(A). Then, there exists i, j such that
xi 6= xj and yi = yj since (a, . . . , a) ∈ Q(I) for any CQ over S, any instance I over
S, and any a ∈ adom(I). Therefore, for any instance I with at least two elements
in adom(I), e1 6⊆ e2(I). Thus, e1 ⊆ e2 is equivalent to Q. We may thus conclude
that CQS

⊆ is closed under conjunction.

Expressing boolean queries 27

On the other hand, suppose that S contains at least two unary relations U1

and U2. We now show that Q : U1 ⊆ U2∧U2 ⊆ U1 is not in CQS
⊆. Suppose for the

sake of contradiction that Q is expressed by e1 ⊆ e2 in CQS
⊆. Let I1 = {U1(1)}

and I2 = {U2(2)}. Clearly, Q(I1) = Q(I2) = false, whence we have e1(I1) 6= ∅
and e1(I2) 6= ∅. Thus, there is a homomorphism from Be1 into I1 and Be1 into I2
(Recall that Be denotes the body of e). Therefore, Be1 = ∅. Then, due to safety of
CQs, the head of e1 is empty. Hence, Q is equivalent to e2 6= ∅, which is monotone.
This, however, is a contradiction since U1 = U2 is not monotone.

Finally, suppose that S contains at least one nonunary relation R. Define

– Q1 as (x, y)← R(x, z, , . . . ,), R(z, y, , . . . ,), R(x, y, , . . . ,)
– Q2 as (x, y)←R(x, z1, , . . . ,), R(z1, z2, , . . . ,), R(z2, y, , . . . ,),

R(x, y, , . . . ,)

We now show that Q : Q1 ⊆ Q2 ∧ Q2 ⊆ Q1 is not in CQS
⊆. Let G1 and G2 be

the left and right graphs in Fig. 6 respectively. Clearly, we can identify BQ1
with

G1 and BQ2
with G2. Suppose for the sake of contradiction that e1 ⊆ e2 ∈ CQS

⊆

expresses Q. We first show that there is no homomorphism from G1 into Be1 .
Suppose there is a homomorphism h from G1 into Be1 . Clearly, e1(G2) 6= ∅ since
Q(G2) = false. Hence, there is a homomorphism f from Be1 into G2. Then, f ◦h is
a homomorphism from G1 to G2, which contradicts Lemma 11. Analogously, we
can establish that there is no homomorphism from G2 into Be1 .

Since there is no homomorphism from G1 and G2 into Be1 , Q1(Be1) = ∅ and
Q2(Be1) = ∅, whence we have Q(Be1) = true. Thus, also e1(Be1) ⊆ e2(Be1). Since
Be1 is the body of e1, we have that e1 v e2. This is a contradiction since Q is not
the constant true query. ut

The question whether UCQs under the containment modality are closed under
conjunction is still open.

7 Discussion and conclusion

In this paper we have focused on three natural modalities: emptiness, nonemptiness
and the containment modalities. Obviously, these are not the only modalities we
can consider. For example, we can consider the equality modality, i.e., boolean
queries of the form e1 = e2. Notice that the closure under conjunction of the
containment modality subsumes the equality modality q1 = q2, which is equivalent
to q1 ⊆ q2 ∧ q2 ⊆ q1, as well as to q1 ∪ q2 ⊆ q1 ∩ q2. Conversely, equality always
subsumes containment for any family closed under union, since q1 ⊆ q2 if and only
if q1 ∪ q2 = q2.

Barwise and Cooper considered the boolean query of the form R ∩ S 6= ∅ for
two relations R and S. This query can be stated as “some tuple in R belongs
to S”. Correspondingly, the modality e1 ∩ e2 6= ∅ states the language construct
“some e1 are e2”. Obviously, most query languages are closed under intersection,
so that this modality is subsumed by the nonemptiness modality. But again one
may investigate whether the presence of intersection is actually necessary.

More generally, it becomes clear that there is an infinitude of modalities one
may consider. A general definition of what constitutes a boolean-query modality
may be found in the formal notion of generalized quantifier [7,5,18]. The affinity of

28 Dimitri Surinx et al.

generalized quantifiers to natural language constructs makes them interesting as
query language constructs.

