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Metabolism encompasses the biochemical processes that allow healthy cells to keep

energy, redox balance and building blocks required for cell development, survival, and

proliferation steady. Malignant cells are well-documented to reprogram their metabolism

and energy production networks to support rapid proliferation and survival in harsh

conditions via mutations in oncogenes and inactivation of tumor suppressor genes.

Despite the histologic and genetic heterogeneity of tumors, a common set of metabolic

pathways sustain the high proliferation rates observed in cancer cells. This review with a

focus on lung cancer covers several fundamental principles of the disturbed glucose

metabolism, such as the “Warburg” effect, the importance of the glycolysis and its

branching pathways, the unanticipated gluconeogenesis and mitochondrial metabolism.

Furthermore, we highlight our current understanding of the disturbed glucosemetabolism

and how this might result in the development of new treatments.

Keywords: lung cancer, glucose, metabolism, genetic alterations, targeting metabolism

INTRODUCTION

The metabolic alterations of cancer cells, that distinguish them from healthy cells, are recognized
as one of the ten hallmarks of cancer. An altered metabolism helps cancer cells to sustain high
proliferative rates even in a hostile environment resulting from a poor vascularization, which limits
the supply of oxygen (O2) and essential nutrients (1).

In the 1920s, Otto Warburg postulated that tumor cells consume glucose and excrete lactate
at a significantly higher rate compared to healthy resting cells (2). Even in normoxic conditions,
proliferating cells, such as cancer cells, rely on fermentation, i.e., glycolysis resulting in the
generation of lactate via fermentation of pyruvate. The increased reduction of pyruvate to lactate
and the passage of glycolytic intermediates into diverse biosynthetic pathways reduces the available
concentration of pyruvate to form acetyl-CoA and to drive the tricarboxylic acid (TCA) cycle.
In contrast with the original hypothesis of Warburg, the mitochondrial metabolism remains vital
for both the production of ATP and the supply of biosynthetic intermediates (3). The TCA cycle
or Krebs cycle is a mitochondrial pathway where acetyl-CoA undergoes a condensation reaction
with oxaloacetate (OAA) to form carbon dioxide (CO2). In successive oxidation reactions, the
coenzymes NAD+ and FAD are reduced and subsequently used to drive the generation of the
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majority of ATP by oxidative phosphorylation (OXPHOS).
Although theWarburg effect is often found in malignant tumors,
OXPHOS still has a significant contribution to the energy
supply of at least some cancers (4, 5). Furthermore, metabolic
intermediates are deviated toward biosynthetic processes
operational in growing and proliferating malignant cells. To
compensate for the ongoing drainage of TCA cycle metabolites
into anabolic pathways, glutamine is often used in cancer cells as
a carbon source to replenish TCA cycle intermediates (6, 7).

In this review, we focus on the altered glucose metabolism in
lung cancer cells. As lung cancer is by far the leading cause of
cancer death with limited curative treatment options, detailed
understanding of the dysregulated glucose metabolism and its
associated signaling pathways may help us to design more
efficient treatment regimens (8, 9).

GLYCOLYSIS: ATP AND BUILDING
BLOCKS

During glycolysis, each molecule of glucose is broken down in
ten steps to two molecules of pyruvate resulting in a net gain
of two molecules of NADH and two ATP. In the presence of
O2, healthy cells further oxidize pyruvate to CO2 through the
mitochondrial located oxidative pathways, i.e., the TCA cycle and
OXPHOS. Starting from one molecule of glucose, the combined
action of the pathways mentioned above, generally known as
aerobic respiration, results in the production of water as well as
at least 32 ATP molecules. Under anaerobic conditions, pyruvate
is reduced to lactate by lactate dehydrogenase (LDH), and
lactate is secreted in the extracellular space by monocarboxylate
transporters (MCT). Unlike healthy cells, lung cancer cells
metabolize glucose via lactic acid fermentation even in the
presence of sufficient O2. This metabolic condition received
a plethora of names, such as aerobic fermentation, aerobic
glycolysis or Warburg effect (10). Otto Warburg observed that
cancer cells generate ATP through a non-oxidative pathway, i.e.,
glycolysis with the generation of lactic acid, even in normoxic
conditions, and attributed this to mitochondrial dysfunction.
To emphasize this process in the presence of O2, the historical
concept of Warburg has led to the misleading term “aerobic
glycolysis.” In our opinion, the term “aerobic fermentation”
as coined by Warburg himself as “a property of all growing
cancer cells” seems more appropriate to denote the fermentation
in the presence of O2 (2). Aerobic fermentation is nowadays
seen as a hallmark of rapid cell proliferation even in a non-
cancerous context (11). As compared to aerobic respiration,
(an)aerobic fermentation produces a 16-fold lower amount of
ATP per glucose consumed, making it an inefficient way of
generating ATP. However, under the non-limiting supply of
glucose, a ∼15 times higher glycolytic flux can be reached as
compared to TCA cycle flux and consequently, a drastic increase
in ATP production rate in aerobic fermentation (12). After
the phosphorylation of glucose by hexokinase (HK), glucose-6-
phosphate can no longer leave the cell. This combined activity
of glucose uptake and its subsequent phosphorylation forms the
basis for Positron Emission Tomography (PET) imaging in which

an injected radioactive glucose analog (18F-FDG) is detected
in higher concentrations in lung cancer tissue than in healthy
tissues (13, 14). Currently, metabolic imaging with 18F-FDG-
PET is regarded as a standard of care in the management of
lung cancer (15, 16). The high intracellular concentrations of
glucose-6-phosphate (glucose-6-P) are indispensable to maintain
high glycolytic activity, and thus upregulation of HK and the
glucose transporter GLUT are essential. The upregulation of
the isoform GLUT1 and the relation with the uptake of 18F-
FDG have been demonstrated in lung cancer tissue, as well
as overexpression of the HK2 isoform (17, 18). Glucose-6-
phosphate has to continue along the glycolytic pathway to
result in the final product pyruvate in aerobic, or lactate in
anaerobic conditions (Figure 1). The upregulation of almost
all glycolytic enzymes has been demonstrated, including HK2
and phosphofructokinase 1 (PFK1) that catalyzes the committed
step in glycolysis namely, the phosphorylation of fructose-
6-phosphate into fructose-1,6-bisphosphate (19). Fructose-1,6-
bisphosphate is subsequently converted into dihydroxyacetone
phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP) by
aldolase (ALDO). In contrast with GAP, DHAP is not on the
direct pathway of glycolysis. To prevent loss of this three-
carbon fragment, and thus ATP, DHAP is isomerized to GAP by
triose-phosphate isomerase (TPI). The resulting GAP is oxidized
by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into
1,3-bisphosphoglycerate (1,3-BPG). As this reaction is at the
expense of NAD+, the NADH formed by this reaction must be
continuously re-oxidized to NAD+ for glycolysis to continue.
Hence, the fate of lactate production from pyruvate finds
its rationale in this recycling process. The importance of
this reaction is demonstrated by a decreased survival and
proliferation of lung cancer cells during the inhibition of LDH
(20). Excretion of lactate through MCT4 transporters does
not only result in the acidification of the microenvironment,
but also modulates the immune cell function and promotes
invasion and metastasis (21). The microenvironment in which
lung cancer cells live is heterogeneous because of ineffective
tumor vascularization. As a consequence, cancer cells may
be subject to hypoxia and nutrient deprivation. Interestingly,
swapping of lactate between hypoxic and oxygenated cells has
been reported (22–24). UsingMCT1 transporters, normoxic lung
cancer cells can remove lactate from the microenvironment
and convert it to pyruvate for further oxidation, conserving
glucose for use by the hypoxic cells. In contrast with the initial
hypothesis of Warburg, a majority of human cancers, including
lung cancer, produces ATP through OXPHOS (25). Besides
for ATP production, a high glycolytic rate is imperative to
support cancer cell proliferation by supplying building blocks
to duplicate the cell biomass and genome at each cell division
(26). In this context, the Warburg effect or aerobic fermentation
has been hypothesized to support the biosynthetic requirements
of uncontrolled proliferation rather than ATP generation. The
excess glycolytic carbon is deviated tomultiple anabolic pathways
that branch off from the glycolytic pathway (Figure 1).

