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ABSTRACT
We investigate the expressive power of MATLANG, a for-
mal language for matrix manipulation based on common
matrix operations and linear algebra. The language can be
extended with the operation inv for inverting a matrix. In
MATLANG + inv we can compute the transitive closure of
directed graphs, whereas we show that this is not possible
without inversion. Indeed we show that the basic language
can be simulated in the relational algebra with arithmetic
operations, grouping, and summation. We also consider an
operation eigen for diagonalizing a matrix. It is defined such
that for each eigenvalue a set of orthogonal eigenvectors is
returned that span the eigenspace of that eigenvalue. We
show that inv can be expressed in MATLANG+eigen. We put
forward the open question whether there are boolean queries
about matrices, or generic queries about graphs, expressible
in MATLANG + eigen but not in MATLANG + inv. Finally,
the evaluation problem for MATLANG + eigen is shown to
be complete for the complexity class ∃R.

1. INTRODUCTION
In view of the importance of large-scale statistical and

machine learning (ML) algorithms in the overall data ana-
lytics workflow, database systems are in the process of being
redesigned and extended to allow for a seamless integration
of ML algorithms and mathematical and statistical frame-
works, such as R, SAS, and MATLAB, with existing data
manipulation and data querying functionality [42, 19, 5, 38,
10, 27, 21]. In particular, data scientists often use matri-
ces to represent their data, as opposed to using the rela-
tional data model, and create custom data analytics algo-
rithms using linear algebra, instead of writing SQL queries.
Here, linear algebra algorithms are expressed in a declarative
manner by composing basic linear algebra constructs such
as matrix multiplication, matrix transposition, element-wise
operations on the entries of matrices, solving nonsingular
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systems of linear equations (matrix inversion), diagonaliza-
tion (eigenvalues and eigenvectors), singular value decom-
position, just to name a few. The main challenges from
a database system’s perspective are to ensure scalability
by providing physical data independence and optimizations.
We refer to [39] for an overview of the different systems ad-
dressing these challenges.

In this context, the following natural questions arise:
Which linear algebra constructs need to be supported to
perform certain data analytical tasks? Does the additional
support for certain linear algebra operations increase the
overall functionality? Can a linear algebra algorithm be
rewritten, in an equivalent way, to an algorithm using a
smaller number of linear algebra operations? Such questions
have been extensively studied for “classical” query languages
(fragments and extensions of SQL) in database theory and
finite model theory [1, 26]. Indeed, the questions raised all
relate to the expressive power of query languages. In this
paper we enroll in the investigation of the expressive power
of matrix query languages.

As a starting point we focus on matrices and matrix query
languages alone, leaving the study of the expressive power of
languages that operate on both relational data and matrices
for future work. Even this “matrix only” setting turns out
to be quite interesting and challenging on its own.

To set the stage, we need to formally define what we mean
by a matrix query language. There has been work in finite
model theory and logic to understand the capability of cer-
tain logics to express linear algebra operations [13, 12, 20].
In particular, the extent to which fixpoint logics with count-
ing and their extension with so-called rank operators can
express linear algebra has been considered. The motivation
for that line of work is mainly to find a logical characteri-
zation of polynomial-time computability and less so in un-
derstanding the expressive power of specific linear algebra
operations.

In this paper, we take the opposite approach in which
we define a basic matrix query language, referred to as
MATLANG, which is built up from basic linear algebra
operations, supported by linear algebra systems such as
R and MATLAB, and then closing these operations under
composition. All basic linear algebra operations supported
in MATLANG stem from “atomic” operations supported in
these popular linear algebra packages. While many other
operations are supported by these packages, we feel that
they are somewhat less atomic. We present examples later



on, showing that MATLANG is indeed capable of express-
ing common matrix manipulations. In fact, we propose
MATLANG as an analog for matrices of the relational
algebra for relations.

To study the expressive power of MATLANG, we relate it
to the relational algebra with aggregates [25, 30]. In fact, it
turns out that MATLANG is already subsumed by aggregate
logic with only three nonnumerical variables. Conversely,
MATLANG can express all queries from graph databases (bi-
nary relational structures) to binary relations that can be ex-
pressed in first-order logic with three variables. In contrast,
the four-variable query asking if the graph contains a four-
clique, is not expressible. We note that the connection with
three-variable logics has recently been strengthened [15].

We thus see that, for example, when data analysts want
to check for four-cliques in a graph, more advanced linear
algebra operations than those in MATLANG need to be
considered. Similarly, extracting information related to
the connectivity of graphs requires extending MATLANG.
We consider two such extensions in the paper: extending
MATLANG with matrix inversion (inv) and extending
MATLANG with an operation (eigen) to compute eigenvec-
tors. Since no unique set of eigenvectors exists, the eigen
operation is intrinsically non-deterministic.

