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Abstract

Estimating complex linear mixed models using an iterative full maximum likelihood

estimator can be cumbersome in some cases. With small and unbalanced datasets,

convergence problems are common. Also, for large datasets, iterative procedures can

be computationally prohibitive. To overcome these computational issues, an unbiased

two-stage closed-form estimator for the multivariate linear mixed model is proposed.

It is rooted in pseudo-likelihood-based split-sample methodology, and useful, for ex-

ample, when evaluating normally distributed endpoints in a meta-analytic context.

However, applications go well beyond this framework. Its statistical and computa-

tional performance is assessed via simulation. The method is applied to a study in

schizophrenia.

Keywords: Hierarchical data; Linear mixed model; Unequal cluster size; Surrogacy

evaluation; Weighting.
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1 Introduction

One of the most often used techniques to analyze clustered or hierarchical continuous

data is the linear mixed model (LMM; Laird and Ware 1983; Verbeke and Molenberghs

2000). Broadly speaking, clustered data refers to a set of measurements collected from

structured units, and embraces different settings, e.g., longitudinal, multilevel, and spatial

data. Iterative techniques, such as Newton-Raphson, are commonly used to fit the linear

mixed model (Lindstrom and Bates, 1988). Based on an initial guess for the parameters,

such algorithms iteratively update these values until a convergence criterion is reached.

They often perform well. However, in some cases convergence is either not achieved, or

is extremely time-consuming. This more frequently occurs in complex models with many

variance components, in very small, or extremely large datasets.

One of the typical cases where a combination of a complex LMM and a small dataset is

commonly encountered is in the meta-analytic evaluation of surrogate endpoints proposed

by Buyse et al. (2000) and studied in subsequent papers. Computational issues were ex-

amined for the first time in Tibaldi et al. (2003). In this approach, a surrogate endpoint

is evaluated to asses whether it can act as a replacement outcome for a true endpoint

(the most credible indicator of drug response) using multiple trials. A surrogate is con-

venient when it can be measured earlier, more frequently, or more cheaply than the true

endpoint. The LMM framework allows assessing surrogacy at two different levels: trial

and individual. Surrogacy at the individual level is defined as the association between

the surrogate and the true endpoint after adjustment for the treatment and trial effect;

surrogacy at the trial level is the association between the treatment effect on the surrogate

and the treatment effect on the true endpoint. Extensive overviews on the meta-analytic

evaluation of surrogate endpoints can be found in two books on the topic (Burzykowski

et al., 2005, and Alonso Abad et al., 2016).

After fitting a LMM, surrogacy is often quantified using two metrics that are based on the

variance-covariance matrix of random effects (D) and residuals (Σ), meaning that reliable

convergence is needed, as well as positive-definiteness of D and Σ. Based on simulation
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studies, convergence problems occur more often with few and highly unbalanced trials,

and when the between-cluster variability is relatively small when compared to the residual

variability (Burzykowski et al., 2005; Van der Elst et al., 2016).

There are computational issues, though, that need careful addressing. The linear mixed

model is routinely fitted (iteratively) by maximizing the marginal likelihood, using Newton-

Raphson-based techniques for example. These algorithms require substantial computing

resources to calculate the log-likelihood function and its derivatives (among other quan-

tities) in each iteration. Of course, it is tractable with medium to relatively large data.

However, with a very large number of clusters and cluster-sizes, these procedures can be

too time-consuming or computationally infeasible. Another problem of maximization pro-

cedures, is that they may fail to converge or converge to an spurious solution, e.g., to a

local maximum or to a solution outside the parameter space. This is common when we

are analyzing few and very unbalanced clusters.

To remove or at least alleviate these computational difficulties, we propose a non-iterative

unbiased estimator for the multivariate linear mixed model. It requires less computing

resources, takes only one step to find the solution, making it fast. Secondly, given that it

is non-iterative, it does not suffer from convergence issues.

While useful for surrogacy evaluation, it is by no means restricted to that setting. Our esti-

mator is based on so-called split-sample methodology and pseudo-likelihood (Molenberghs

et al., 2011, 2014, 2018). Here, the sample is conveniently divided into subsamples, and the

parameters are estimated in each one. Thereafter, the resulting estimates are averaged, us-

ing some weights, to obtain an overall estimator. In our case, each subsample contains one

single trial, leading to the so-called trial-by-trial or cluster-by-cluster estimator (Molen-

berghs et al., 2018). This method has been shown to exhibit good statistical performance

and computational efficiency to analyze data with different clustering structures, such as

autoregressive (AR) (Hermans et al., 2017) and compound-symmetry (Molenberghs et al.,

2018). For the latter, the cluster-by-cluster estimator is consistent when the number of

replicates per cluster increases more rapidly than the number of clusters. In these models,
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all parameters can be estimated in each cluster and, therefore, the split-sample method is

applied directly. In the general linear mixed model, the variance-covariance matrix of the

random effects captures the between-cluster variability, and it cannot be estimated using

a single cluster. Consequently, we propose an unbiased (method-of-moments) estimator.

To evaluate the statistical performance of our estimator, we performed a simulation study

to asses efficiency. As a reference, our proposal is compared to classical restricted maximum

likelihood (REML) iterative estimator and others alternatives. Furthermore, we assessed

the computation time consumed to fit the model using both techniques. The latter is a

factor to take into account when the dataset is very large.