A remarkable enzyme that supports the metabolism in lung
cancer cells is pyruvate kinase (PK). PK catalyzes the transfer of
phosphate from phosphoenolpyruvate (PEP) to ADP to produce
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FIGURE 1 | Glycolysis and biosynthetic pathways emanating from glycolysis. ALDO, aldolase; dTMP, deoxythymidine monophosphate; ENO, enolase; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase; GL, gluconolactonase; Glu, glutamine; GLUT, glucose transporter; G6PD, glucose-6-phosphate 1-dehydrogenase;

GLDC, glycine cleavage system P protein; HK, hexokinase; LDH, lactate dehydrogenase; MCT4, monocarboxylate transporter 4; MS, methionine synthase; MTHFD,

methylenetetrahydrofolate dehydrogenase; MTHFR, methylenetetrahydrofolate reductase; NH+

4 , ammonia; N5-CH3-THF, methyl-tetrahydrofolate; N5N10-CH2-THF,

methylene-tetrahydrofolate; N5N10-CH=THF, methenyl-tetrahydrofolate; N10-formyl-THF, formyl-tetrahydrofolate; PFK1, phosphofructokinase 1; PGM,

phosphoglycerate mutase; PGD, 6-phosphogluconate dehydrogenase; PGI, phosphoglucoisomerase; PGK, phosphoglycerate kinase; PHGDH, phosphoglycerate

(Continued)
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FIGURE 1 | dehydrogenase; PKM2, pyruvate kinase M2; PPP, pentose phosphate pathway; PSAT1, phosphoserine aminotransferase 1; PSPH, phosphoserine

phosphatase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SHMT, serine hydroxyl-methyltransferase; TALDO, transaldolase; THF, tetrahydrofolate;

TKL, transketolase; TPI, triose phosphate isomerase; TS, thymidylate synthetase. Glycolysis (purple), One-carbon metabolism (blue), PPP (red), Serine biosynthesis

(green), Other pathways (black).

ATP and pyruvate. PK comprises four isoenzymes (L, R, M1,
and M2) derived from two genes. Cancer cells prefer expressing
the PKM2 form by alternative splicing. The isoenzyme PKM2
occurs in a dimeric or tetrameric form. The tetrameric form
has a high affinity to PEP and is present in normal proliferating
cells. In contrast, the dimeric form is defined by a lower affinity
to PEP. Lung cancer cells are characterized by expression of
a dimeric form of PKM2 which implies that all glycolytic
intermediates preceding PKM2 activity accumulate and are
directed into biosynthetic processes, such as nucleotide-, lipid-
and serine/glycine synthesis which stimulates tumor proliferation
as demonstrated in Figure 1 (27–29).

METABOLIC PATHWAYS EMANATING
FROM GLYCOLYSIS

The Pentose Phosphate Pathway (PPP)
The PPP consists of two phases: a reversible non-oxidative
phase and an irreversible oxidative phase. Overexpression and
upregulation of two enzymes of the oxidative phase, i.e., glucose-
6-phosphate 1-dehydrogenase (G6PD) and 6-phosphogluconate
dehydrogenase (PGD), contributes to increased production of
NADPH and ribose-5-phosphate in lung cancer (30). NADPH
is a principal reducing agent that is employed in biosynthetic
pathways, such as the synthesis of fatty acids, cholesterol
and nucleotides. Furthermore, NADPH is oxidized during the
reduction of oxidized glutathione (GSSG) to glutathione (GSH),
which is essential for the detoxification of reactive oxygen
species (ROS). To keep hypoxia-induced ROS due to aberrant
vascularization in balance, reduced glutathione and thus NADPH
is required (31). Ribose-5-phosphate is an essential building
block of coenzymes as well as purine and pyrimidine nucleotides.
In contrast with healthy cells, the non-oxidative phase of the PPP
seems to be important in lung cancer cells (32–34). The glycolytic
intermediates fructose-6-phosphate (fructose-6-P) and GAP are
diverted toward ribose-5-phosphate production by transaldolase
and transketolase (35). Transketolase-like-protein 1 (TKTL1)
protein, a transketolase associated with the condition of aerobic
fermentation is overexpressed in lung cancer cells resulting in a
higher amount of ribose-5-phosphate (ribose-5-P) than needed
for de novo synthesis of purines and pyrimidines (33, 34).

The Hexosamine Biosynthetic Pathway
(HBP)
Fructose-6-phosphate can branch off from the glycolytic pathway
as a substrate in the HBP. The upregulated import of both
glucose and glutamine results in an increased flux through the
HBP and an increased level of its end product UDP-GlcNAc
(36). UDP-GlcNAc is an essential metabolite for synthesis of
many glycoconjugates, such as glycosaminoglycans, glycolipids,

and glycoproteins. Lung cancer cells exhibits striking alterations
in glycosylation but their complete description is out of the
scope of this review, and Lemjabbar-Alaoui et al. described this
extensively (37). O-GlcNAcylation, i.e., the enzymatic addition of
the N-acetylglucosamine moiety of UDP-GlcNAc to the hydroxyl
groups of serine and threonine residues, is of particular interest
in lung cancer. As UDP-GlcNAc is the end product of the HBP,
a pathway that makes direct use of glucose and glutamine inputs,
the O-GlcNAcylation is modulated by nutrient availability and
thereby acts as a nutrient sensor and metabolic regulator (38).
The process of O-GlcNAcylation is regulated by O-GlcNAc-
transferase (OGT) and its opponent O-GlcNAcase (OGA). Mi
et al. demonstrated an elevated expression of OGT and an
increased O-GlcNAcylation in lung cancer tissue. However, there
was significant difference in OGA levels between cancer tissue
and adjacent healthy tissue (39).

O-GlcNAcylation, an epigenetic modification of cellular
proteins, oncogenes, and tumor suppressor genes, can
significantly impact tumor growth, proliferation, invasion,
and metastasis (40). For instance, the oncogene c-MYC is
frequently expressed at constitutive high levels. Once activated
by an extracellular tyrosine kinase, the degradation of c-MYC
is regulated by phosphorylation of specific sites. Increased
O-GlcNAcylation of the threonine site competes with its
phosphorylation, resulting in the stabilization of c-MYC and
sustained transcription of genes involved in the tumorigenesis.
On the enzymatic level, O-GlcNAcylation is a modulator of
several glycolytic enzymes (41). As an example, glycosylation of
PFK1 is triggered under hypoxic conditions, and its inactivation
redirects the flux of glucose from glycolysis to the PPP, thereby
providing reducing power to, among other things, prevent ROS
toxicity (42).

The Serine–Glycine Pathway and
One-Carbon Metabolism
An amount of glycolytic 3-phosphoglycerate (3-PG), is siphoned
into serine and glycine metabolism, which provides carbon
units for the one-carbon metabolism. Serine is incorporated
into the head-groups phosphatidylserine and sphingolipids
and is an abundant constituent of proteins (43). The serine
biosynthesis pathway uses three subsequent enzymes to
convert 3-PG into serine (Figure 1) (44). The increased
expression of phosphoglycerate dehydrogenase (PHGDH) and
the upregulation of both phosphoserine aminotransferase 1
(PSAT1) and phosphoserine phosphatase (PSPH) highlight
the importance of the serine biosynthesis pathway in lung
cancer biology (45, 46). Serine is the primary substrate
for the so-called one-carbon cycle (47). The one-carbon
metabolism, that includes both the folate and methionine cycles,
is a complex metabolic network based on the biochemical
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reactions of folate components. A pivotal reaction of the
folate cycle is the conversion of serine to glycine by serine
hydroxyl-methyltransferase enzymes (cytosolic SHMT1 and
mitochondrial SHMT2). This reaction generates glycine and
N5,N10 methylenetetrahydrofolate (N5,N10-CH2-THF) which is
the first one-carbon donor in the folate cycle. The knockdown of
SHMT results in cell cycle arrest and cell death, suggesting that
SHMT plays a crucial role in lung cancer (48). The cleavage of
glycine into CO2 and NH+