We show that MATLANG+ inv is strictly more expressive
than MATLANG. Indeed, the transitive closure of binary
relations becomes expressible. The possibility of reducing
transitive closure to matrix inversion has been pointed out
by several researchers [29, 11, 35].

We show that MATLANG+ eigen can express inversion by
using a deterministic MATLANG+ eigen expression (i.e., de-
spite it using eigen, it always deterministically returns the
inverse of a matrix, if it exists). The argument is well known
from linear algebra, but our result shows that starting from
the eigenvectors, MATLANG is expressive enough to con-
struct the inverse.

We subsequently show that the equivalence of
MATLANG + eigen expressions is decidable. Related
to this is the question whether the evaluation of expressions
in MATLANG + eigen is effectively computable. This may
seem like an odd question, since linear algebra computations
are done in practice. These evaluation algorithms, however,
often use techniques from numerical mathematics [17],
resulting in approximations of the precise result — here,
we are interested in the exact result. In particular, we
show that the input-output relation of an expression e
in MATLANG + eigen, applied to input matrices of given
dimensions, is definable in the existential theory of the real
numbers (which is decidable [3, 4]), by a formula of size
polynomial in the size of e and the given dimensions.

We finally show that, conversely, there exists a fixed ex-
pression (data complexity) in MATLANG + eigen for which
the evaluation problem is ∃R-complete, where ∃R is the
class of problems that can be reduced in polynomial time
to the existential theory of the reals [36, 37], even when
restricted to input matrices with integer entries.

1.1 Related work
Programming languages to manipulate matrices trace

back to the APL language [22]. Providing database support
for matrices and multidimensional arrays has been a
long-standing research topic [33], originally geared towards
applications in scientific data management.

In [27], Lara is proposed as a domain-specific program-
ming language written in Scala that provides both linear al-
gebra (LA) and relational algebra (RA) constructs. This ap-
proach is taken one step further in [21] where it is shown that
the RA operations and a number of LA operations can be
defined in terms of three core operations called Ext, Union,
and Join.

Another relevant related work is the FAQ framework [2],
which focuses on the project-join fragment of the algebra for
K-relations [18]. The connection between MATLANG and
the algebra for K-relations is more deeply investigated in [8].
Yet another related formalism is that of logics with rank op-
erators [13, 12, 32]. These operators solve 0, 1-matrices over
finite fields, and increase the expressive power of established
logics over abstract structures. In contrast, in this paper we
are interested in queries on arbitrary matrices.

Modest changes to SQL in order to perform LA operations
in a scalable way within relational databases are proposed
in [31]. In this way, various linear algebra operations are
implemented in an efficient way using the relational algebra.

While the previous work is focused on showing that rela-
tional algebra (appropriately extended) can serve as a plat-
form for supporting large scale linear algebra operations, the
focus of our work here is complementary. Indeed, we want to
understand the precise expressive power of common linear
algebra operations, as adequately formalized in the language
MATLANG and its extensions (see [7] for more details).

2. MATLANG

2.1 Syntax and semantics
We assume a sufficient supply of matrix variables, which

serve to indicate the inputs to expressions in MATLANG.
The syntax of MATLANG expressions is defined by the gram-
mar:

e ::= M (matrix variable)

| let M = e1 in e2 (local binding)

| e∗ (conjugate transpose)

| 1(e) (one-vector)

| diag(e) (diagonalization of a vector)

| e1 · e2 (matrix multiplication)

| apply[f ](e1, . . . , en) (pointwise application, f ∈ Ω)

In the last rule, f is the name of a function f : Cn →
C, where C denotes the complex numbers. Formally, the
syntax of MATLANG is parameterized by a repertoire Ω of
such functions, but for simplicity we will not reflect this in
the notation. We will see various examples of MATLANG
expressions below.

To define the semantics of MATLANG, we first define the
basic matrix operations. Following practical matrix sublan-
guages such as those of R or MATLAB, we will work through-
out with matrices over the complex numbers. However, a
real-number version of the language could be defined as well.

Transpose: If A is a matrix then A∗ is its conjugate trans-
pose. So, if A is an m× n matrix then A∗ is an n×m
matrix and the entry A∗i,j is the complex conjugate of
the entry Aj,i.

One-vector: If A is an m×n matrix then 1(A) is the m×1
column vector consisting of all ones.
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) =

1 1 0
0 0 1
0 0 0


Figure 1: Some basic matrix operations of MATLANG.

Diag: If v is an m × 1 column vector then diag(v) is the
m×m diagonal square matrix with v on the diagonal
and zero everywhere else.