The remainder of the paper is organized as follows. In Section 2, the multivariate linear

mixed model, along with the model usually used to assess surrogacy, is introduced and

model fitting alternatives are presented. Section 3 is dedicated to the trial-by-trial estima-

tor. Section 4 presents the simulation settings used to evaluate our estimator’s (statistical

and computational) performance. Results of the simulation study are shown in Section 5.

A case study in schizophrenia is analyzed in Section 6. Finally, Section 7 is reserved for

conclusions and discussion.

2 Multivariate linear mixed model

Defining Yi = (yi1, . . . ,yim) as the (ni×m) matrix of multivariate outcomes for cluster i,

i = 1, . . . , N , where yik is the ni-dimensional vector of the kth outcome, the multivariate

linear mixed model (LMMM) is expressed as follows (Shah et al., 1997):

Yi = XiB + ZiEbi + Eεi , (1)

where Xi (ni × p) and Zi (ni × q) are matrices of known covariates; vecB = β is the

pm-dimensional vector of fixed effects; vec Ebi = bi the corresponding qm-dimensional

vector of random effects; and vec Eεi = εi the residual term. ⊗ signifies the Kronecker

product and vec the vec-operator, which transforms a matrix into a vector by stacking
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the columns of the matrix one underneath the other (more details on this operator can

be found in Appendix A in the Supplementary Materials). Generally, we assume that

εi ∼ N(0,Σ⊗Ini) and bi ∼ N(0, D), where Σ and D are (m×m) and (q×q) unstructured

variance-covariance matrices, respectively.

From (1) we see that, conditionally on the random effects, Y˜ i = vec Yi is normally

distributed with mean vector (Im ⊗ Xi)β + (Im ⊗ Zi)bi and with variance-covariance

matrix Σ⊗ Ini . Further, the marginal distribution of Y˜ i is,

Y˜ i ∼ N
[
(Im ⊗Xi)β, VY˜ i = (Im ⊗ Zi)D (Im ⊗ Zi)

′ + Σ⊗ Ini

]
. (2)

Note that VY˜ i is a function of the variance-covariance matrix of the random effects and

residuals, allowing for the analysis of between- and within-cluster variation through D and

Σ, respectively.

Given the hierarchical structure of the LMMM, it can be expressed in two stages (Verbeke

and Molenberghs, 2000). The first stage corresponds to the “within-cluster” model and is

defined as:

Yi = TiBi + Eεi , (3)

where T = (Zi Zci), Zci is a (ni × r) matrix of within-cluster covariates not associated

with random effect, Bi is a [(q + r) ×m] matrix of unknown cluster-specific coefficients.

The second stage model, called “between-cluster” model, is:

Bi = KiB + (Iq 0q×r)
′Ebi ,

where Ki is a [(q+r)×p] matrix of known cluster-specific covariates satisfying Xi = TiKi.

2.1 Fitting alternatives

Routinely, the full REML/ML estimator of a linear mixed model is obtained using iterative

techniques, usually Newton-Raphson-based (NR), Expectation-Maximization (EM) algo-

rithm, or variations thereof. These algorithms maximize the marginal log-(restricted)likelihood
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function over the parameter space Θ, i.e., all vectors θ = (β, vech Σ, vech D)′ that lead

to positive (semi-)definite D and Σ matrices (Verbeke and Molenberghs, 2000). The ad-

vantage of the NR algorithm, over EM, is its fast convergence rate (Lindstrom and Bates,

1988). However, these methods may diverge or converge to values in or outside the param-

eter space, to a non-positive-definite estimate for D for instance. The latter is not an issue

if primary interest is with inferences on the fixed effects, where it is only required that the

marginal covariance matrix (VY˜ i) be positive-definite for all clusters. But, when interest

lies in the variance components, such as in the surrogacy evaluation case, this is needed.

As we mentioned before, these computational problems occur more often with few and

highly unbalanced clusters, and when D is relatively small compared to Σ (Burzykowski

et al., 2005; Van der Elst et al., 2016). To increase the convergence consistency of the

NR algorithm, Lindstrom and Bates (1988) suggest the Cholesky root parameterization

of D in the maximization process. it guarantees that D is always positive (semi)-definite

during the estimation process (West et al., 2014).

To overcome these computational issues, Van der Elst et al. (2016) proposed multiple

imputation (MI) to introduce balance in the dataset prior fitting the model along with

the Cholesky root parameterization. The former is justified by the fact that proper con-

vergence is more likely with balanced datasets. Moreover, different parametrizations of D

simplify the numerical optimization. Based on a simulation study, the authors concluded

that this alternative provides good convergence and statistical properties. Nevertheless,

there are some limitations. The MI-based estimator can be computationally intensive,

especially with a large number of clusters, and it may depend strongly on the imputation

model.

3 Trial-by-trial estimator

Our estimator is motivated by meta-analysis, where the clustering variable is trial. Fur-

thermore, it is based on the split-sample method (Molenberghs et al., 2011, 2014, 2018),

with a single trial per stratum. Of course, with enough individuals per trial, this splitting
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allows estimating β and Σ. However, D measures the between-trial variability, and it re-

quires information on more than one trial for it to be estimated. Therefore, its estimation

is based on the “trial-specific” estimates of βi and the overall estimate of β at the second

stage. Reinsel (1985) proposed a (method-of-moments) estimator of D in the univariate

context. We extend the estimator to the multivariate model (1) and for a general weighting

scheme for the estimator of β.

The estimator is divided into two stages. At the fist one, we estimate the “trial-specific”

parameters (βi and Σi) in each trial. In the second stage, these estimates are combined

using a weighting scheme to get overall estimates for both parameters, and an unbiased

estimator for D is proposed.