4 by a decarboxylase (GLDC) of the
glycine cleavage system (GCS) likewise results in the production
of N5,N10-CH2-THF. The GCS results in significant changes
in both the glycolysis and serine/glycine metabolism of lung
cancer patients, leading to changes in pyrimidine metabolism
and cancer cell proliferation (46, 49, 50). Lung cancer cells
can use N5,N10-CH2-THF in several ways: (i) as a one-carbon
donor for the first step of thymidylate synthesis; (ii) as a
substrate for N5,N10-CH2-THF dehydrogenase 1 (MTHFD1)
or the mitochondrial tandem enzyme MTHFD2L/MTHFD2
to produce N10-formyl-THF, a one-carbon donor for purine
synthesis; or (iii) by N5,N10-CH2-THF reductase (MTHFR)
to generate N5-CH3-THF. This N5-CH3-THF donates its
methyl group generating methionine and THF. This reaction
couples the folate cycle with the methionine cycle and can
be considered as the first reaction of the methionine cycle.
When the resulting THF is converted into N5,N10-CH2-THF by
SHMT, the folate cycle is closed. Methionine is the precursor of
S-adenosylmethionine (SAM), a methyl donor that plays a role
in both DNA and histone methylation. As reported by Mentch
et al., intermediary metabolites and cofactors in one-carbon
metabolism and SAM metabolism determine the DNA and
histone methylation status (51). Promoter hypermethylation
plays a significant role in cancer through transcriptional silencing
of growth inhibitors, such as tumor suppressor genes. Together
with the folate metabolites provided by SHMT-mediated
reactions, SAM is vital in maintaining a regular methylation
pattern and DNA stability in lung cancer (50–52). In contrast
with genetic mutations, epigenetic modifications are reversible.
For instance, DNA and histone methylation can be removed by
α-ketoglutarate (α-KG) demethylases. The high uptake of glucose
and glutamine in proliferative cells results in higher intracellular
concentrations of α-KG. However, the glucose and glutamine
addiction of malignant cells may end in regional depletion of
both nutrients, and thus in a decrease of the α-KG concentration,
resulting in the inhibition of demethylation (53). In contrast
with this observation, where cell metabolites and enzymes
modulate epigenetic phenomena, epigenetic modifications at
metabolic genes, such as acylation or O-GlcNAcylation may
affect cell metabolism. A detailed description of the link between
metabolism and epigenetic changes is out of the scope of this
review, and has been described extensively by Yu et al. (54).
Summarized, it seems that epigenetic modifications and cellular
metabolism interact with each other and that their relationship
is reciprocal. Indeed, the enhanced aerobic glycolysis has
a disruptive effect on tumor suppressor genes and oncogenes
resulting in genomic instability. Loss of genes that are involved in
the repair of DNA results in dysregulation of the mitochondrial
energy production resulting in metabolic instability. In the

theory of Davies et al. the interaction between genomic and
metabolic instability enables pre-cancerous cells to obtain a
malignant phenotype (55).

After donation of its methyl group, SAM becomes S-
adenosylhomocysteine (SAH), which is subsequently converted
to homocysteine. Finally homocysteine is either converted back
to methionine resulting in a full turn of the cycle or enters
the transsulfuration pathway to form cysteine. Cysteine can be
incorporated into proteins or can be used in the formation of
glutathione (52).

THE ROLE OF REACTIONS OF THE
GLUCONEOGENESIS

The discovery that the activation of the gluconeogenesis pathway,
until recently thought to be restricted to kidney and liver
cells, also occurs in lung cancer cells, unfolds an unanticipated
metabolic flexibility of cancerous cells (Figure 2) (56). Malignant
cells are adapted to upregulate the glycolytic pathway at high
rates. Consequently, glucose levels may drop in less perfused
tumor areas. The decreased availability of glucose significantly
reduces the metabolic flow via glycolysis. This reduction in
glycolytic flux may result in a drop of cellular intermediates
required for the biosynthesis of building blocks unless other
pathways generate these glycolytic intermediates. Whereas, both
the gluconeogenesis and glycolytic pathway generate identical
intermediates, enhancement of either pathway could increase
the supply of building blocks for cell growth. Recently, Vincent
et al. described an alternative pathway in lung carcinoma cells
involving phosphoenolpyruvate carboxykinase 2 (PEPCK2), a
mitochondrial gluconeogenesis enzyme (57). In healthy cells, the
gluconeogenesis pathway results in the production of glucose
from non-carbohydrate carbon substrates. Under the condition
of glucose starvation, the amino acid glutamine can maintain
the TCA cycle function. Indeed, glucose-deprived malignant
cells use glutamine as an anaplerotic substrate to generate α-
ketoglutarate (α-KG) and subsequent TCA cycle intermediates
(58). Glutamine-derived oxaloacetate is converted into PEP by
mitochondrial PEPCK2, and this glutamine-derived PEP may
be used for anabolic purposes (57). Indeed, conversion of
PEP into 3-PG by enolase (ENO) and phosphoglyceromutase
(PGM) might result in a deviation from the gluconeogenic
pathway into the biosynthesis of serine, glycine, glutathione and
purine nucleotides. Glutamine-derived PEP may also fuel other
biosynthetic pathways that are, in normal conditions, supported
by glucose, including the conversion of 1,3-BPG into glycerol for
the lipid biosynthesis and utilization of GAP by the non-oxidative
branch of the PPP to produce ribose-5-phosphate (59). Recently,
Louis et al. detected a higher concentration of glucose and a lower
level of alanine in the plasma of lung cancer patients through
nuclear magnetic resonance (NMR) metabolomics (25). These
findings suggest the role of a compensatory gluconeogenesis to
sustain high glucose levels in plasma to support the ongoing
glycolysis in cancer cells. Here, in contrast with the rescue
pathway proposed by Vincent et al., the source of glucose is the
gluconeogenesis of healthy cells.
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FIGURE 2 | Gluconeogenesis pathway in glucose deprived lung cancer cells. α-KG, α-ketoglutarate; ALDO, aldolase; ASCT2, alanine-serine-cysteine-transporter 2;

DHAP, dihydroxyacetone phosphate; ENO, enolase; FBP, fructose bisphosphatase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LDH, lactate
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FIGURE 2 | dehydrogenase; MCT1, monocarboxylate transporter 1; PC, pyruvate carboxylase; PEPCK2, phosphoenolpyruvate carboxykinase 2; PGM,

phosphoglycerate mutase; PGI, phosphoglucoisomerase; PGK, phosphoglycerate kinase; PPP, pentose phosphate pathway; TPI, triose phosphate isomerase.

Gluconeogenesis pathway (purple), lactic carbon (green arrows), glutaminolytic carbon (blue arrows).

THE ROLE OF THE TCA CYCLE AND
OXIDATIVE PHOSPHORYLATION

In contrast with the original hypothesis of Warburg, cancer
cells have functional mitochondria that act as biosynthetic
hubs. Respiration, oxidativemetabolism and othermitochondrial
pathways are required by malignant cells for tumor growth
(3, 60). An important metabolic pathway that occurs in the
mitochondrial matrix is the TCA cycle or Krebs cycle. The TCA
cycle is composed of biochemical reactions that oxidize fuel
sources to provide ATP, support the synthesis of macromolecules
and regulate the cellular redox balance. Moreover, the TCA
cycle provides precursors of various amino acids. When TCA
cycle intermediates, such as glucose- and glutamine-derived α-
KG, are diverted for synthesis of macromolecules and ATP
they need to be replaced to permit the sustained function of
the TCA cycle by anaplerosis. This process is accomplished
via two major pathways: glutaminolysis and carboxylation of
pyruvate to OAA via pyruvate carboxylase (PC). As this review
focuses on the disturbed glucose metabolism, we refer the
interested reader to our recently published review that describes
the role of glutamine in lung cancer (7). An important step
in the TCA cycle is the conversion of isocitrate to α-KG by
isocitrate dehydrogenases (IDH) and thereafter to succinate and
fumarate by succinate dehydrogenase (SDH) and fumarase (FH),
respectively. Mutations in genes encoding for IDH, FH, and the
SCD complex lead to an altered metabolism, i.e., accumulation
of TCA cycle metabolites, that enhances cell transformation by
epigenetic alterations (61). Mutations in IDH1 and IDH2 are
found in 1% of NSCLC and result in the conversion of α-KG
to 2-hydroxyglutarate (62). This oncometabolite is considered
as a competitive inhibitor of multiple dioxygenase enzymes
that use α-KG as a cofactor, such as histone demethylases
and TET (ten-eleven translocation) proteins resulting in DNA
and histone methylation alterations and epigenetic changes
altering gene expression (61). In addition, both TET2 and 2-
hydroxyglutarate block differentiation in hematopoietic cells.
Inactivating mutations of SDH and FH have been identified
in several cancers and result in accumulation of succinate
and fumarate, respectively. Succinate and fumarate are capable
of inhibiting multiple α-KG dependent dioxygenases. Due to
inhibition of prolyl-hydroxylases, HIF1 accumulates in SDH and
FH mutant tumors and promotes metabolic rewiring of the
glucose metabolism.