Matrix multiplication: If A is an m × n matrix and B
is an n× p matrix then the well known matrix multi-
plication AB is defined to be the m× p matrix where
(AB)i,j =

∑n
k=1Ai,kBk,j . In MATLANG we explicitly

denote this as A ·B.

Pointwise application: If A(1), . . . , A(n) are ma-
trices of the same dimensions m × p, then
apply[f ](A(1), . . . , A(n)) is the m × p matrix C

where Ci,j = f(A
(1)
i,j , . . . , A

(n)
i,j ).

example 2.1. The operations 1(A), diag(v), and

apply[f ](A(1), . . . , A(n)) are illustrated in Figure 1. In
the pointwise application example, we use the function −̇
defined by x −̇ y = x − y if x and y are both real numbers
and x ≥ y, and x −̇ y = 0 otherwise.

The formal semantics of MATLANG expressions is defined
in a straightforward manner. Expressions will be evaluated
over instances where an instance I is a function, defined on
a nonempty finite set var(I) of matrix variables, that assigns
a matrix to each element of var(I). The rules that allow to
derive that an expression e, on an instance I, successfully
evaluates to a matrix A, denoted by e(I) = A, is defined
recursively as follows. If M ∈ var(I), then M(I) := I(M).
If e1(I) = A and e2(I[M := A]) = B, where I[M := A] is
the instance obtained from I by mapping M to the matrix
A, then (let M = e1 in e2)(I) := B. We have e∗(I) :=
(e(I))∗, (1(e))(I) := 1(e(I)), and if e(I) is a column vector,
then (diag(e))(I) := diag(e(I)). Moreover, if the number of
columns of e1(I) is equal to the number of rows of e2(I), then
(e1 ·e2)(I) := e1(I)·e2(I). Finally, if ek(I) for k ∈ {1, . . . , n}
all have the same dimensions, then apply[f ](e1, . . . , en) :=
apply[f ](e1(I), . . . , en(I)).

The reason why an evaluation may not succeed (i.e., e(I)
may not be defined) is that diag, apply, and matrix multi-
plication have conditions on the dimensions of matrices that
need to be satisfied for the operations to be well-defined.

example 2.2 (Scalars). As a first example we show
how to express scalars (elements in C). Obviously, in prac-
tice, scalars would be part of the language. In this paper,
however, we are interested in expressiveness, so we start
from a minimal language (MATLANG) and then see what is
expressible in this language. To express a scalar c ∈ C, con-
sider (by abuse of notation) the constant function c : C →
C : z 7→ c and the MATLANG expression

c := apply[c]
(
1(1(M)∗)

)
.

Regardless of the matrix assigned to M , the expression eval-
uates to the 1× 1 matrix whose unique entry is scalar c.

example 2.3 (Scalar multiplication). We can also
express scalar multiplication of a matrix by a scalar, i.e.,
the operation which multiplies every entry of a matrix by
the same scalar. Indeed, let c be a scalar and consider the
MATLANG expression

let O = 1(M) · c(M) · (1(M∗))∗ in apply[×](O,M),

where c is the scalar expression from the previous example.
If M is assigned an m× n matrix A, then c(A) returns the
1 × 1 matrix [c] and in variable O we compute the m × n
matrix where every entry equals c. Then pointwise multipli-
cation × with returns x× y on input (x, y) is used to do the
scalar multiplication of A by c. This example generalizes in
a straightforward manner to

apply[×]
(
1(e2) · e1 · (1(e∗2))∗, e2

)
,

where e1 and e2 are MATLANG expressions such that e1(I)
is a 1× 1-matrix for any instance I. It should be clear that
this expression evaluates to the scalar multiplication of e2(I)
by e1(I) for any I. We use e1 � e2 as a shorthand notation
for this expression. For example, c�e2 represents the scalar
multiplication of e2 by the scalar c.

example 2.4 (Google matrix). Let A be the adja-
cency matrix of a directed graph (modeling the Web graph)
on n nodes numbered 1, . . . , n. Let 0 < d < 1 be a fixed
“damping factor”. Let ki denote the outdegree of node i.
For simplicity, we assume ki is nonzero for every i. Then
the Google matrix [9, 6] of A is the n× n matrix G defined
by Gi,j = dAij/ki + (1 − d)/n. The calculation of G from
A can be expressed in MATLANG as follows:

let J = 1(A) · 1(A)∗ in

let B = apply[/](A,A · J) in

let N = 1(A)∗ · 1(A) in

apply[+](d�B, (1− d)�
(
apply[1/x](N)

)
� J)

In variable J we compute the n × n matrix where every
entry equals one. In A·J we compute the n×n matrix where
all entries in the ith row equal ki. An n× n matrix holding
the entries Aij/ki is computed in B. In N we compute the
1×1 matrix containing the value n. The pointwise functions
applied are addition, division, and reciprocal. We use the
shorthand for constants (d and 1 − d) from Example 2.2,
and � from Example 2.3.