The estimator is introduced in the following subsections, assuming that Ti = Zi. Never-

theless, the extension to a general case requires some further but straightforward algebra.

More technical details are given in Appendix A of the Supplementary Materials.

3.1 First stage

In first stage, we fit model (3) separately in each trial. Given that, conditionally on bi,

the set of outcomes of the same cluster (Yi) are independent, we use the ordinary least

squared (OLS) estimator for βi and Σi:

B̂i =
(
Z ′iZi

)−1
Z ′iYi and Σ̂i =

1

ni − q
Y ′i

[
Ini − Z

(
Z ′iZi

)−1
Z ′i

]
Yi.

Defining vec B̂i = β̂i, the corresponding sampling variances are:

V
(
β̂i

)
= D + Σ⊗

(
Z ′iZi

)−1
(4)

and

V
(

vech Σ̂i

)
=

2

ni − q
Lm (Σ⊗ Σ)L′m,

where vech A is the half-vec-operator applied to a symmetric matrix A. That is, stacking

the columns of A into a vector, excluding the duplicate elements. Lm is the elimination
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matrix of order m. That is, the matrix which, for any (m × m) symmetric matrix A,

transforms vec A into vech A. More details on the vech operator and Lm can be found in

Appendix A of the Supplementary Materials.

3.2 Second stage

At the second stage, to obtain overall estimators for β and Σ, the estimates of each trial

are averaged as follows:

β̃ =

 N∑
j=1

K ′mjW1jKmj

−1 N∑
i=1

K ′miW1iβ̂i and vech Σ̃ =
N∑
i=1

W2ivech Σ̂i,

where W1i and W2i are weighting matrices, and Kmi = (Im ⊗ Ki). We considered two

different weighting schemes for these parameters because the estimators of βi and Σi are

independent. Furthermore, the variances of β̃ and Σ̃ are:

V
(
β̃
)

=

 N∑
j=1

K ′mjW1jKmj

−1 [ N∑
i=1

K ′miW1iV
(
β̂i

)
W ′1iKmi

] N∑
j=1

K ′mjW1jKmj

−1 ,
and,

V
(

vech Σ̃
)

=

N∑
i=1

W2iV
(

vech Σ̂i

)
W ′2i.

There are several weighting schemes possible, where the most common ones are constant

weights, Wi = 1
N I, and proportional weights, Wi = ni

n.
I, where n. =

∑N
i=1 ni. To ensure

unbiasedness, the
∑N

i=1Wi = I constraint is required (Molenberghs et al., 2018).

Using the trial-specific estimates of βi, the estimator of D is based on the following matrix:

Sb =
N∑
i=1

(β̂i −Kmiβ̃)(β̂i −Kmiβ̃)′ =
N∑
i=1

b̃ib̃
′
i. (5)

By equating Sb with its expected value and solving for D, an unbiased (method-of-

moments) estimator of D is found (Reinsel, 1985; Vonesh and Carter, 1987). Given that,
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b̃i ∼ N
[
0, V

(
b̃i

)]
, we have that E (Sb) =

∑N
i=1 V

(
b̃i

)
, where

V
(
b̃i

)
= (I −Hii)V

(
β̂i

)
(I −Hii)

′ +
∑
k 6=i

HikV
(
β̂k

)
H ′ik, (6)

and Hik = Kmi

(∑N
j=1K

′
mjW1jKmj

)−1
K ′mkW1k. Then,

E (Sb) =
N∑
i=1

(I −Hii)
[
D + Σ⊗

(
Z ′iZi

)−1]
(I −Hii)

′+

∑
k 6=i

Hik

[
D + Σ⊗

(
Z ′iZi

)−1]
H ′ik.

(7)

Before solving (7) for D, we apply the vec-operator at both sides of the equation:

vec E (Sb) =
N∑
i=1

(I −Hii)
⊗2 +

∑
k 6=i

Hik
⊗2

 vec
[
D + Σ⊗

(
Z ′iZi

)−1]
, (8)

where A⊗2 = A⊗A. Then, solving (8) for D, the following unbiased estimator is found:

vec D̃ =

 N∑
i=1

(I −Hii)
⊗2 +

∑
k 6=i

Hik
⊗2

−1 (vec Sb − c) , (9)

where

c =
N∑
i=1

(I −Hii)
⊗2 +

∑
k 6=i

Hik
⊗2

 vec
[
Σ̃⊗

(
Z ′iZi

)−1]
.

The variance of vech D̃ is:

V
(

vech D̃
)

=Lqm

 N∑
i=1

(I −Hii)
⊗2 +

∑
k 6=i

Hik
⊗2

−1 [V (vec Sb) + V (c)]×

×

 N∑
i=1

(I −Hii)
⊗2 +

∑
k 6=i

Hik
⊗2

−1 L′qm,
(10)

where V (vec Sb) and V (c) are (S.1) and (S.2) in the Supplementary Materials, respec-

tively.
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In the random-effects multivariate meta-regression framework, several non-iterative esti-

mators of the between-study covariance have been proposed (Chen et al., 2012; Jackson

et al., 2013). Particularly, Jackson et al. (2013) proposed a (method-of-moments) estima-

tor of D similar to (9). However, it assumes that the within-study variability is known, and

not estimated as is commonly the case. Therefore, a large number of studies is necessary

to justify this approximation. A comparison of our method with the Jackson et al. (2013)

estimator via simulation is presented in Section C.1 of the Supplementary Materials.