The voltage-dependent anion channel (VDAC1) is considered
as the mitochondrial gatekeeper. The VDAC1 is the main
transport channel for metabolites and its overexpression in many
cancers indicates that this mitochondrial pore contributes to the
metabolic phenotype of cancer cells (63). Along the regulation
of the metabolic and energetic homeostasis, VDAC1 functions
as a regulator of the redox balance by its capacity to transport

ROS. In addition, the mitochondrial pore is involved in the
process of apoptosis by interaction with inhibitors of cell death
and the release of apoptotic proteins. For example, binding
between VDAC1 and HK2 leads not only to a metabolic benefit
but also results in the inhibition of apoptosis offering the cell
not only a proliferative advantage but also protection against
chemotherapy induced cell death. Downregulation of VDAC1
expression in cancer may impair the exchange of metabolites
between the cytosol and the mitochondria leading to inhibition
of growth and proliferation of cancer cells and their ability to
evade apoptosis. The OXPHOS pathway effectively generates
ATP by electron transport through several protein complexes
across the mitochondrial membrane. As previously described,
OXPHOS is often downregulated in hypoxic cancer tissue to
limit the production of ROS by the mitochondrial respiratory
chain. Warburg proposed that a decreased OXPHOS induced the
enhanced glycolysis due to mitochondrial defects. This concept
has been applied to all types of cancer cells without appropriate
experimental evaluation. However, recently, Moreno-Sanchez
described the contribution of OXPHOS in lung cancer and
several other cancers. In contrast with previous assumptions, the
majority of ATP in cancer cells is produced during OXPHOS
(64). Indeed, studies by Hensley et al. and Davidson et al. reveal
that both glycolysis and mitochondrial OXPHOS are elevated
in non-small cell lung tumors (65, 66). Many other authors
nowadays also support the idea that mitochondrial OXPHOS
might actually be suppressed as a result of the dominating
strong upregulation of the glycolysis, rather than being initially
impaired as stated by Warburg. This means that OXPHOS
might serve as an additional rescue energy alternative in cancer
cells, in case of glycolysis inhibition (67, 68). The other way
around, OXPHOS can also be preferred for energy production
in normoxic conditions in order to spare glucose which can be
used in an hypoxic environment.

Lactate, produced by glycolysis in both cancer cells and
carcinoma-associated fibroblasts (CAFs), is converted to
pyruvate and enters the mitochondria of aerobic lung cancer
cells to undergo OXPHOS to generate ATP (69). This lactate
shuttling, mainly via MCT1 and MCT4, is one important way
how cancer tissue keeps the interplay between glycolytic and
oxidative cells in balance (22). A plausible explanation might be
found in the heterogeneity of lung tumors. They show to exhibit
both the glycolytic and oxidative metabolic phenotype between
different regions inside the same tumor (65). It seems that cancer
cells of the same tumor can be divided into subgroups, often
depending on their microenvironment: highly glycolytic with
lower OXPHOS in hypoxic conditions and the other way around
where nutrients are rather low (68). Strikingly, some lung tumors
that have acquired resistance against targeted therapy also seem
to switch to elevated OXPHOS activity, leaving it vulnerable for
inhibition (70).
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Since different types of cancer rely on the OXPHOS pathway
for their development, OXPHOS inhibition is a target of several
cancer therapy studies (71). For example, NSCLC tumors with
LKB1 (liver kinase B) tumor suppressormutation are shown to be
sensitive to phenformin, as it shuts down oxygen consumption in
these cells by inhibition of the protein complex I of the oxidative
respiratory chain. Instead of reprogramming to using glycolysis
for ATP generation, LKB1 mutated NSCLC cells are shown to
exhibit an OXPHOS-driven phenotype (72).

GENETIC REGULATION OF LUNG CANCER
METABOLISM

Lung cancer cells often harbor mutations in genes and pathways,
such as the PI3K (phosphoinositide-3-kinase)-AKT-mTOR
(mammalian target of rapamycin) pathway, the oncogenes RAS,
c-MYC, and HIF-1 (hypoxia inducible factor), and the tumor
suppressor gene TP53 (tumor protein) (73–78). These cell
signaling pathways are implicated in the metabolism by securely
regulating the capacity of cells to obtain access to nutrients and
subsequently process these compounds.

PI3K-AKT-mTOR Pathway
The PI3K-AKT-mTOR pathway, one of the signaling
pathways most frequently altered in cancer, is an essential
regulator of metabolism, coordinating the uptake and fate of
glucose (74, 75, 79). The PI3K-AKT-mTOR pathway can be
aberrantly activated by multiple factors including oncogenic
genomic alterations in e.g., PI3K, PTEN (phosphatase and
tensin homolog), AKT, TSC (tuberous sclerosis complex),
LKB1, and mTOR (80). The binding of ligands, such as
epidermal growth factor, to receptor tyrosine kinases, results
in dimerization of the receptors which stimulates the receptor’s
intrinsic cytoplasmatic kinase activity, leading to auto- and
transphosphorylation on tyrosine residues, which serves as
docking sites of several proteins and enzymes. Recruitment of
PI3K to the membrane results in the phosphorylation of the
membrane compound phosphatidylinositol 4,5-bisphosphate
(PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3).
The serine/threonine kinase AKT is recruited to the plasma
membrane along with PI3K-dependent kinase 1 which has been
recruited and activated by PIP3. Phosphorylation of specific
threonine and serine residues by PI3K-dependent kinase 1
and mTORC2 is essential for complete AKT activation. Once
activated, AKT potentially phosphorylates many proteins which
explains its broad range of downstream effects in angiogenesis,
apoptosis, differentiation, and proliferation. In contrast, PTEN
is a phosphatase that reduces the intracellular levels of PIP3
and functions as a tumor suppressor by inhibition of the AKT
signaling cascade. AKT also fulfills a critical role in the uptake
and metabolism of glucose by promoting the transcription of
several glycolytic enzymes, such as HK, PFK1, and recruitment
of GLUTs to the cell membrane (81, 82). While overexpression of
nutrient transporters can help cells to harvest scarce blood-born
nutrients, it has become recognized that malignant cells acquire
the capacity to bypass the blood circulation and obtain nutrients

by scavenging macromolecules from the microenvironment
i.e., extrinsic scavenging. In contrast to autophagy or intrinsic
scavenging, extrinsic scavenging can maintain survival and
promote growth (83). Macropinocytosis begins with the
activation of RAC1, a small GTPase, and a cell division control
protein that produces ruffles that form circular cups. Closure
of these cups depends on both PIP3 production and RAC1
inhibition. Inactivation or loss of PTEN, elevates the intracellular
PIP3 levels which results in the stimulation of the uptake of
macropinosomes by murine fibroblasts (83, 84). Furthermore,
PTEN inhibition in these fibroblasts allowed them to grow even
in a nutrient-depleted medium in a manner that depends on
macropinocytosis. Whether other tumor types with reduced
PTEN activity, such as lung cancer, use macropinocytosis to
support growth, requires further research.

Downstream of PI3K and PTEN, activated AKT inhibits TSC2
via phosphorylation. Inactive TSC2 is uncapable to bind RHEB,
which enables its activation of mTORC1 initiating its effect on
downstream proteins that play a role in protein translation.
Activation of mTOR can drive metabolic processes through the
regulation of metabolic gene expression. These processes include
glucose import and glycolysis via HIF-1, and the PPP (nucleotide
biosynthesis and reducing equivalents for fatty acid synthesis)
through sterol regulatory element-binding proteins (SREBPs).

