Cerebellar anodal transcranial direct current stimulation (CB atDCS) to modulate cerebello-cerebral networks in bimanual coordination in young and older adults

K. van Dun^a, S. Verstraelen^a, S. Depestele^a, F. Michiels, R. L. J. Meesen^{a,b} ^aREVAL, UHasselt, Diepenbeek, Belgium; ^bLab of Mootr control and neuroplasticity, KULeuven

Background

Complex bimanual coordination requires a good coordination between different neurological networks. Despite a crucial role of the cerebellum in motor coordination and motor learning, little is known about the cerebellar role in bimanual coordination, especially in aging. Although the cerebellum is also consistently activated during finger and hand movements in young adults, it is the strongest predictor of bimanual coordination performance only in children and in older adults (Boisgontier et al., 2018). We performed an ALE meta-analysis to determine the cerebellar structures involved in different types of bimanual coordination (in-phase, anti-phase, complex). In addition, we used cerebellar anodal transcranial direct current stimulation (CB atDCS) to investigate the crucially implicated cerebellocerebral networks in bimanual coordination in young and older adults.

Corresponding author

Kim van Dun kim.vandun@uhasselt.be

ANTI-PHASE > COMPLEX > RES

Bimanual tracking task (BTT) Linear mixed model

The ALE meta-analysis revealed that the cerebellum is particularly involved in complex bimanual movements, in collaboration with the subcortical structures. By stimulating the cerebellum during a bimanual coordination task, it was shown that this stimulation had a significantly different impact on difficult conditions (3:1 or 1:3 frequency) as compared to easy conditions (1:1). However, the effect of tDCS was not the same for both age groups. While CB atDCS seemed to have a beneficial effect on target deviation in young adults, the opposite appeared to be true for older adults. This pilot study shows that more studies are needed on the exact role of the cerebellum in aging.

Bimanual tracking task (BTT) Difficulty CC EASY Online CB ⊂⊂ 3:1 atDCS HARD CC 1:3 Outcome measure Target deviation Session 2 Session 1 W Real Real Sham Sham Real Real Sham Sham

Results

							Cluster			
SIS					Contrast	Cluster	size (mm ³)	Cluster center	Cluster label	#Contributors
					IN-PHASE >	REST				
	#foci	#Experiments	Total #subjects			1	1680	-37 -19 57	L Precentral gyrus	8 studies
ст	00	10	126			2	1632	1 -4 58	R Medial frontal gyrus	8 studies
51	99	10	120			3	1552	40 -21 54	R Postcentral gyrus	6 studies
REST	118	9	113			4	272	-13 -52 -21	Left DN	3 studies
ST	126	7	72		ANTI-PHASE	> REST				
						1	1384	2060	R Medial frontal gyrus	7 studies
						2	1344	-37 -22 58	L Precentral gyrus	6 studies
Z =	4	a state a	z = 58			3	1264	36 -24 53	R Precentral gyrus	7 studies
	1.5	A CALLER				4	1224	-19 -13 4	L thalamus (VPL)	6 studies
	1	25 221	10 mars			5	1152	15 -18 5	R thalamus	6 studies
		~ ~				6	520	-17 -55 -23	L DN	4 studies
30			1132	11:23		7	400	25 -7 4	R Globus Pallidus	4 studies
	- 3 0				COMPLEX >	REST				
0 V I. 6						1	408	35 -31 63	R postcentral gyrus	4 studies
						2	392	2 -62 -18	R antCB	4 studies
1				EN SI I		3	360	20 -50 -26	R antCB	3 studies
1	10					4	328	-17 -49 -25	L antCB	2 studies
1				00		5	304	27 -5 3	R putamen	3 studies
		200	Complex In-pha	se Anti-phase		6	288	1 -9 56	L medial frontal gyrus	3 studies
						7	256	15 -19 5	R thalamus	3 studies
						8	184	-40 -12 56	L precentral gyrus	2 studies

Post – Pre tDCS Average target deviation in arbitrary units

Discussion

UHASSELT

312 11851

