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Abstra
t

Surrogate endpoints need to be statisti
ally evaluated before they 
an be

used as substitutes of true endpoints in 
lini
al studies. However, even though

several evaluation methods have been introdu
ed over the last de
ades, the

identi�
ation of good surrogate endpoints remains pra
ti
ally and 
on
eptually


hallenging. In the present work, the question regarding the existen
e of a good

surrogate is addressed using information-theoreti
 
on
epts, within a 
ausal

inferen
e framework. The methodology 
an help pra
titioners to assess, given

a 
lini
ally relevant true endpoint and a treatment of interest, the 
han
es of

�nding a good surrogate endpoint in the �rst pla
e. The methodology fo
uses

on binary out
omes and is illustrated using data from the Initial Glau
oma

Treatment Study. Furthermore, a newly developed and user friendly R pa
kage

Surrogate is provided to 
arry out the ne
essary 
al
ulations.

Keywords: Causal inferen
e, Fano's inequality, Surrogate endpoints.
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1 Introdu
tion

Surrogate endpoints like 
holesterol, blood sugar levels, and blood pressure have

enabled pharma
euti
al 
ompanies and health professionals to 
arry out faster and

more e�
ient 
lini
al studies, for evaluating life-saving and health-promoting inter-

ventions. They have also improved our understanding of some disease pro
esses and

helped publi
 health authorities to identify and tra
k health 
on
erns (Mi
hel and

Ball, 2010).

However, the use of surrogate endpoints has been 
ontroversial as well. For instan
e,

long-term hormone repla
ement therapy signi�
antly lowered �bad� 
holesterol and

raised �good� 
holesterol in women but, at the same time, it in
reased their 
han
es of

heart atta
ks and strokes (Writing Group for the Women's Health Initiative, 2002).

These unfortunate events made 
lear that surrogate endpoints need to be evaluated

before they 
an be used as substitutes of true endpoints in 
lini
al studies and led to

the development of several evaluation strategies within the so-
alled 
ausal-inferen
e

and meta-analyti
 paradigms (Jo�e and Greene, 2009; Alonso et al., 2017).

In spite of important methodologi
al advan
es, the identi�
ation of good surrogate

endpoints remains extremely 
hallenging (Buyse et al., 2000, 2010). In fa
t, as pra
-

ti
e has shown, the evaluation of surrogate endpoints is often a strenuous pro
ess,

with respe
t to both the initial demonstration of a relationship between a putative

surrogate and the 
lini
al endpoint, and its subsequent statisti
al validation (Buyse

et al., 2010). Therefore, addressing the existen
e question should be an important

�rst step before embarking on the sear
h for a good surrogate marker and, obvi-

ously, the very meaning of �good� needs to be rigorously de�ned. Essentially, one

would like, given a 
lini
ally relevant true endpoint and a treatment of interest, to

assess the plausibility of �nding a good surrogate endpoint in the �rst pla
e. To our
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knowledge, little has been done to address this important issue. Alonso et al. (2015)

studied the existen
e problem in the setting in whi
h both endpoints are normally

distributed, but many other relevant s
enarios have not been investigated yet.

Methodologies have been developed for the evaluation of a binary out
ome as a

putative surrogate for a binary true endpoint (Gilbert and Hudgens, 2008; Li, Taylor

and Elliott, 2010; Elliott, Li and Taylor, 2013). Re
ently, Alonso et al. (2016a)

introdu
ed an information-theoreti
 metri
 of surroga
y in the binary-binary setting,

the so-
alled individual 
asual asso
iation (ICA), and addressed the identi�ability

issues using a two-step Monte Carlo pro
edure. However, the plausibility of �nding

a good surrogate in this important s
enario has not been studied yet. In the present

work, we address this important problem using information-theoreti
 
on
epts, more

spe
i�
ally, the so-
alled Fano's inequality.