RAS-RAF-MEK-MAPK Pathway
The RAS family encodes four membrane-bound proteins
that are involved in signal transduction underlying diverse
cellular activities, such as differentiation, growth, migration,
proliferation, and survival (85). Activation of RAS proteins at
the cell membrane by growth factors results in the binding
of effector molecules, formation of signaling complexes and
initiation of a cascade of intracellular signaling pathways
including the RAS-RAF-MEK-MAPK-and PI3K-AKT-mTOR
pathway. RAS proteins alternate between GTP- and GDP-
bound conformations, where the GTP-bound conformation
represents the active state. Oncogenic mutants function by
preventing hydrolysis of GTP, thereby generating highly active
RAS molecules resulting in uncontrolled growth and malignant
transformation. Activating (K)RAS mutations are prevalent in
∼15–20% of NSCLC and 30–50% of the adenocarcinoma subtype
(73). KRAS mutations are mutually exclusive to EGFR mutations
and predict resistance to EGFR TKI and chemotherapy (86, 87).
Another RAS effector family is PI3K, which implicates that some
of the effects of RAS may be mediated through the PI3K-AKT-
mTOR pathway. Indirectly, activating RAS mutations results in
the upregulation of many glycolytic enzymes and transporters
(55). RAS-transformed cancer cells overcome limitations of
nutrients by scavenging extracellular fluid and macromolecules
(e.g., albumin, extracellular matrix proteins, necrotic cell debris,
. . . ) by generating large vesicles i.e., macropinosomes. The
building blocks that make up these macromolecules can be
released after degradation and used for the generation of
ATP and biosynthetic purposes. In analogy with KRAS-driven
pancreatic cancer cells, KRAS-mutated lung cancer cells also
exhibit constitutive macropinocytosis. However, in vitro findings
show that KRAS-driven lung cancer cells degrade less albumin
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than isogenic lines derived from the pancreas. This observation
raises the possibility that changed characteristics of the tissue of
origin also control scavenging in cells with identical genomes
(88). Though this intriguing result, an important caveat of this
study is the ex vivo monitoring, which may not reflect how
these cells behave within tissues. Indeed, other pathways that
modulate the macropinocytic flux may be affected by both the
tumor micro-environment and the mutational load. Additional
studies are indispensable to ascertain whether the same KRAS-
mutation leads to different amounts of macropinocytic flux in
different tissue types.

c-MYC
The MYC proto-oncogene members are targets of RAS and
PI3K-AKT-mTOR signaling and critical regulators of numerous
downstream pathways, such as apoptosis, differentiation, and
proliferation (89). The MYC oncogene family is frequently
deregulated in both NSCLC and SCLC. Activation of MYC
members often occurs through amplification although excess
MYC expression can also result from retroviral promotor
insertion, chromosomal translocation, activation of enhancers
within the MYC gene or mutations of upstream signaling
pathways that enhanceMYC stability (90). Concerningmetabolic
reprogramming, the c-MYC transcription factor promotes
expression of glycolytic target genes (GLUT, HK, PFK1, and
ENO) and LDH contributing directly to the Warburg effect
(91, 92). MCT4, another c-MYC target extrudes lactic acid
produced from glucose. It is particularly notable that c-MYC
not only drives the expression of glycolytic enzymes but also
favor specific mRNA splice variants, such as PKM2 over PKM1.
As a consequence, c-MYC-driven accumulation of glycolytic
intermediates fuels pathways that share intermediates with
glycolysis, such as the PPP and the one-carbon metabolism
(92). Besides, c-MYC induces expression of enzymes involved in
the synthesis of nucleotide metabolism, including SHMT, which
allows glycolytic carbon units to be used in the synthesis of
purines and pyrimidines (92–94). Furthermore, c-MYC is also
involved in the induction of pyruvate dehydrogenase kinase-
1 (PDK1), an enzyme that participates in the regulation of
the pyruvate dehydrogenase complex (PDH). This enzyme
catalyzes the decarboxylation of pyruvate to acetyl-CoA, thereby
linking glycolysis to the TCA cycle. PDK1 inhibits PDH by
phosphorylation, resulting in increased conversion of pyruvate
to lactate, and limiting the entry of glycolytic carbon substrates
into the TCA cycle (95, 96).

HIF-1
The transcription factor HIF is a heterodimeric complex
composed of an unstable oxygen-dependent α-unit and a stable
oxygen-insensitive β-unit. Under normal O2 conditions, the
α-subunit of HIF is hydroxylated by prolyl-dehydroxylases,
allowing recognition and ubiquitination by the Von Hippel
Lindau ubiquitin ligase, which labels them for rapid degradation
(97). In hypoxia, prolyl-dehydroxylases are inactive as they
require O2 as an essential cofactor. In the nucleus, the
stabilized HIF α-subunit dimerizes with HIF-1β and induces
the transcription of many genes involved in proliferation,

apoptosis, and angiogenesis (98). HIF-1 expression is absent in
healthy lung tissue in contrast with cancerous lung tissue, where
increased levels of HIF-1 are documented (76, 77). The significant
metabolic effect of HIF-1 is to trigger the switch from OXPHOS
to anaerobic glycolysis. HIF1 induces the expression of GLUT
and upregulates many genes affecting glucose metabolism, such
as HK, PGI, ALDO, PGK1, PDK1, ENO, PKM2, and LDH (98–
100). Furthermore, HIF-1 participates in the synthesis of serine
and the one-carbon metabolism by transactivation of PHGDH
and SHMT, which both increase NADPH generation and defense
against ROS under hypoxic conditions (101, 102).

TP53
In lung cancer, TP53 is a commonly inactivated tumor
suppressor gene. TP53 encodes a protein, p53, that prevents the
accumulation of genetic damage during mitosis. In response to
cellular stress, p53 induces the expression of genes that regulate
cell cycle checkpoints, resulting in G1 arrest and DNA repair
or apoptosis (103). Wild type TP53 inhibits transcription of
glucose transporters, promotes the expression of Tumor Protein
53-Induced Glycolysis and Apoptosis Regulator (TIGAR), and
inhibits the transcription of glycolytic enzymes like PGM (104).
By decreasing the level of fructose-2,6-bisphosphate, TIGAR
decreases the activity of PFK1, the key enzyme of glycolysis
(105). Wild type TP53 supports the expression of PTEN,
which inhibits the PI3K pathway, thereby suppressing glycolysis.
Additionally, wild type TP53 promotes OXPHOS by activating
the transcription of cytochrome c oxidase assembly protein 2
(SCO2), which is required for the assembly of the cytochrome
oxidase complex of the electron transport chain. Mutations or
deletions in TP53 in cancers result in the stimulation of glucose
transport and glycolysis by expression of PGM and inhibition of
TIGAR. Wild type TP53 also suppresses the oxidative phase of
the PPP by directly binding to G6PD and repressing the enzyme
activity. Cancer-associated mutations in p53 have been shown to
result in loss of the ability to block G6PD activity, resulting in an
increased PPP flux and glycolysis (106).

THERAPEUTIC IMPLICATIONS OF
TARGETING THE METABOLIC HALLMARK
OF CANCER

Treatment of lung cancer is moving toward the design of
drugs that specifically target aberrant pathways involved
in carcinogenesis (107). The increased dependence of
lung cancer cells on fermentation provides a biochemical
basis for the development of antineoplastic treatments that
preferentially target cancer cells by pharmacological inhibition of
anaerobic glycolysis. One of the advantages of metabolism-based
therapeutics over gene-based therapies are the standard shifts
in metabolism observed in cancers derived from many tissues.
Indeed, the mechanisms underlying cancer development are
incredibly complex, and genetic alterations are heterogeneous
even in a specific cancer type. As a consequence, targeting a
single gene is difficult and an alternative strategy is to take
advantage of the fundamental difference between cancer cells
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and their regular counterparts. In the past decades, it has become
increasingly evident that many metabolic pathways are altered
in cancer cells (3, 50, 104, 108). According to Altenberg et al.,
glucose transporters and glycolytic enzymes are overexpressed
in 24 different types of cancer, including lung cancer (19). As
previously described, the disturbed glucose metabolism is driven
by signal pathways and transcription factors. Inhibition of
these pathways and more downstream targets, such as glucose
transporters, glycolytic (iso)enzymes, or the mitochondrial pore
(VDAC1), provides a tempting avenue for the development of
new anti-cancer drugs. Several inhibitors (Table 1) of glycolytic
enzymes and transporters are in (pre)clinical development,
however only inhibitors of IDH have reached approved status.
Nevertheless, there are disadvantages to a metabolism-based
approach as well. Since the identical metabolic pathways
are necessary for the cell division and survival of all cells,
metabolism-based treatment face a major hurdle of non-specific
toxicity. Immune cells, such as cytotoxic T lymphocytes, are
often found in the tumor microenvironment and immune
stimulation leads toward an increased demand for glucose. The
glycolytic pathway does not only support the proliferation of
immune cells but is also crucial for their functional activity,
such as the production of cytokines and ATP (144). Therefore,
activated immune cells might be expected to be vulnerable to
glycolytic inhibition, resulting in immune suppression which
is concerning because reactivation of the suppressed immune
system has become a first line treatment in PD-L1 positive
NSCLC (145, 146). A pitfall in the trials planned to test drugs
targeting metabolism is the lack of knowledge of the metabolic
pathways because no metabolic profiling has been performed
before the initiation of therapy. Indeed, although the aerobic
fermentation is the most observed phenotype, it is not a universal
trait of all human tumors. In addition, due to the metabolic
plasticity exhibited by cancer cells, it is not unexpected that
tumor cells could develop resistance to inhibition of a specific
pathway through upregulation of alternative pathways. As
previously mentioned, continued functioning of the TCA cycle
requires the replenishment of intermediates that are diverted for
synthesis of ATP and macromolecules. The increased uptake of
the anaplerotic substrate glutamine and its metabolic conversion
products glutamate and α-KG contribute to the biosynthesis
of all cellular constituents. Therefore, concurrent inhibition
of the glutaminolysis pathway using small molecules, such as
BPTES, compound 968 or CB-839 may be a valuable treatment
strategy (7).