2.2 Types and schemas
We now introduce a notion of schema, which assigns types

to matrix names, so that expressions can be type-checked
against schemas. We already remarked the need for this.
Indeed, due to conditions on the dimensions of matrices,
MATLANG expressions are not well-defined on all instances.
For example, if I is an instance where I(M) is a 3×4 matrix
and I(N) is a 2×4 matrix, then the expression M ·N is not
defined on I. The expression M ·N∗, however, is well-defined
on I.

Our types need to be able to guarantee equalities between
numbers of rows or numbers of columns, so that apply and
matrix multiplication can be type-checked. Our types also
need to be able to recognize vectors, so that diag can be
type-checked.



Formally, we assume a sufficient supply of size symbols,
which we will denote by the letters α, β, γ. A size sym-
bol represents the number of rows or columns of a matrix.
Together with an explicit 1, we can indicate arbitrary ma-
trices as α× β, square matrices as α×α, column vectors as
α×1, row vectors as 1×α, and scalars as 1×1. Formally, a
size term is either a size symbol or an explicit 1. A type is
then an expression of the form s1 × s2 where s1 and s2 are
size terms. Finally, a schema S is a function, defined on a
nonempty finite set var(S) of matrix variables, that assigns
a type to each element of var(S).

The rules that allow to derive that an expression e over a
schema S successfully infers an output type τ , denoted by
S ` e : τ , are defined recursively as follows. If M ∈ var(S),
then S `M : S(M). If S ` e1 : τ1 and S[M := τ1] ` e2 : τ2,
where S[M := τ ] denotes the schema that is obtained from S
by mapping M to the type τ , then S ` let M = e1 in e2 : τ2.
If S ` e : s1× s2, then S ` e∗ : s2× s1 and S ` 1(e) : s1× 1.
If S ` e : s × 1, then S ` diag(e) : s × s. If S ` e1 : s1 × s2
and S ` e2 : s2 × s3, then S ` e1 · e2 : s1 × s3. Finally,
S ` ek : τ for k ∈ 1, . . . , n with n > 0 and f : Cn → C, then
S ` apply[f ](e1, . . . , en) : τ .

When we cannot infer a type, we say e is not well-typed
over S. For example, when S(M) = α×β and S(N) = γ×β,
then the expression M · N is not well-typed over S. The
expression M ·N∗, however, is well-typed with output type
α× γ.

To establish the soundness of the type system, we need a
notion of conformance of an instance to a schema.

Formally, a size assignment σ is a function from size sym-
bols to positive natural numbers. We extend σ to any size
term by setting σ(1) = 1. Now, let S be a schema and I
an instance with var(I) = var(S). We say that I is an in-
stance of S if there is a size assignment σ such that for all
M ∈ var(S), if S(M) = s1×s2, then I(M) is a σ(s1)×σ(s2)
matrix. In that case we also say that I conforms to S by
the size assignment σ.

Proposition 2.5 (Safety). If S ` e : s1×s2, then for
every instance I conforming to S, by size assignment σ, the
matrix e(I) is well-defined and has dimensions σ(s1)×σ(s2).

3. EXPRESSIVE POWER OF MATLANG

3.1 Relational representation of matrices
It is natural to represent an m×n matrix A by a ternary

relation

Rel2(A) := {(i, j, Ai,j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}.

In the special case where A is an m × 1 matrix (column
vector), A can also be represented by a binary relation
Rel1(A) := {(i, Ai,1) | i ∈ {1, . . . ,m}}. Similarly, a
1 × n matrix (row vector) A can be represented by
Rel1(A) := {(j, A1,j) | j ∈ {1, . . . , n}}. Finally, a 1 × 1
matrix (scalar) A can be represented by the unary singleton
relation Rel0(A) := {(A1,1)}.

Note that in MATLANG, we perform calculations on ma-
trix entries, but not on row or column indices. This fits
well to the relational model with aggregates as formalized
by Libkin [30]. In this model, the columns of relations are
typed as “base”, indicated by b, or “numerical”, indicated
by n. In the relational representations of matrices presented
above, the last column is of type n and the other columns

(if any) are of type b. In particular, in our setting, numer-
ical columns hold complex numbers. We now rephrase our
relational encoding more formally in this setting.

That is, we assume a supply of relation variables, which,
for convenience, we can take to be the same as the matrix
variables. A relation type is a tuple of b’s and n’s. A rela-
tional schema S is a function, defined on a nonempty finite
set var(S) of relation variables, that assigns a relation type
to each element of var(S).

To define relational instances, we assume a countably in-
finite universe dom of abstract atomic data elements. For
notational convenience, we assume that the natural numbers
are contained in dom.