In Se
tion 2, a 
ausal-inferen
e model is introdu
ed. In Se
tion 3, an information-

theoreti
 framework is presented to assess the likelihood of �nding a good surrogate

endpoint. The methodology presented in Se
tion 3 is applied in Se
tion 4 to ana-

lyze the likelihood of �nding a valid surrogate endpoint in the 
ontext of glau
oma

resear
h. Finally, some 
on
luding remarks are given in Se
tion 5.

2 Causal-inferen
e model

We will 
onsider the setting in whi
h both the true (T ) and surrogate (S) endpoints

are binary variables 
oded as 1 (0) when a bene�
ial out
ome is observed (not

observed) and only two treatments are under evaluation (Z = 0/1). In addition,

the standard stable unit treatment value assumption (SUTVA) will also be made

(Rubin , 1980).
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Based on the so-
alled Rubin's model for 
ausal inferen
e it will be assumed that

there exists, for ea
h patient, a four dimensional ve
tor of potential out
omes Y =

(T0, T1, S0, S1)
′
. The 
omponents T1, S1, T0 and S0 represent the out
omes for

the true and surrogate endpoint of an individual had he re
eived the treatment or


ontrol, respe
tively. In the following, the dis
ussion will be temporarily restri
ted

to the true endpoint, but similar arguments 
an be put forward for the surrogate

endpoint as well.

The bivariate distribution of the ve
tor of potential out
omes for the true endpoint

Y T = (T0, T1)
′
is parametrized by πT

ij = P (T0 = i, T1 = j) with i, j = 0, 1, and this

parametrization leads to the marginals πT
i. =

∑
j π

T
ij , π

T
.j =

∑
i π

T
ij . In pra
ti
e, only

one of the two potential out
omes T0 and T1 
an be observed and the distribution

of Y T is therefore not identi�able (Holland, 1986). More spe
i�
ally, the odds

ratio θT = πT
00 π

T
11/π

T
10 π

T
01 quantifying the asso
iation between the two potential

out
omes 
annot be inferred from the data. Unlike θT , the marginal probabilities

πT =
(
πT
0·
, πT

1·
, πT

·0
, πT

·1

)
′

are identi�able under fairly general 
onditions. In fa
t,

under SUTVA, T = ZT1 + (1− Z)T0 and if the treatment assignment me
hanism

is independent of the potential out
omes (Y T⊥Z), then πT
1· = E

(
T |Z = 0

)
with

πT
0·

= 1 − πT
1·
and πT

·1
= E

(
T |Z = 1

)
with πT

·0
= 1 − πT

·1
. Importantly, due to

the random treatment allo
ation, the aforementioned assumption of independen
e

Y T⊥Z 
an often be guaranteed in randomized 
lini
al trials. In addition, on
e the

odds ratio θT has been given a value, the full bivariate distribution of Y T 
an be

re
overed using πT (Pla
kett, 1965).

The individual 
ausal e�e
t of the treatment on the true endpoint 
an be de�ned

as ∆T = T1 − T0; it follows a multinomial distribution with parameters π∆T
i =

P (∆T = i) =
∑

pq π
T
pq, i = −1, 0, 1, where the sum is taken over all sub-indexes p, q

satisfying q − p = i. Although the distribution of ∆T is not generally identi�able
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from the data, on
e θT is �xed, it be
omes fully identi�able.

The potential out
omes Y S = (S0, S1)
′

an be similarly used to de�ne the individual


ausal treatment e�e
t on the surrogate ∆S and its distribution. The ve
tor of

individual 
ausal treatment e�e
ts ∆ = (∆T,∆S)′, whi
h follows the multinomial

distribution given in Table 1, is one of the fundamental 
on
epts needed to assess

the likelihood of �nding a good surrogate endpoint.