Glucose Restriction and Diabetes Control
Both hyperinsulinemia and hyperglycemia are predictors of
cancer incidence and worse survival in patients with various
cancers as demonstrated by retrospective studies (147–150). It
is unknown whether the reduction in insulin levels can affect
tumors that are already present. Carbohydrate restriction and
pharmacological approaches to reduce the levels of insulin may
result in the development of insulin-dependent diabetes in
euglycemic subjects and thus in increased glucose levels and
overfeeding of tumor cells.

Recently, Ohkuma et al. published a large systematic review
that confirmed the higher risk of cancer in diabetics (147). The
activation of the IGFR1-IR-PI3K-AKT-mTOR pathway through
hyperglycemia and hyperinsulinemia has been suggested as a
cause of carcinogenesis. Indeed, binding of insulin and IGF to
their receptor tyrosine kinase results in autophosphorylation of
the receptors and activation of the PI3K-AKT-mTOR pathway.
In addition, mTOR is negatively affected through activation
of AMPK, which can also be achieved by dietary restriction
(151). This previously described hyperactivation of the IGFR1-
IR pathway does not occur through genetic mutations, but
co-existence of cancer-associated mutations in these pathways
may result in an even more pronounced promotion of growth
and survival in malignant cells (152). Masur et al. showed that
diabetogenic glucose concentrations compared to physiological
levels resulted in different expression of genes that promote
adhesion, migration, and proliferation in several cancer cell lines
(153). The addition of insulin to the glucose-enriched culture
medium further increased the rate of proliferation and promoted
activation of the PI3K-AKT-mTOR pathway (153). It could
be hypothesized that high glucose and the resulting release of
insulin provides additional stimuli for neoplastic cells. However,
as demonstrated by Louis et al., cancer leads to increased
gluconeogenesis that is fueled by glycerol from lipolysis and
alanine from rhabdomyolysis. As a consequence, higher levels
of glucose are available for cancer cells, resulting in fat loss and
muscle wasting, both hallmarks of cancer cachexia. As sarcopenia
is related to a poor prognosis and a substantial loss in the quality
of life, carbohydrate restriction has no established role in the
treatment or prevention of cancer (154, 155). A switch from
carbohydrate metabolism to fatty acid metabolism by diets poor
in carbohydrates and rich in fats, i.e., ketogenic diets, may result
in anti-cachectic effects. Based on the ability of healthy cells to
use ketones as energy source, ketogenic diets have been proposed
to treat glioblastomas (156). In general, the current phase I and II
studies are hampered by poor accrual and compliance, and until
present, no randomized controlled trials have been terminated to
study the potential effects of a ketogenic diet on tumor growth
and survival.

Inhibition of Glucose Transport
Targeting GLUTs could be an efficient anticancer approach since
tumor cells depend on increased utilization of glucose. This
difference in glucose addiction between cancer and healthy cells
provides a therapeutic window by which glucose uptake in
cancer cells can be efficaciously suppressed with significantly
less toxic effects in healthy cells. Inhibition of glucose importers
is equivalent to the inhibition of the entire glycolytic pathway.
Cancer cells will have to use other transport mechanisms,
such as macropinocytosis or other metabolic fuels, such as
glutamine, to compensate for the shortage of glucose. Although
it is possible to acquire these compensation mechanisms, such
adaptations are more complicated then bypassing the inhibition
of a single enzyme in the glycolytic pathway (88). Based on
physiological requirements for glucose, different isoforms of
GLUTs are expressed in various cell types. In cancer, GLUT1
and GLUT3 are the most relevant transporters. GLUT1 is a
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TABLE 1 | Some inhibitors of glycolytic enzymes and transporters which are in (pre)clinical development.

Target Drug References Remark

GLUT Fasentin, phloretin, STF-31,

WZB117

(109–112) Preclinical models

HK Lonidamine (113–119) Only one study with survival benefit

2-deoxyglucose (120, 121)1 Activation of proapoptotic pathways, probably an only role in combination with

chemotherapeutic treatments

Bromopyruvate (122–126) Rapid inactivation, venous irritation, lack of crossing blood-brain barrier prevents its clinical

development.

Role in the restoration of chemo susceptibility

PFKFB 3PO (127) Preclinical models

PFK158 (128) NCT02044861

GAPDH Bromopyruvate (124, 126, 129) Rapid inactivation, venous irritation, lack of crossing blood-brain barrier prevents its clinical

development.

Role in the restoration of chemosusceptibility

PKM2 Shikonin (130) Inhibitor PKM2

Both activators and inhibitors of PKM2 could be beneficial dependent on oxygen levels in

cancer cells

LDH FX11 (131) Inhibition progression human lymphoma and pancreatic xenografts

Quinoline-3-sulfonamide (132) Unacceptable pharmacokinetic profile preventing further investigation in vivo models

Oxamate (133) Role in the restoration of chemosusceptibility

GNE-140 (134) High potency, modest permeability and a low plasma protein binding

PSTMB (135) Induction of apoptosis in lung cancer cell lines

PDK Dichloroacetate (136) Phase 2 trial in brain cancer NCT00540176

(137) Low potency, a requirement of high doses resulting in significant toxicities

Preclinical in lung cancer NCT01029925 Terminated due to higher than expected

risk/safety concerns.

AZD7545 (138)

MCT1 AZD3965 Currently tested in phase 1 clinical trial (NCT01791595)

IDH Enasidenib (139) Approved in relapsed/refractory IDH2 mutant AML

Ivosedinib (140) Approved in relapsed/refractory IDH1 mutant AML

NCT02989857 (Phase 3 in IDH-mutant cholangiocarcinoma)

NCT03343197 (Phase 1 in IDH-mutated glioma)

GSK864 Preclinical, potent IDH1 inhibitor

GSK321 Preclinical, potent IDH1 inhibitor

VDAC1 Lonidamine (118) Preclinical, induction of apoptosis

SiRNA (141–143) Rewiring of tumor cell metabolism, reduction of cancer stem cell levels and induction of

differentiation in cell lines and xenografts of glioblastoma, lung cancer and breast cancer

fundamental transporter expressed in almost all cell types, and
its upregulation in cancer cells is well-documented (17, 19).
Unlike GLUT1, GLUT3 is expressed primarily in tissues with
high energy demand to supplement GLUT1. Several inhibitors
of glucose transporters, such as fasentin, phloretin, STF-31, and
WZB117 have already been discovered, and experiments with
preclinical models demonstrated their anticancer effects (109–
112). For example, as demonstrated by Liu et al., the treatment of
lung cancer cells with WZB117 did not only result in decreased
levels of GLUT1 protein but also in a decline in the concentration
of intracellular ATP and glycolytic enzymes (112). Furthermore,
these authors demonstrated that intraperitoneal injection of
WZB117 resulted in a significant reduction of tumor volume in
vivo in a nude mouse xenograft model.

1https://clinicaltrials.gov/ct2/show/NCT00633087

Research by Wood et al. documented that fasentin not only
partially inhibited glucose transport but also broke down the
resistance of caspase activation which usually is seen in cells
that are resistant to antineoplastic treatment (110). Despite these
exciting findings, inhibitors of GLUTs have not yet entered
clinical trials.