Let τ be a relation type. A tuple of type τ is a tuple
(t(1), . . . , t(n)) of the same arity as τ , such that t(i) ∈ dom
when τ(i) = b, and t(i) is a complex number when τ(i) = n.
A relation of type τ is a finite set of tuples of type τ . An
instance of a relational schema S is a function I defined
on var(S) so that I(R) is a relation of type S(R) for every
R ∈ var(S).

The matrix data model can now be formally connected to
the relational data model, as follows. Let τ = s1 × s2 be a
matrix type. Let us call τ a general type if s1 and s2 are
both size symbols; a vector type if s1 is a size symbol and s2
is 1, or vice versa; and the scalar type if τ is 1× 1. To every
matrix type τ we associate a relation type

Rel(τ) :=


(b,b,n) if τ is a general type;

(b,n) if τ is a vector type;

(n) if τ is the scalar type.

Then to every matrix schema S we associate the relational
schema Rel(S) where Rel(S)(M) = Rel(S(M)) for every
M ∈ var(S). For each instance I of S, we define the instance
Rel(I) over Rel(S) by

Rel(I)(M) :=


Rel2(I(M)) if S(M) is a general type;

Rel1(I(M)) if S(M) is a vector type;

Rel0(I(M)) if S(M) is the scalar type.

3.2 To relational algebra with summation
Given the representation of matrices by relations, we now

show that MATLANG can be simulated in the relational alge-
bra with aggregates. Actually, the only aggregate operation
we need is summation. The relational algebra with summa-
tion extends the well-known relational algebra for relational
databases and is defined as follows. For a full formal def-
inition, see [30]. For our purposes it suffices to highlight
the following about the relational algebra with summation.
Expressions are built up from relation names using the clas-
sical operations union, set difference, Cartesian product (×),
selection (σ), and projection (π), plus two new operations:
function application and summation. For selection, we only
use equality and nonequality comparisons on base columns.
No selection on numerical columns will be needed in our
setting. Function application and summation are defined as
follows.

• For any function f : Cn → C, the operation
apply[f ; i1, . . . , in] can be applied to any rela-
tion r having {i1, . . . , in} as a subset of its set
of numerical columns. The result is the relation
{(t, f(t(i1), . . . , t(in))) | t ∈ r}, appending a numerical
column to r. We allow n = 0, i.e., constants f .



• The operation sum[i; i1, . . . , in] can be applied to any
relation r having columns i, i1, . . . , in, where column
i must be numerical. In our setting we only need the
operation in cases where columns i1, . . . , in are base
columns. The result of the operation is the relation{(

t(i1), . . . , t(in),
∑

t′∈group[i1,...,in](r,t)

t′(i)
) ∣∣∣ t ∈ r},

where group[i1, . . . , in](r, t) is equal to{
t′ ∈ r

∣∣ t′(i1) = t(i1) ∧ · · · ∧ t′(in) = t(in)
}
.

Again, n can be zero, in which case the result is a
singleton.

Given that relations are typed, one can define well-
typedness for expressions in the relation algebra with
summation, and define the output type. We omit this
definition here, as it follows a well-known methodology
[40] and is analogous to what we have already done for
MATLANG in Section 2.2.

Theorem 3.1. Let S be a matrix schema, and let e be a
MATLANG expression that is well-typed over S with output
type τ . Let ` = 2, 1, or 0, depending on whether τ is general,
a vector type, or scalar, respectively.

1. There exists an expression Rel(e) in the relational al-
gebra with summation that is well-typed over Rel(S)
with output type Rel(τ) such that for every instance I
of S, we have Rel`(e(I)) = Rel(e)(Rel(I)).

2. The expression Rel(e) uses neither set difference, nor
selection conditions on numerical columns.

3. The only functions used in Rel(e) are those used in
pointwise applications in e; complex conjugation; mul-
tiplication of two numbers; and the constant functions
0 and 1.

3.3 To relational calculus with summation
We can sharpen Theorem 3.1 by working in the relational

calculus with aggregates. In this logic, we have base vari-
ables and numerical variables. Base variables can be bound
to base columns of relations, and compared for equality. Nu-
merical variables can be bound to numerical columns, and
can be equated to function applications and aggregates. We
will not recall the syntax formally, see [30] for a full defini-
tion. It turns out that when simulating MATLANG expres-
sion in the relational calculus with aggregates we only need
formulas with at most three base variables.

Proposition 3.2. Let S, e, τ , and ` as in Theorem 3.1.
For every MATLANG expression e there is a formula ϕe over
Rel(S) in the relational calculus with summation, such that

1. If τ is general, ϕe(i, j, z) has two free base variables
i and j and one free numerical variable z; if τ is a
vector type, we have ϕe(i, z); and if τ is scalar, we
have ϕe(z).