3.3 Adjustment for non-positive-definite D̃

The estimator (9) might lead to a non-positive-definite estimate of D. Laird and Lange

(1987) and Rousseeuw and Molenberghs (1993) proposed various methods to find the

nearest positive-definite matrix, the latter in the context of correlation matrices. The

adjustments’ purpose is to find the closest positive-definite matrix of the one that is found

at first. The eigenvalue method corrects non-positive-definiteness of D̃ as follows:

D̃+ = LẼL′,

where L is the set of orthonormal eigenvectors of D̃ and Ẽ is the diagonal matrix of

eigenvalues of D̃, except that all negative values are replaced by a small value δ > 0.

When applying such an adjustment, the statistical properties of the estimator of D are

affected (unbiasedness and sampling variance). However, based on our simulation study

(see Appendix B.2 of the Supplementary Materials), the sampling variance is very close

to (10) and there is a, however small, negative bias.

3.4 About weighting scheme

There are several weighting scheme alternatives to estimate β and Σ. Some weights have

the advantage of being parameter-free. The proportional weights are preferred when the

clusters differ largely in size. However, we can also consider so-called optimal weights
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(Molenberghs et al., 2018). For estimation of a parameter θ, these take the form:

W opt
i =

(
N∑
k=1

V −1k

)−1
V −1i ,

where Vk is the variance of θ̂k. Particularly for β, the optimal weights are as follows:

W opt
1i =

{
N∑
k=1

[
D + Σ⊗ (Z ′kZk)−1

]−1}−1 [
D + Σ⊗ (Z ′iZi)

−1]−1 . (11)

As we can observe in (11), the weighting matrices depend on unknown parameters, and

therefore its application is not straightforward. One alternative is to apply an approxi-

mation of the optimal weights (Molenberghs et al., 2018). Here, we estimate D and Σ

using a simple scheme, such as proportional, and later, these parameters are replaced by

their estimates in (11). On the other hand, the optimal weights for Σ are scalar and

parameter-free:

W opt
2i =

ni − q∑N
k=1(nk − q)

I.

For the following simulations, we used proportional and optimal weights for β and Σ,

respectively. Thereafter, we updated the estimate of β using the approximate optimal

weights. The latter is suggested if interest lies on the fixed effects.

To improve the estimation of D, we can consider iterated optimal weighting (Molenberghs

et al., 2018). To do so, we cycle through estimating β using approximate optimal weights

and estimating D, until some convergence criterion is reached. In Appendix B.3 of the

Supplementary Materials, we show the MSE reduction due to the use of iterated optimal

weights for D in each simulated scenario.

One interesting result of the trial-by-trial estimator is that, in the case of balanced data

(same size and treatment allocation trials), it is equal to the REML estimator for a linear

mixed model. Therefore, the difference of the estimators depends mostly on imbalance.
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4 Simulation study

4.1 Model

We consider a surrogate meta-analytic endpoint evaluation setting. Assuming that the

surrogate and true endpoints follow a bivariate normal distribution, Buyse et al. (2000)

proposed the following model,


Sij = µS +mSi + (α+ ai)Zij + εSij ,

Tij = µT +mT i + (β + bi)Zij + εT ij ,

(12)

where Sij and Tij represent the surrogate and true endpoints for patient j at trial i

(i = 1, . . . , N , j = 1, . . . , ni), respectively; Zij denotes the indicator variable for the

treatment; µS , α are the fixed intercept and treatment effect for S; mSi, ai are the

corresponding random intercepts and treatment effects; µT , β are the fixed intercept and

treatment effect for T ; mT i, bi are the corresponding random intercepts and treatment

effects; and the residuals for S and T are represented by εSij and εT ij , respectively. This

model assumes that (mSi, ai,mT i, bi) ∼ N(0, D) and (εSij , εT ij) ∼ N(0,Σ), where

D =



dSS dSa dST dSb

daa daT dab

dTT dTb

dbb


and Σ =

σSS σST

σTT



are unstructured variance-covariance matrices. Particularly, surrogacy evaluation in this

framework is done by two metrics: the trial- and individual-level coefficients of determi-

nation, represented by R2
Trial and R2

Ind, computed as:

R2
Trial =

dSb
dab


′dSS dSa

dSa daa


−1dSb

dab


dbb

and R2
Ind =

σ2ST
σSSσTT

.
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R2
Trial and R2

Ind quantify the strength of the association between the treatment effects on S

and T , and between S and T , respectively (Alonso Abad et al., 2016). R2
Trial ranges over

the unit interval if the corresponding D matrix is positive-definite (Burzykowski et al.,

2005).

As mentioned before, fitting model (12) is often surrounded by computational issues

(Burzykowski et al., 2005; Van der Elst et al., 2016). To address this problem, Tibaldi

et al. (2003) proposed different simplifications, such as removing the random effects for

the intercept or a simpler fixed-effects model.

The meta-analytic approach to evaluate surrogacy under normallity, as is shown here, can

be seen as a special case of the information-theoretic framework at both levels (Van der

Elst et al., 2017). Alonso and Molenberghs (2007) proposed to assess surrogacy in terms

of uncertainty reduction. Here, S is a good surrogate for T at the individual (trial) level, if

the uncertainty about T (the treatment effect on T ) is reduced substantially when S (the

treatment effect on S) is known (Molenberghs et al., 2010). One of its advantages is that

a hierarchical joint model, such as (12), is not needed. Therefore, it generally requires less

complicated models to fit. For details, see Alonso and Molenberghs (2007) and Van der

Elst et al. (2017) [Chapters 9 and 10].