Inhibition of Hexokinase (HK)
In addition to the inhibition of glucose transport, the glycolytic
pathway can be inhibited at the enzymatic level. Lonidamine
is a selective inhibitor of the soluble and mitochondrial-bound
HK2 iso-enzyme, which is present in malignant cells but not
in healthy cells and is effective in the treatment of diverse
cancer cells (113–115). However, the combination of lonidamine
and chemotherapy did not improve the time to progression
in breast cancer patients, and its hepatoxicity resulted in early
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termination of clinical trials (116, 117). The inhibition of HK2
by lonidamine leads to decreased glucose phosphorylation,
which results in lower concentrations of glucose-6-phosphate
and as a consequence, results in a reduction of glycolytic
intermediates and the PPP. Furthermore, in cancer cells, HK2
associates with the voltage-dependent anion channel (VDAC1),
located on the outer mitochondrial membrane, to protect
malignant cells frommitochondrial membrane permeabilization.
Ravagnan et al. showed that supernatants of mitochondria
that were processed with lonidamine contain several factors,
including cytochrome C, capable of inducing apoptosis (118).
These findings indicate that lonidamine acts through the
opening of the mitochondrial permeability transition pore.
Indeed, targeting VDAC1 by small molecules or VDAC1-based
peptides that interfere with anti-apoptotic proteins results in the
induction of apoptosis, making VDAC1 an interesting target to
overcome resistance to chemotherapy. Furthermore, strategies
using specific small interfering RNA (siRNA) in glioblastoma
cells lines and xenografts resulted in a rewiring of tumor cell
metabolism, a reduction of cancer stem cell levels and induced
differentiation into neuron- and astrocyt-like like cells (141).
Similar results, regardless of cell origin and genetic mutational
burden, were obtained in lung cancer and breast cancer cell lines
and in mouse xenografts (142, 143). As demonstrated by Arif
et al., VDAC1 depletion resulted in depletion of transcription
factors coordinating cell metabolism, such as c-MYC and HIF-1,
finally leading to differentiation, independent of cell type and
genetic alterations (142). Therefore, VDAC1 is an interesting
target for treating various cancers.

Encouraging data of phase 1 and 2 trials have led
to testing lonidamine in several phase 3 trials in several
cancers including lung cancer Unfortunately, these results
were rather disappointing as only one study detected a
statistically significant higher response rate and better survival
in patients treated with lonidamine-containing regimens. The
glucose analog 2-deoxyglucose, another inhibitor of HK2,
demonstrated promising effects in preclinical models (157).
Despite the results, its success as a single glycolysis inhibitor
has become controversial as the drug activates multiple pro-
survival pathways in cancer cells and studies in prostate
cancer documented insignificant effects on tumor growth1 (120).
Combination therapy of paclitaxel and 2-deoxyglucose in a
NSCLC xenograft model resulted in a remarkable reduction in
tumor growth thanwhen compared with either agent alone (121).
This observation presents a rationale for the initiation of clinical
trials using chemotherapy in combination with 2-deoxyglucose,
in order to increase their clinical effectiveness.

Inhibition of Phosphofructokinase
Isoforms (PFK)
As previously described, the conversion of fructose-6-phosphate
to fructose-1,6-bisphosphate by PFK1 is the committed rate-
limiting step of glycolysis. Fructose-2,6-bisphosphate is a
potent activator of PFK1. The concentration of fructose-2,6-
bisphosphate is determined by a family of bifunctional enzymes
PFK-2/FBP (PFKFB) which consists of four iso-enzymes. The
high kinase/phosphatase ratio of the iso-enzyme encoded by
the PFKFB3 gene, results in sustained high glycolytic rates.

As in colon cancer, loss of PTEN, stabilization of HIF-1, and
activation of RAS in lung cancer cells, converge to increase the
activity of PFKFB3. The small-molecule inhibitor 3PO inhibits
the PFKFB3 iso-enzyme through competition with fructose-6-
phosphate without inhibition of PFK1 activity. In vitro, 3PO
attenuates the proliferation of several human cancer cells and
exhibits selective cytostatic activity to RAS-mutated epithelial
lung cancer cell lines relative to their healthy counterparts
(127). In vivo, the administration of 3PO reduces growth of
lung adenocarcinoma cells. The optimization of this class led
to a more potent inhibitor of PFKFB3, i.e., PFK158. In vitro,
PFK158 results in a decreased uptake of glucose and the release
of lactate as well as induction of apoptosis in gynecologic
cancer cell lines (128). Furthermore, PKF158 treatment sensitizes
chemoresistant cells and induces cell death. These findings
indicate that chemotherapy in combination with PFK158 may
have a role in the treatment of chemoresistant cancer. Safety
and toxicity studies in animals have demonstrated that PFK158
is well-tolerated with a good therapeutic index, lending further
support for a phase 1 clinical trial in patients withmetastatic solid
malignancies (NCT02044861).

Inhibition of GAPDH
The glycolytic enzyme GAPDH plays a critical role in the
cellular redox balance by the generation of NADH, which is
involved in the regulation of ROS and in biosynthetic processes
of macromolecules. Apart from its glycolytic function, tumor-
specific roles of GAPDH include chemoresistance, metastatic
potential, protection of cancer cells from apoptosis, and cell
cycle regulation (158–160). Given the central role of GAPDH,
its inhibition triggers a cascade that may lead to cell death.
Under normal conditions, degradation of accumulated GAP
and DHAP results in the formation of the cytotoxic metabolite
methylglyoxal, which enters the glyoxalase system to undergo
detoxification. However, in the presence of oxidative stress and
glutathione depletion, the glyoxalase system fails to detoxify
the cytotoxic metabolite resulting in apoptosis (161). Several
GAPDH inhibitors have been tested in cell cultures and animal
models for their efficacy (162). However, the ubiquitous nature
of GAPDH and the resulting systemic toxicity needs to be
addressed in clinical trials. A promising GAPDH inhibitor is
the pyruvate analog 3-bromopyruvate. Bromopyruvate is a
powerful anti-cancer agent that not only interferes with the
process of glycolysis but also impacts the TCA- and folate cycle
(122, 163). Unfortunately, the molecule faces many biochemical
and practical problems, such as rapid inactivation by the thiol
groups of e.g., glutathione and venous irritation during infusion
(164). Lack of early tumor response, the resistance of cells rich
in glutathione, the lack of crossing the blood-brain barrier,
and the phenomenon of enhanced permeability and retention
prevents the approval of 3-bromopyruvate in clinical trials.
Notwithstanding the induction of apoptosis in breast cancer cell
lines, bromopyruvate was observed to trigger autophagy, which
increased resistance to bromopyruvate treatment (123, 129). In
colon cancer, bromopyruvate treatment rendered resistant cells
susceptible to 5-fluorouracil and oxaliplatin (124). Malignant
cells, treated with bromopyruvate, were observed to have
a larger uptake of chemotherapeutic drugs resulting in a
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restoration of susceptibility to these drugs. Overexpression
of drug-expelling ATP-binding cassette transporters (ABC)
prevents accumulation of chemotherapeutic drugs into
cancer cells, eventually leading to drug resistance. Since
these transporters are dependent on ATP production through
enhanced glycolysis, inhibition of the glycolytic pathway with
bromopyruvate may restore the susceptibility of malignant cells
to chemotherapy.

Pyruvate Kinase (PK): Inhibitors or
Activators?
The discovery that the expression of PKM2 results in a growth
advantage for malignant cells raised the hypothesis that the
enzyme could be an interesting target for cancer treatment. The
inhibition of PKM2 may result in the accumulation of glycolytic
intermediates that feed biosynthetic pathways resulting in tumor
proliferation. As demonstrated by Anastasiou et al., oxidative
stress results in the oxidation of PKM thereby suppressing its
activity and supporting the diversion of glycolytic intermediates
into the PPP resulting in the generation of NADPH and
restoration of the redox balance (165). Activators of PKM2
could be interesting cancer drugs, mainly when administered
in combination with treatments that disrupt the cellular
redox balance, such as radiotherapy and chemotherapeutics.
In contrast, other investigators demonstrated that inhibition of
PKM2 increases cell death in mouse xenograft models (166).
This discrepancy may result from different cellular responses to
variable degrees of hypoxia (167). Mild hypoxia results in the
production of hydrogen peroxide, which ultimately promotes
signaling pathways that are critical for the response to hypoxia.
In this setting, oxidation of PKM2 leads to inactivation of the
glycolytic flux and increased flow through the PPP. As a result,
the production of NADPH prevents the accumulation of ROS
and oxidative damage. During severe hypoxia, the O2 supply
to the electron transport chain becomes compromised, resulting
in a reduction of mitochondrial ATP production and hydrogen
peroxide. As a consequence, cancer cells depend on the PK
activity for the production of ATP. In conclusion, depending
on the degree of hypoxia, both PKM2 activators and inhibitors
could be beneficial. Indeed, in severely hypoxic cells PKM2
inhibitors may prevent ATP production, whereas PKM activators
may result in oxidative damage in cells with moderate O2 levels.
Shikonin is a potent and specific inhibitor of PKM2. Incubation
of lung cancer cells with shikonin resulted in a reduced glycolytic
rate as manifested by decreased glucose consumption and lactate
production (130).