2. For every instance I, the relation defined by ϕe on
Rel(I) equals Rel`(e(I)).

3. The formula ϕe uses only three distinct base variables.
The functions used in pointwise applications in ϕe are
as in the statement of Theorem 3.1. Furthermore,
ϕe neither uses equality conditions between numerical
variables nor equality conditions on base variables in-
volving constants.

3.4 Expressing graph queries
We now express relational queries as matrix queries. This

works best for binary relations, or graphs, which we can
represent by their adjacency matrices.

Formally, we define a graph schema to be a relational
schema where every relation variable is assigned the type
(b,b) of arity two. We define a graph instance as an instance
I of a graph schema, where the active domain of I (i.e., the
domain elements that occur in some tuple of some relation
of I) equals {1, . . . , n} for some positive natural number n.

To every graph schema S we associate a matrix schema
Mat(S), where (Mat(S))(R) = α× α for every R ∈ var(S),
for a fixed size symbol α. So, all matrices are square matrices
of the same dimension. Let I be a graph instance of S,
with active domain {1, . . . , n}. We will denote the n × n
adjacency matrix of a binary relation r over {1, . . . , n} by
Adj I(r). Now any such instance I is represented by the
matrix instance Mat(I) over Mat(S), where Mat(I)(R) =
Adj I(I(R)) for every R ∈ var(S).

A graph query over a graph schema S is a function that
maps each graph instance I of S to a binary relation on the
active domain of I. We say that a MATLANG expression e
expresses the graph query q if e is well-typed over Mat(S)
with output type α × α, and for every graph instance I of
S, we have Adj I(q(I)) = e(Mat(I)).

We can now give a partial converse to Theorem 3.1. We as-
sume active-domain semantics for first-order logic [1]. Note
that the following result deals only with pure first-order
logic, without aggregates or numerical columns.

Theorem 3.3. Every graph query expressible in FO3

(first-order logic with equality, using at most three distinct
variables) is expressible in MATLANG. The only functions
needed in pointwise applications are boolean functions on
{0, 1}, and testing if a number is positive.

We can complement the above theorem by showing that
the quintessential first-order query requiring four variables
is not expressible.

Proposition 3.4. The graph query over a single binary
relation R that maps I to I(R) if I(R) contains a four-clique,
and to the empty relation otherwise, is not expressible in
MATLANG.

We conclude by showing that MATLANG cannot express
the transitive-closure graph query which maps a graph to
its transitive closure. This follows from the locality of the
calculus with aggregates [30].

Proposition 3.5. The graph query over a single binary
relation R that maps I to the transitive-closure of I(R) is
not expressible in MATLANG.

4. MATRIX INVERSION
We now consider the extension of MATLANG with matrix

inversion. Let S be a schema and e be an expression that is
well-typed over S, with output type of the form α×α. Then
the expression e−1 is also well-typed over S, with the same
output type α×α. The semantics is defined as follows. For
an instance I, if e(I) is an invertible matrix, then e−1(I) is
defined to be the inverse of e(I); otherwise, it is defined to
be the zero square matrix of the same dimensions as e(I).
The extension of MATLANG with inversion is denoted by
MATLANG + inv.



example 4.1 (PageRank). Recall Example 2.4 where
we computed the Google matrix of A. In the process we al-
ready showed how to compute the n × n matrix B defined
by Bi,j = Ai,j/ki, and the scalar n. We use eB and en to
denote the corresponding MATLANG expressions. Let I be
the n×n identity matrix, and let 1 denote the n× 1 column
vector consisting of all ones. The PageRank vector v of A
can be computed as follows [14]:

v =
1− d
n

(I − dB)−11.

This calculation is readily expressed in MATLANG + inv as

(1− d)� (apply[1/x](en))�(
apply[−](diag(1(M)), d� eB)

)−1 · 1(M).

example 4.2 (Transitive closure). The reflexive-
transitive closure of a binary relation is expressible in
MATLANG + inv. Let A be the adjacency matrix of a
binary relation r on {1, . . . , n}. Let I be the n × n identity
matrix, expressible as diag(1(A)). Let en be the expression
computing the scalar n. The sum of the absolute values of
the entries of each column of B = 1

n+1
A is strictly less than

1, so S =
∑∞

k=0B
k converges, and is equal to (I−B)−1 [17,

Lemma 2.3.3]. Now (i, j) belongs to the reflexive-transitive
closure of r if and only if Si,j is nonzero. Thus, we can
compute the reflexive-transitive closure of r by evaluating

letM = apply[−]
(
diag(1(M)), apply[1/(x+1)](en)�M

)
in

apply[ 6= 0](M−1)

by assigning matrix variable M to A. Here, 6= 0 is the func-
tion which returns 1 if the value is nonzero and 0 other-
wise. We can express the transitive closure by multiplying
the above expression by M .