3 An information-theoreti
 framework

It has been argued that understanding the asso
iation between the 
ausal treatment

e�e
ts on the true and surrogate endpoint is 
riti
al to understanding the value of

a surrogate from a 
lini
al perspe
tive (Elliott, Li and Taylor, 2013). Along these

lines, Alonso et al. (2015) proposed to assess surroga
y using the so-
alled individual


ausal asso
iation (ICA). When both endpoints are 
ontinuous and normally dis-

tributed, these authors quanti�ed the ICA using the Pearson 
orrelation 
oe�
ient

ρ∆ = 
orr (∆T,∆S). However, when one moves way from the realm of normality,

assessing the asso
iation between the individual 
ausal treatment e�e
ts, in an intu-

itively appealing way, be
omes a more 
hallenging task. Alonso et al. (2016a) used

information-theoreti
 
on
epts to quantify the ICA when both endpoints are binary

out
omes. Although the te
hni
al details need to be worked out for every out
ome

type 
ombination, i.e., binary-binary, 
ontinuous-binary, among others, information

theory o�ers a 
on
eptual framework for the evaluation of surrogate endpoints a
ross

all these s
enarios.
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3.1 Information theory: Some important 
on
epts

Information theory deals with the study of problems 
on
erning 
omplex systems,

and has been applied in a variety of �elds su
h as modern 
ommuni
ation theory.

In spirit and 
on
epts, information theory has its mathemati
al roots 
onne
ted

to thermodynami
s and statisti
al me
hani
s. The 
on
ept of entropy, introdu
ed

by Shannon (1948), quanti�es the �epistemi
� un
ertainty or la
k of knowledge im-

plied by a distribution. Information and entropy are opposite 
on
epts, i.e., to gain

information is to lose un
ertainty by the same amount and, hen
e, their formal def-

initions di�er only in sign. For a dis
rete random variable Y with �nite support

{y1, y2, . . . , ym} and probability fun
tion P (Y = yi) = πi, entropy is de�ned as

H(Y ) = −EY [logP (Y )] = −
∑

i

πi log πi.

The joint and 
onditional entropies 
an be de�ned in a similarly way as H(X, Y ) =

−EX,Y [logP (X, Y )] andH(Y |X) = −EX [EY (logP (Y |X))], with P (x, y) and P (y|x)

denoting the joint and 
onditional probability fun
tions, respe
tively. Entropy is al-

ways non-negative and satis�es H(Y |X) ≤ H(Y ) for any pair of random variables

(X, Y ), with equality holding under independen
e. The foregoing inequality essen-

tially states that, as an average, un
ertainty on Y 
an only de
rease if additional

information (X) be
omes available. Furthermore, entropy is invariant under a bi-

je
tive transformation.

The mutual information I(X, Y ) quanti�es the amount of un
ertainty in Y , expe
ted

to be removed if the value of X were known, and it is de�ned as I(X, Y ) = H(Y )−

H(Y |X). Mutual information is always non-negative, zero if and only if X and

Y are independent, symmetri
, invariant under bije
tive transformations of X and

Y , and I(X,X) = H(X). It follows from the de�nitions of entropy and mutual
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information that

I(X, Y ) = H(X) +H(Y )−H(X, Y ) =
∑

x,y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
,

where P (x, y), P (x), and P (y) denote the joint and marginal probability fun
tions

of X and Y , respe
tively.

Fano's inequality is an important result in information theory that relates the proba-

bility of error in predi
ting a random variable Y , based on another random variable

X , to its 
onditional entropy H(Y |X). If Ỹ = f(X) is the predi
tion of Y and

Pe = P (Y 6= Ỹ ) denotes the probability of a predi
tion error, then Fano's inequality

states that

H(X|Y ) ≤ H(Pe) + Pe log(|X | − 1)

where X denotes the support of X , |X | is its 
ardinality and

H(Pe) = −Pe logPe − (1− Pe) log(1− Pe)

In the following se
tions these information-theoreti
 
on
epts will be applied to

answer important questions regarding the validity of a putative surrogate and the

likelihood of �nding a valid surrogate endpoint.