4.2 Settings

The parameter values are the same as used by Van der Elst et al. (2016) in their simulation

study. For the fixed effects we used β = (µS , α, µT , β)′ = (450, 300, 500, 500)′ and for the

variance-covariance matrices for the random effects and error term,

D =



100 0 40 0

100 0 70.7107

100 0

100


and, Σ =

300 212.132

300

 ,
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respectively. This setting leads to R2
Trial = R2

Ind = 0.5. We varied the number of trials

(N), the mean number of patients per trial (µn), at first fixing N = 10 and varying µn =

{10, 25, 50, 100, 150, 200,250}, and later, fixing µn = 10 and varying N ={10, 25, 50, 100,

150, 200, 250}. The standard deviation of the number of patients per trial was determined

as a fraction of the mean, that is σn = γµn. We considered two cases: high imbalance

(γ = 0.25) and extremely high imbalance (γ = 0.5). These settings lead to 28 different

scenarios.

For each scenario, we simulated the data as follows:

1. Number of patients per trial using a normal distribution, ni ∼ N
[
µn, (γµn)2

]
(round-

ing ni to the nearest integer); with the minimum number of patients per trial equals

to five.

2. Treatment allocation for each trial using a binomial distribution, n1i ∼ Binomial(ni, 0.5);

with a minimum number of two patients per treatment arm; that is, min(n1i) = 2

and max(n1i) = ni − 2.

3. Outcomes for Sij and Tij following model (12).

A total of 1,000 datasets were generated for each scenario. Then, the simulated datasets

were analyzed using different methods:

• the trial-by-trial estimator, proposed in Section 3, using approximate optimal and

optimal weights to estimate β and Σ, respectively;

• the iterative REML estimator using the Cholesky decomposition of D suggested by

Van der Elst et al. (2016), to enhance the rate of proper convergence;

• Particularly for surrogacy evaluation metrics, we used the information-theoretic

framework based on a fixed-effects model (Alonso and Molenberghs, 2007).

To evaluate the computation time we increased the values of N and µn as follows: fixing

µn = 250 and varying N = {500, 1000, 2,500, 5,000} and fixing N = 100 and varying

µn = {500, 1,000, 1,500, 2,500}. For this, we simulated 25 datasets per scenario.
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During the simulation process we evaluated three different aspects:

• The percentage of positive-definite estimates of D;

• The asymptotic relative efficiency (ARE), defined as the MSE ratio of the alternative

estimator (trial-by-trial or information-theoretic method) over the iterative REML

estimator, for all parameters of model (12) and its derived quantities. For β, Σ and

D, we computed an overall ARE;

• the computation time, in seconds, needed to obtain the solution for the trial-by-trial

and iterative REML estimator.

5 Simulation results

5.1 Positive-definite estimates of D

Table 1 shows that the percentage of positive-definite (pd) solutions of D increases when

the number of trials and/or patients per trial gets larger. Furthermore, it is lower when

the imbalance is higher. These results agree with the ones obtained by Van der Elst et al.

(2016), showing that convergence problems are encountered mostly in unbalanced small

data cases. Comparing both estimators, the proportion of pd estimates of D is slightly

larger for the trial-by-trial than for the iterative REML estimator, in most of the settings.

Furthermore, the former allows a direct use of the adjustments for non-positive-definiteness

presented in Section 3.2.

5.2 Asymptotic relative efficiency

Table 2(a) displays the asymptotic relative efficiency (ARE) of the trial-by-trial estimator

and the information-theoretic method in the cases where the number of trials (N) is fixed

at 10 and the mean of patients per trial (µn) increases, for both high and extremely high

imbalance. In the same way, Table 2(b) exhibits the ARE when µn is bounded at 10 and

N varies. For the iterative REML, only the pd D̂ were taken into account to compute the
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MSE. Meanwhile, for the trial-by-trial estimator, all cases were used, including when the

adjustment for non-positive-definiteness was required.

As shown in Table 2, the trial-by-trial estimator performs differently depending on the

parameter. Regarding β, it is as efficient as the iterative REML estimator, its ARE is

stable around one, even with small values of N and µn, and extremely large imbalance.

For Σ, there is efficiency loss. Nevertheless, it decreases rapidly as N and/or µn increase.

In the smallest setting, its MSE is around 12% larger than the iterative REML estimator.

Moreover, the efficiency is slightly affected by imbalance. Concerning D, it is asymptoti-

cally efficient when µn increases faster than N . On the contrary, when N increases faster

than µn, it does not seem to be asymptotically as efficient as its iterative counterpart.

The ARE converges to a value above one. However, the efficiency loss is not greater than

10% even in the extremely large imbalance settings.

For R2
Ind, the ARE of the trial-by-trial estimator exhibits the same behavior than the

one observed for Σ. Likewise, its ARE of R2
Trial behaves similarly than the one observed

for D. Nonetheless, the efficiency loss is larger, especially with the smallest N and µn.

Here, its MSE is around 1.4 and 1.6 larger than the one observed for the iterative REML

estimator under high and extremely high imbalance, respectively. The large inefficiency

can be explained by the use of the adjustments for non-pd estimates of D in more of the

half of the simulated datasets. Comparing only the cases where both estimators led to

a pd estimate for D, the ARE decreases to roughly 1.10 and 1.15 (see Figure S.3 of the

Supplementary Materials) with high and extremely high imbalance, respectively.