Given our earlier observation that the transitive-closure
query cannot be expressed in MATLANG (Proposition 3.5)
and the MATLANG + inv expression given in the previous
example which does express this query, we may conclude:

Theorem 4.3. MATLANG+ inv is strictly more powerful
than MATLANG in expressing graph queries.

Once we have the transitive closure, we can do many other
things such as checking bipartiteness of undirected graphs,
checking connectivity, and checking cyclicity. Using Theo-
rem 3.3 one can show that MATLANG is able to reduce these
queries to the transitive-closure query.

5. EIGENVECTORS
We next consider the extension of MATLANG with an

operation eigen. Formally, we define the operation eigen
as follows. Let A be an n × n matrix. Recall that A is
called diagonalizable if there exists a basis of Cn consisting
of eigenvectors of A. In that case, there also exists such a
basis where eigenvectors corresponding to the same eigen-
value are orthogonal. Accordingly, we define eigen(A) to
return an n × n matrix, the columns of which form a ba-
sis of Cn consisting of eigenvectors of A, where eigenvectors
corresponding to a same eigenvalue are orthogonal. If A is
not diagonalizable, we define eigen(A) to be the n × n zero
matrix.

Note that eigen is nondeterministic; in principle there are
infinitely many possible results. This models the situation
in practice where numerical packages such as R or MAT-
LAB return approximations to the eigenvalues and a set of
corresponding eigenvectors. Eigenvectors, however, are not
unique. In fact, there are infinitely many eigenvectors.

Hence, some care must be taken in extending MATLANG
with the eigen operation. Syntactically, as for inversion,
whenever e is a well-typed expression with a square out-
put type, we now also allow the expression eigen(e), with
the same output type. Semantically, however, the semantic
rules of MATLANG must be adapted so that they do not
infer statements of the form e(I) = B, but rather of the
form B ∈ e(I), i.e., B is a possible result of e(I). The
let-construct now becomes crucial; it allows us to assign a
possible result of eigen to a new variable, and work with that
intermediate result consistently.

example 5.1 (Rank of a matrix). First, we remark
that one can show that the diagonal matrix containing the
eigenvalues Λ corresponding to the matrix B of eigenvectors
computed by eigen(A) is expressible in MATLANG + eigen.
Hence we allow a shorthand notation where eigen(A) obtains
the tuple (B,Λ) instead of just B. We then agree that Λ, like
B, is a zero matrix if A is not diagonalizable.

Since the rank of a diagonalizable matrix equals the num-
ber of nonzero entries in its diagonal form, we can express
the rank of a diagonalizable matrix A as follows:

let (B,Λ) = eigen(A) in 1(A)∗ · apply[ 6= 0](Λ) · 1(A).

Using a known argument from linear algebra we obtain
that MATLANG + inv is subsumed by MATLANG + eigen.

Theorem 5.2. Matrix inversion is expressible in
MATLANG + eigen.

An interesting open problem is the following: Are there
graph queries expressible deterministically in MATLANG +
eigen, but not in MATLANG + inv?

6. THE EVALUATION PROBLEM
We next consider the evaluation problem of expressions in

our most expressive language MATLANG + eigen. Naively,
the evaluation problem asks, given an input instance I and
an expression e, to compute the result e(I). There are some
issues with this naive formulation, however. Indeed, in our
theory we have been working with arbitrary complex num-
bers. How do we even represent the input? Notably, the
eigen operation on a matrix with only rational entries may
produce irrational entries. In fact, the eigenvalues of an ad-
jacency matrix (even of a tree) need not even be definable in
radicals [16]. Practical systems, of course, apply techniques
from numerical mathematics to compute rational approxi-
mations. But it is still theoretically interesting to consider
the exact evaluation problem. For a treatise on computa-
tions of eigenvectors, inverses, and other matrix notions, we
refer to [17].

Our approach is to represent the output symbolically,
following the idea of constraint query languages [23, 28].
Specifically, we can define the input-output relation of an
expression, for given dimensions of the input matrices, by
an existential first-order logic formula over the reals. Such



formulas are built from real variables, integer constants, ad-
dition, multiplication, equality, inequality (<), disjunction,
conjunction, and existential quantification.

Any m × n matrix A can be represented by a tuple
of 2mn real numbers. Indeed, let ai,j = <Ai,j (the real
part of a complex number), and let bi,j = =Ai,j (the
imaginary part). Then A can be represented by the
tuple (a1,1, b1,1, a1,2, b1,2, . . . , am,n, bm,n). The next result
introduces the variables xM,i,j,<, xM,i,j,=, yi,j,<, and yi,j,=,
where the x-variables describe an arbitrary input matrix
I(M) and the y-variables describe an arbitrary possible
output matrix e(I).