Obviously, the value of singling out certain boolean query modalities for inves-
tigation in a study such as ours will depend on their naturalness as query language
constructs. We believe that (non)emptiness and containment are among the most
fundamental modalities. It would be too large of a project to provide a complete
picture for all relevant boolean query families. Our goal in this paper has been to
provide a framework that helps to investigate such matters. We hope we have also
provided some interesting results that fit into this framework.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Ameloot, T., Ketsman, B., Neven, F., Zinn, D.: Weaker forms of monotonicity for declara-

tive networking: A more fine-grained answer to the CALM-conjecture. ACM Transactions
on Database Systems 40(4), article 21 (2016)

3. Angles, R., Barceló, P., Rios, G.: A practical query language for graph DBs. In: L. Bravo,
M. Lenzerini (eds.) Proceedings 7th Alberto Mendelzon International Workshop on Foun-
dations of Data Management, CEUR Workshop Proceedings, vol. 1087 (2013)

4. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing Surveys
40(1), article 1 (2008)

5. Badia, A.: Quantifiers in Action: Generalized Quantification in Query, Logical and Natural
Languages, Advances in Database Systems, vol. 37. Springer (2009)

6. Barceló, P.: Querying graph databases. In: Proceedings 32st ACM Symposium on Princi-
ples of Databases, pp. 175–188. ACM (2013)

7. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and
Philosophy 4(2), 159–219 (1981)

8. Beeri, C., Vardi, M.: A proof procedure for data dependencies. J. ACM 31(4), 718–741
(1984)

9. Van den Bussche, J.: Applications of Alfred Tarski’s ideas in database theory. In: L. Fri-
bourg (ed.) Computer Science Logic, Lecture Notes in Computer Science, vol. 2142.
Springer (2001)

10. ten Cate, B., Marx, M.: Navigational XPath: Calculus and algebra. SIGMOD Record
36(2), 19–26 (2007)

11. Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in relational data
bases. In: Proceedings 9th ACM Symposium on the Theory of Computing, pp. 77–90.
ACM (1977)

12. Cruz, I., Mendelzon, A., Wood, P.: A graphical query language supporting recursion. In:
U. Dayal, I. Traiger (eds.) Proceedings of the ACM SIGMOD 1987 Annual Conference,
SIGMOD Record, vol. 16:3, pp. 323–330. ACM Press (1987)

13. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, second edn. Springer (1999)
14. Fletcher, G., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D., Vansum-

meren, S., Wu, Y.: Relative expressive power of navigational querying on graphs. In:
Proceedings 14th International Conference on Database Theory (2011)

15. Fletcher, G., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D., Vansum-
meren, S., Wu, Y.: The impact of transitive closure on the expressiveness of navigational
query languages on unlabeled graphs. Annals of Mathematics and Artificial Intelligence
73(1–2), 167–203 (2015)

16. Fletcher, G., Gyssens, M., Leinders, D., Surinx, D., Van den Bussche, J., Van Gucht, D.,
Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on graphs.
Information Sciences 298, 390–406 (2015)

17. Hell, P., Nesetril, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics
and Its Applications. OUP Oxford (2004). URL https://books.google.be/books?id=
bJXWV-qK7kYC

18. Hella, L., Luosto, K., Väänänen, J.: The hierarchy theorem for generalized quantifiers.
The Journal of Symbolic Logic 61(3), 802–817 (1996)

Expressing boolean queries 29

19. Imielinski, T., Lipski, W.: The relational model of data and cylindric algebras. J. Comput.
Syst. Sci. 28, 80–102 (1984)

20. Kolaitis, P.: On the expressive power of logics on finite models. In: Finite Model Theory
and Its Applications, chap. 2. Springer (2007)

21. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
22. Libkin, L., Martens, W., Vrgoč, D.: Quering graph databases with XPath. In: Proceedings

16th International Conference on Database Theory. ACM (2013)
23. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIGMOD

Record 34(2), 41–46 (2005)
24. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the union and

difference operators. J. ACM 27(4), 633–655 (1980)
25. Surinx, D.: A framework for comparing query languages in their ability to express boolean

queries. Ph.D. thesis, Hasselt University (2017). http://dsurinx.be/phd.pdf
26. Surinx, D., Van den Bussche, J.: A monotone preservation result for boolean queries ex-

pressed as a containment of conjunctive queries (2018). URL http://arxiv.org/abs/
1808.08822

27. Surinx, D., Van den Bussche, J., Van Gucht, D.: The primitivity of operators in the
algebra of binary relations under conjunctions of containments. In: Proceedings 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE Computer Society
Press (2017)

28. Surinx, D., Van den Bussche, J., Van Gucht, D.: A framework for comparing query lan-
guages in their ability to express boolean queries. In: F. Ferrarotti, S. Woltran (eds.)
Proceedings of the 10th International Symposium on Foundations of Information and
Knowledge Systems, Lecture Notes in Computer Science, vol. 10833, pp. 360–378. Springer
(2018)

29. Surinx, D., Fletcher, G., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D.,
Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on graphs
using transitive closure. Logic Journal of the IGPL 23(5), 759–788 (2015)

30. Wood, P.: Query languages for graph databases. SIGMOD Record 41(1), 50–60 (2012)