In contrast to the trial-by-trial estimator, the information-theoretic approach provides

more accurate estimates of R2
Trial. Its ARE is lower than one in all scenarios. In the

N = µn = 10 case, the MSE of the iterative REML estimator is around 40% and 20%

larger than the one observed by this method under high and extremely high imbalance,

respectively. However, its ARE converges to one when µn increases faster than N . On the

other hand, the estimator of R2
Ind does not perform well when µn is small. its ARE diverges

when µn is fixed and N increases. Nevertheless, it is efficient when µn increases faster
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than N . More results on R2
Ind and R2

Trial can be found in Section B.4 of the Supplementary

Materials.

5.3 Computation time

The median time spent to fit model (12) using the trial-by-trial and iterative REML es-

timator, in the large data settings, are displayed in Table 3. Naturally, the trial-by-trial

estimator is faster than iterative REML in all scenarios. However, the difference in time

depends on how quick N and µn increase. When N is fixed at 100 (Table 3a), the iter-

ative REML estimator shows a steeper increasing time than the trial-by-trial estimator.

Additionally, the latter is slightly affected by increasing the number of patients per trial,

showing a maximum median time of 1.18 seconds when µn is equal to 2,500. Meanwhile,

the iterative REML estimator spent roughly 138 seconds, which is 116 times longer. As

expected, imbalance does not affect the trial-by-trial estimator. On the contrary, the iter-

ative REML estimator took slightly more time in the extremely high imbalanced settings.

When µn is bounded at 250 (Table 3b), the same behavior is observed, a faster increasing

median time for the iterative REML estimator. However, the ratio does not rise as quickly

as before. In these cases, imbalance does not seem to affect the computation time of the

iterative estimator all that much.

6 Meta-analysis of clinical trials in schizophrenia

Next, the trial-by-trial estimator is implemented in data from a study in schizophrenia.

The dataset combines five double-blind randomized clinical trials, and is available in the R

library Surrogate (Van der Elst et al., 2017). The main aim was to examine the efficacy of

risperidone to treat schizophrenia. In each trial, patients received risperidone or an active

control for four to eight weeks. Three different instruments were used to assess patients’

schizophrenic symptoms: The clinical Global Impression (CGI), the Brief Psychiatric

Rating Scale (BPRS) test and the Positive and Negative Syndrome Scale (PANSS). The

outcome of interest was the change in the score measure by each instrument. Surrogate
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evaluation of the schizophrenia data was performed by Alonso Abad et al. (2016) using

different combinations of endpoints. This is a common situation where the true endpoint

is ambiguous, and any of the scales can be considered as the true endpoint with the others

as possible surrogates (Molenberghs et al., 2010).

We illustrate our estimator in two different analyses. Firstly, we fitted a multivariate

mixed-effects model using the three outcomes. Later, a meta-analytic surrogate endpoint

evaluation was performed considering BPRS as a possible surrogate of PANSS.

The complete dataset contains information of 2,128 patients treated by 198 psychiatrists

(clustering variable). Since the trial-by-trial estimator requires enough observations per

cluster for estimating the cluster-specific parameters, we considered only the information

of psychiatrists who examined more than two patients per treatment arm. Then, the

remaining data include 1,392 patients treated by 64 psychiatrists. Although the dataset is

not small, it is highly unbalanced. The mean (standard deviation) number of patients

per psychiatrist is 21.8 (9.9), with a minimum (maximum) of 6 (52) patients. Even

though these scales are discrete variables, their change in scores can be considered as

(semi)continuous and can be approximately normally distributed (Alonso Abad et al.,

2016). For comparative purposes, we analyzed the data using the REML estimator, based

on the Cholesky decomposition, using the complete dataset.

6.1 Multivariate mixed model

We fitted a multivariate mixed model with BPRS, CGI, and PANSS as response variables,

using treatment as covariate. Furthermore, the model included random effects for intercept

and treatment effect. The trial-by-trial estimator reported non-pd estimates of D, but we

used the eigenvalue method to correct non-positive-definiteness. The fitted variance matrix

of residuals and random effects (after adjustment) are:

Σ̃ =


171.30 13.61 283.81

13.61 2.11 24.19

283.81 24.19 512.92

 ,

18



and,

D̃+ =



36.60 1.42 3.38 −0.08 64.96 2.57

1.42 0.11 0.19 −0.00 2.74 0.04

3.38 0.19 0.47 −0.03 6.23 0.17

−0.08 −0.00 −0.03 0.01 −0.09 −0.01

64.96 2.74 6.23 −0.09 117.01 4.31

2.57 0.04 0.17 −0.01 4.31 0.24


,

respectively. Both, Σ̃ and D̃+ show a strong association between the outcomes at both

levels, individual and trial, with a larger correlation between BPRS and PANSS. The

REML estimator, using the Cholesky decomposition, reported convergence, but to a non-

pd D̂. However, the results on the fixed effects are still valid. The marginal variance

matrix Vyi
is pd for every trial. Table 4 exhibits the estimates and standard errors of β

using the trial-by-trial and REML estimators.

As Table 4 reveals, both methods provide similar estimates, but the trial-by-trial estimator

reports a higher standard error. The efficiency loss is due to excluding several small clusters

from the analysis. Nevertheless, there still is a significant negative treatment effect in the

three outcomes, indicating that risperidone reduces schizophrenic symptoms.