In the following, an input-sized expression consists of a
schema S, an expression e in MATLANG+eigen that is well-
typed over S with output type t1× t2, and a size assignment
σ defined on the size symbols occurring in S. For complexity
considerations, we assume the sizes given in σ are coded in
unary.

Theorem 6.1. There exists a polynomial-time com-
putable translation that maps any input-sized expression e
to an existential first-order formula ψe over the vocabulary
of the reals, expanded with symbols for the functions used in
pointwise applications in e, such that

1. Formula ψe has the following free variables:

• For every M ∈ var(S), let S(M) = s1× s2. Then
ψe has the free variables xM,i,j,< and xM,i,j,=, for
i = 1, . . . , σ(s1) and j = 1, . . . , σ(s2).

• In addition, ψe has the free variables ye,i,j,< and
ye,i,j,=, for i = 1, . . . , σ(t1) and j = 1, . . . , σ(t2).

The set of these free variables is denoted by
FV(S, e, σ).

2. Any assignment ρ of real numbers to these variables
specifies, through the x-variables, an instance I
conforming to S by σ, and through the y-variables, a
σ(t1)× σ(t2) matrix B.

3. Formula ψe is true over the reals under such an as-
signment ρ, if and only if B ∈ e(I).

The existential theory of the reals is decidable; actually,
the full first-order theory of the reals is decidable [3, 4].
But, specifically the class of problems that can be reduced
in polynomial time to the existential theory of the reals
forms a complexity class on its own, known as ∃R [36,
37]. This class lies between NP and PSPACE. The above
theorem implies that the intensional evaluation problem for
MATLANG + eigen belongs to this complexity class. We de-
fine this problem as follows. The idea is that an arbitrary
specification, expressed as an existential formula χ over the
reals, can be imposed on the input-output relation of an
input-sized expression.

Definition 6.2. The intensional evaluation problem is
a decision problem that takes as input: (1) an input-sized
expression (S, e, σ), where all functions used in pointwise
applications are explicitly defined using existential formulas
over the reals, and (2) an existential formula χ with free
variables in FV(S, e, σ).

The problem asks if there exists an instance I conforming
to S by σ and a matrix B ∈ e(I) such that (I, B) satisfies
χ.

An input (S, e, σ, χ) is a yes-instance to the intensional
evaluation problem precisely when the existential sentence

∃FV(S, e, σ)(ψe ∧ χ) is true in the reals, where ψe is the
formula obtained by Theorem 6.1. Hence we can conclude:

Corollary 6.3. The intensional evaluation problem for
MATLANG + eigen belongs to ∃R.

Since the full first-order theory of the reals is decidable,
our theorem implies many other decidability results, includ-
ing that both the equivalence problem and the determinacy
problem for input-sized expressions are decidable.

Corollary 6.3 gives an ∃R upper bound on the combined
complexity of query evaluation [41]. Our final result is a
matching lower bound, already for data complexity alone.

Theorem 6.4. There exists a fixed schema S and a fixed
expression e in MATLANG + eigen, well-typed over S, such
that the following problem is hard for ∃R: Given an integer
instance I over S, decide whether the zero matrix is a pos-
sible result of e(I). The pointwise applications in e use only
simple functions definable by quantifier-free formulas over
the reals.

7. CONCLUSION
There is a commendable trend in contemporary database

research to leverage and considerably extend techniques
from database query processing and optimization to sup-
port large-scale linear algebra computations. In principle,
data scientists could then work directly in SQL or related
languages. Still, some users will prefer to continue using the
matrix languages they are more familiar with. Supporting
these languages is also important so that existing code need
not be rewritten.

From the perspective of database theory, it then becomes
relevant to understand the expressive power of these lan-
guages as well as possible. In this paper we have proposed a
framework for viewing matrix manipulation from the point
of view of expressive power of database query languages.
Our results formally confirm that the basic set of matrix
operations offered by systems in practice, formalized here in
the language MATLANG+ inv + eigen, really is adequate for
expressing a range of linear algebra techniques and proce-
dures.

Deep inexpressibility results have been developed for log-
ics with rank operators [32]. Although these results are
mainly concerned with finite fields, they might still provide
valuable insight in our open questions. Also, we have not
covered all standard constructs from linear algebra. For in-
stance, it may be worthwhile to extend our framework with
the operation of putting matrices in upper triangular form,
with the Gram-Schmidt procedure (which is now partly hid-
den in the eigen operation), and with the singular value de-
composition.

There also have been proposals to go beyond matrices,
introducing data models and algebra for tensors or multi-
dimensional arrays [33, 24, 34]. It would be interesting to
understand the expressive power of such tensor languages.
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