Inhibition of Pyruvate Dehydrogenase
Kinase (PDK)
PDKs and PDH are mitochondrial enzymes that determine the
proportion between the Warburg effect and aerobic respiration
(168). As overexpression of PDKs has been detected in several
human cancer samples and has been associated with a dismal
prognosis in several other cancers, new drugs that inhibit PDKs
may be used to treat a variety of cancers and may provide
a new kind of antineoplastic class (96). In addition, the low

expression of PDK in normal tissue may spare healthy cells and
adverse effectsmay beminimal. Several PDK inhibitors have been
reported, although their clinical efficacy needs confirmation.
Dichloroacetate (DCA) has been identified as an activator of
PDH by inhibition of PDK activity and has successfully entered
into phase 2 trials in treating brain tumor patients (136). The
consequences of DCA on lung cancer cells and animal models
were explored in detail by Bonnet et al. who demonstrated that
administration of DCA resulted in a shift from glycolysis to
OXPHOS (137). Furthermore, this shift in metabolism led to
higher levels of ROS and a decreased mitochondrial membrane
potential in lung and several other malignancies without any
effect on standard cell lines. The activation of the mitochondrial
function resulted in apoptosis due to the efflux of pro-apoptotic
mediators from the mitochondria. Despite these encouraging
results, the application of DCA in the treatment of cancer is
plagued by its low potency and the need for high dosages
to exhibit therapeutic effects, resulting in toxicities, such as
peripheral neurological toxicity (169). Due to high risk/safety
concerns, the NCT01029925 trial investigating the response rate
of DCA in patients with recurrent and advanced NSCLC was
closed prematurely. Therefore, clinical trials with more potent
and selective PDKs inhibitors, such as AZD7545 are of significant
importance (138).

Inhibition of Lactate Dehydrogenase a
(LDH-A)
LDH-A has an essential role in perpetuating a high rate of
glycolysis by the regeneration of NAD+ making it a potential
therapeutic target. Inhibition of LDH-A by the small molecule
inhibitor FX11 increased non-productive mitochondrial
respiration, leading to reduced ATP levels, increased O2

consumption, ROS production, and cell death. In addition, the
molecule inhibited the progression of lymphoma and other
cancer xenografts (131). In combination with FK866, another
metabolic inhibitor that inhibits NAD+ synthesis, FX11 can
induce lymphoma regression. Quinoline 3-sulfonamide, another
LDH-A inhibitor, has been studied in multiple cancer cell
lines by Billiard et al. (132). LDH-A inhibition resulted in
increased intracellular concentrations of glycolytic and TCA
cycle intermediates, consistent with blockage of glycolysis
and enhanced TCA cycle activity, respectively. However,
the unacceptable pharmacokinetic profile, i.e., the low in
vivo clearance and the low oral bioavailability, prevents
further use in vivo. To improve the cellular potency of LDH
inhibitors, structure based designs, such as substitution of
the hydroxylactam core, were utilized to create a novel series
of LDH-A inhibitors. This strategy resulted in the discovery
of GNE-140, a molecule that inhibits proliferation in several
cancer cell lines and mice. The combination of high potency,
modest permeability and a low plasma protein binding makes
it a promising metabolic drug (134). More recently, Kim
et al. demonstrated that the inhibitory concentration of
PSTMB was significantly lower than that of other LDH-A
inhibitors which may result in less toxicity (135). These authors
demonstrated that PSTMB induces apoptosis in lung cancer
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cell lines, through induction of ROS production. In breast
cancer, it was demonstrated that LDH-A plays a vital role in
taxol resistance. Treatment of breast cancer cell lines with the
LDH-A inhibitor oxamate and taxol resulted in a synergistic
inhibitory effect on taxol resistant cancer cells by promoting
apoptosis in these cells (133). This result provides evidence
for the future development and use of metabolic therapies to
overcome chemoresistance.

Monocarboxylate Transport Inhibitors
Depending upon the isoform of MCT, lactate could be imported
(MCT1) or exported (MCT4). Intracellular trapping of lactate
will result in intracellular acidification, causing cell death. Recent
studies with AZD3965, a potent, selective inhibitor of the MCT1
have demonstrated that the drug inhibits the transport of lactate
and cell growth in cancer cells. The drug is currently tested
in a phase 1 clinical trial that enrolls patients with advanced
solid tumors or lymphoma that are refractory to conventional
treatment or for which no conventional therapy exists. In
addition, the disruption of lactate/H+ symporters has also been
studied via genetic tools. Marchiq et al. studied the effect of
knocking out the BASIGIN (BSG) and MCT4 genes on the
metabolism of colon adenocarcinoma and glioblastoma cells
(170). In their study, the authors found a strong reduction of
the rate of glycolysis as expected. However, upon inhibition
of MCT1 by the MCT1 inhibitor AR-C155858, the cells O2

consumption increased, thus indicating a rapid shift from
glycolysis to OXPHOS. The authors went one step further
and showed that the disruption of MCT4 and BSG sensitized
the glycolytic tumor cells to phenformin, an inhibitor of
mitochondrial complex I. Due to the rapid decrease in cellular
ATP by disrupting both glycolysis as well as OXPHOS, cell
death by “metabolic catastrophe” was observed. This observation
confirmed their larger dependency on OXPHOS following the
disruption of glycolysis. Similar shifts toward OXPHOS were
later reported in cancer cells following disruption of glucose-6-
phosphate isomerase and LDHs as covered in a mini-review by
Ždralević et al. (171).

Inhibition of Mutant Isocitrate
Dehydrogenase
As mentioned before, mutations in IDH iso-enzymes result in
the production of the oncometabolite 2-hydroxyglutarate, which
has been linked to the interference with metabolic and epigenetic
alterations responsible for cellular differentiation. Recently, the
IDH1 inhibitor enasidenib, and IDH2 inhibitor ivosidenib, were
approved in the treatment of patients with acute myeloid
leukemia (AML) (172). GSK864 and GSK321 are promising
potent inhibitors of IDH1 but have not yet entered clinical trials.
Existing clinical and preclinical data in hematologic and solid

tumors and the potential limitations of treatment were recently
discussed by Golub et al. (172).

CONCLUSIONS

Metabolic instability caused by environmental influences or
perturbations in certain enzymes and substrates may result in
mutations in oncogenes and tumor suppressor genes, leading to
activation or inhibition of signaling pathways and transcriptional
networks which account for the metabolic reprogramming
observed in cancer cells. These metabolic adaptations are
mandatory for the requirements of rapidly dividing cells: a
rapid ATP generation to maintain energy status, an increased
biosynthesis of biomolecules and the maintenance of the cellular
redox balance. The metabolic phenotype of lung cancer cells
is characterized by increased glucose uptake and glycolytic
activity. However, new insights reveal the importance of other
glucose-related pathways, such as gluconeogenesis, the TCA
cycle and OXPHOS. Specific variations in the metabolism
of cancer depend not only on the genetic alterations but
also on environmental factors, such as vascularization and
the supply of oxygen and nutrients. Targeting the metabolic
differences between cancer and healthy cells may turn into a
novel, promising anticancer strategy. Several recent studies have
focused on targeting the cellular metabolic pathways in cancer
cells. However, pharmacologic studies are primarily carried out
using cell lines or xenograft models. To avoid the same types of
toxicity that plague the current chemotherapeutic regimens, the
toxic effects of inhibiting glycolytic enzymes in healthy cells needs
further investigation. Besides, due to the metabolic plasticity
exhibited by cancer cells, cancer cells could develop resistance
to inhibition of a particular pathway through upregulation of
alternative pathways, such as glutaminolysis and OXPHOS or
through interaction with neighboring cells that may also provide
precursors for their metabolic needs.
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