6.2 Surrogacy evaluation

To evaluate surrogacy, we fitted model (12) using BPRS as a surrogate candidate of

PANSS. In this case, a positive-definite estimate of D is vital during the estimation process.

As before, the REML estimator, reached convergence, but to a non-pd estimate of D.

Likewise, the fitted trial-by-trial estimator of D is non-pd. However, we proceeded to

apply the eigenvalue method to find the nearest pd matrix. Both, the first estimate and
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the posterior adjustment of D̃ are:

D̃ =



37.2 2.0 66.2 3.4

2.0 −1.9 2.3 −2.5

66.2 2.3 118.8 3.8

3.4 −2.5 3.8 −2.6


and D̃+ =



37.4 1.3 66.1 2.6

1.3 0.1 2.5 0.0

66.1 2.5 118.9 4.1

2.6 0.0 4.1 0.3


,

respectively. This leads to R̃2
Trial = 0.955, indicating that there is a strong association

between the treatment effect on the change in score measured by BPRS test and the

change in score measure by PANSS test. Furthermore, the estimate of Σ is,

Σ̃ =

161.65 267.9

267.9 484.34

 ,

leading to R̃2
Ind = 0.917, showing a strong association between both tests at the patient

level as well. From Σ̃ and D̃, we observed that the estimated residual variability is rela-

tively larger than the estimated between-cluster variability. This fact, added to the highly

unbalanced nature of the data, might be the cause of the non-pd estimates of D for both

estimators.

As a reference and to make a comparison with our results, we evaluated surrogacy under

the information-theoretic approach. Here, the point estimates of R2
Trial and R2

Ind are 0.903

and 0.924, respectively. These results are similar to the ones obtained by the trial-by-

trial estimator and indicate a strong association between BPRS and PANSS tests at both,

individual and trial, levels.

7 Discussion

We have proposed a closed-form unbiased estimator for the multivariate linear mixed-

effects model. On theoretical grounds and based on a simulation study, it shows good

statistical properties. Moreover, it is computationally highly efficient. Therefore, it is a

good alternative to the standard iterative ML/REML estimator. Mainly, we suggest to
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implement it in cases where the latter does not converge correctly, or when it is compu-

tationally too intensive or prohibitive. The first situation is commonly encountered with

highly unbalanced small data, and the second with an extremely large number of clusters

and/or units per cluster.

The simulation study has shown that the trial-by-trial estimator shares the same issues as

its iterative counterpart in the former situation. It led to non-positive-definite estimates

of D more frequently. Nevertheless, adjustments for non-positive-definiteness can easily

be applied. In simulations, the eigenvalue method successfully found a positive-definite

matrix near the values of the initially estimated matrix with a small cost in efficiency

on the estimation of D. Of course, more alternatives can be considered for this task

(Rousseeuw and Molenberghs, 1993; Higham, 2002).

Regarding statistical properties, the trial-by-trial estimator is asymptotically as efficient

as the iterative REML estimator for all parameters of the multivariate linear mixed model

when the number of units per cluster increases faster than the number of clusters. However,

it behaves differently depending on the parameter. For β and Σ, the trial-by-trial estimator

is as efficient as the iterative REML. For D, there is a small efficiency loss when the number

of clusters and units per cluster are small, and it is affected by imbalance.

In the particular case of surrogacy evaluation, the efficiency of the estimators of R2
Ind and

R2
Trial behaves similarly to the efficiency of estimators of Σ and D, respectively. However,

the estimator of R2
Trial is more affected by imbalance and the use of adjustments for non-

positive-definiteness. Although it increases the MSE, the corrections allow us to always

estimate R2
Trial. On the other hand, there is no estimate of R2

Trial with the iterative

REML estimator in those cases. The implementation of these adjustments in the iterative

procedure is not straightforward. An evaluation of whether or not the D matrix is pd

should be undertaken in each iteration and then, if necessary, a correction should be

applied. Furthermore, it is unclear how this change in the algorithm may affect the

convergence and performance of the procedure. Specially for R2
Trial, the information-

theoretic approach provides more efficient estimates than the meta-analytic methodology
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in settings with a small number of trials and patients per trial. Although it performed

better, we cannot conclude that this approach is superior. The surrogacy definition and

quantification are different (Alonso and Molenberghs, 2007). That said, with normally

distributed endpoints, both estimators can be compared.

About the weighting scheme, approximate optimal and optimal weights for estimating β

and Σ, respectively, are recommended. Optimal weighting is possible for the latter be-

cause it is parameter-free. For β, on the other hand, it depends on unknown parameters.

Therefore, we opt for approximate or iterated optimal weights. Based on the simulation

study, approximate optimal weights for estimating β are highly recommended if the inter-

est relies on fixed effects. The use of iterated optimal weights reduces the MSE of β̃ and

D̃. However, this reduction is too small to be worth too much consideration. Moreover,

it has a computational cost, especially if the number of clusters is large.

In large data settings, both estimators are statistically equivalent (practically the same

estimates for all parameters). Nevertheless, the iterative method is more computationally

intensive. The simulations showed that computation time of the trial-by-trial estimator

can be more than 100 times faster than the standard iterative REML estimator. Given

that a closed-form solution is performed separately in each cluster, these sub-processes

could execute in parallel, reducing the computation time considerably, especially in cases

with an extremely large number of cluster.

Given its computational advantages, we considered that our proposal is convenient not

only when the dataset is large, but also when the number of outcomes becomes too large.

Nevertheless, more simulation studies are needed to evaluate its statistical performance.

Furthermore, the trial-by-trial estimator can be extended to non-Gaussian data. Of course,

a closed-form estimator is not possible, but computational advantages can still be gained.
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Table 1: Proportion of cases where the estimators lead to a positive-definite estimate for
D, (a) fixing N = 10 and varying µn, and (b) fixing µn = 10 and varying N .

(a) high imbalance extremely high imbalance
µni

µni

Est. 10 25 50 100 150 200 250 10 25 50 100 150 200 250
TbT 0.46 0.88 0.97 0.99 1.00 1.00 1.00 0.43 0.78 0.92 0.96 0.98 0.98 0.98
REML 0.44 0.85 0.95 0.98 0.99 1.00 1.00 0.38 0.77 0.92 0.97 0.99 0.99 0.99
(b) high imbalance extremely high imbalance

N N
Est. 10 25 50 100 150 200 250 10 25 50 100 150 200 250
TbT 0.46 0.97 1.00 1.00 1.00 1.00 1.00 0.43 0.78 0.92 0.96 0.98 0.98 0.98
REML 0.43 0.78 0.92 0.96 0.98 0.98 0.98 0.38 0.77 0.92 0.97 0.99 0.99 0.99

TbT: Trial-by-trial estimator; REML: Iterative REML estimator using Cholesky decomposition.

Table 2: ARE of the estimators of the linear mixed model and its derived quantities, (a)
fixing N = 10 and varying µn, and (b) fixing µn = 10 and varying N .

(a) high imbalance extremely high imbalance
µni

µni

Est. parm. 10 25 50 100 150 200 250 10 25 50 100 150 200 250
TbT β 1.01 1.00 1.01 1.00 1.01 1.00 1.00 0.97 1.02 1.00 0.99 1.00 1.00 1.00

Σ 1.12 1.01 1.01 1.00 1.00 1.01 1.00 1.07 1.03 1.01 1.00 1.00 1.00 1.00
D 1.03 1.03 1.01 1.00 1.00 1.00 1.00 0.97 1.09 1.06 1.02 1.03 1.03 1.02
R2

Ind 1.10 1.04 0.99 1.00 1.00 1.00 1.00 1.00 1.02 1.02 0.99 0.99 1.00 1.00
R2

Trial 1.45 1.17 1.06 1.02 1.01 1.01 1.00 1.64 1.23 1.10 1.04 1.05 1.06 1.05
IT R2

Ind 1.56 1.18 1.05 1.03 1.01 1.02 1.00 1.30 1.25 1.07 1.04 1.02 1.03 1.01
R2

Trial 0.71 0.84 0.89 0.96 0.95 0.98 0.98 0.83 0.86 0.90 0.94 0.97 1.01 1.02
(b) high imbalance extremely high imbalance

N N
Parm. Est. 10 25 50 100 150 200 250 10 25 50 100 150 200 250
TbT β 1.01 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00

Σ 1.12 1.01 1.00 0.99 1.00 1.00 1.00 1.07 1.00 1.00 1.00 1.00 1.00 1.01
D 1.03 1.04 1.04 1.03 1.04 1.04 1.03 0.97 1.07 1.06 1.06 1.07 1.08 1.06
R2

Ind 1.10 0.99 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R2

Trial 1.45 1.10 1.05 1.04 1.03 1.03 1.03 1.64 1.07 1.07 1.06 1.04 1.06 1.05
IT R2

Ind 1.56 2.40 3.94 7.00 9.44 12.78 16.22 1.30 2.43 3.47 6.86 10.21 13.10 16.52
R2

Trial 0.71 0.58 0.59 0.60 0.60 0.61 0.59 0.83 0.60 0.65 0.70 0.73 0.77 0.80

TbT: Trial-by-trial estimator; IT: Information-theoretic approach based on a fixed-effects model.

Table 3: Median computation time, and ratio, of the trial-by-trial and iterative REML
estimator, (a) fixing N = 100 and varying µn, and (b) fixing µn = 250 and varying N .

(a) high imbalance extremely high imbalance
µn µn

Est. 500 1,000 1,500 2,500 500 1,000 1,500 2,500
TbT 0.29 0.83 0.72 1.08 0.29 0.82 0.72 1.18
REML 6.44 19.88 44.78 112.81 7.52 37.00 42.50 137.47
Ratio 22.27 23.89 62.37 104.35 25.93 44.85 59.11 116.01
(b) high imbalance extremely high imbalance

N N
Est. 500 1,000 2,500 5,000 500 1,000 2,500 5,000
TbT 2.62 9.75 93.98 237.15 2.71 9.58 59.25 242.03
REML 34.16 128.26 1002.68 3723.29 35.00 128.12 825.78 3861.60
Ratio 13.03 13.16 10.67 15.70 12.93 13.37 13.94 15.96

TbT: Trial-by-trial estimator; REML: Iterative REML estimator using Cholesky decompo-
sition.
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Table 4: Schizophrenia data. Estimates of the multivariate linear mixed model using the
trial-by-trial and REML estimator

Trial-by-trial REML
Parm. Estimate Std. error Estimate Std. error

β0,BPRS -8.15 0.863 -7.85 0.519
β1,BPRS -1.49 0.408 -1.26 0.332
β0,CGI 3.28 0.097 3.32 0.054
β1,CGI -0.16 0.046 -0.12 0.038
β0,PANSS -14.59 1.53 -13.87 0.911
β1,PANSS -2.74 0.707 -2.41 0.582
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