3.2 Individual 
ausal asso
iation: A review

Based on the previous 
on
epts, Alonso et al. (2016a) introdu
ed the following

information-theoreti
 measure of asso
iation to assess the ICA when both endpoints
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are binary out
omes

R2

H(∆T,∆S) =
I(∆T,∆S)

min
[
H(∆T ), H(∆S)

] , (1)

where the term in the numerator is given by

I(∆T,∆S) =
1∑

i,j=−1

π∆

ij log

(
π∆
ij

π∆T
i π∆S

j

)
,

and the denominator in (1) equals the minimum of the entropies of the individual


ausal treatment e�e
tsH(∆T ) =
∑

1

i=−1
π∆T
i log(π∆T

i ) andH(∆S) =
∑

1

j=−1
π∆S
j log(π∆S

j ).

The mutual information between both individual 
ausal treatment e�e
ts quanti�es

the amount of un
ertainty in∆T expe
ted to be removed if the value of ∆S be
omes

known and, hen
e, it seems sensible to assess surroga
y based on this information-

theoreti
 measure. A
tually, using some theoreti
al arguments, Alonso et al. (2016a)

showed that, at least in some s
enarios, the ICA may o�er a more 
oherent assess-

ment of surroga
y than other previously introdu
ed metri
s. Furthermore, it 
an

be shown that, under normality, the Pearson 
orrelation 
oe�
ient ρ∆ is a res
aled

version of the mutual information.

The ICA, as given in (1), 
an also be interpreted as a measure of predi
tion a

u-

ra
y, i.e., a measure of how a

urately one 
an predi
t the 
ausal treatment e�e
t

on the true endpoint for a given individual, using his 
ausal treatment e�e
t on

the surrogate. Indeed, Alonso et al. (2016a) showed that R2
H(∆T,∆S) is invari-

ant under one-to-one transformations and that it always lies in the unit interval,

taking value zero when ∆T and ∆S are independent and value one when there is

a nontrivial transformation ψ so that P
[
∆T = ψ(∆S)

]
= 1. Consequently, when

R2
H(∆T,∆S) = 1, there exists a deterministi
 relationship between both individual



10


ausal treatment e�e
ts, namely ∆T = ψ(∆S), and ∆S predi
ts ∆T without error.

In addition, when R2
H(∆T,∆S) = 0 both individual 
ausal treatment e�e
ts are in-

dependent and no meaningful predi
tions are possible. In the following se
tion, this

relationship between the ICA and predi
tion will be used to develop an approa
h

to evaluate the existen
e problem, i.e., to assess the likelihood of �nding a good

surrogate endpoint in the �rst pla
e.

3.3 Is there a good surrogate?

As stated in se
tion 1, before addressing the existen
e question, one �rst needs to

re�e
t on the very meaning of the term �good� surrogate endpoint. Although this

term is still the subje
t of s
ienti�
 debate, it has been argued that good surrogate

endpoints should be able to predi
t the 
ausal treatment e�e
t on the true endpoint

and many attempts have been made in the literature to evaluate their potential pre-

di
tive value (Alonso et al., 2017; Buyse et al., 2000; Alonso and Molenberghs, 2007;

Gilbert and Hudgens, 2008; Alonso, Van der Elst and Meyvis
h, 2016b). When both

endpoints are normally distributed, Alonso et al. (2015) proposed a methodology to

assess the possibility of �nding a good surrogate, where �good� was de�ned in terms

of the mean squared error of the predi
tion of the individual 
ausal treatment e�e
t

on the true endpoint, using the individual 
ausal treatment e�e
t on the surrogate.

However, when both endpoints are binary, the individual 
ausal treatment e�e
ts

are 
ategori
al variables and the use of the predi
tion mean squared error be
omes

less appropriate. In the following, an information-theoreti
 approa
h is proposed to

assess the plausibility of �nding a good surrogate when both endpoints are binary.

The method de�nes �good� in terms of the probability of a predi
tion error and it

is based on Fano's inequality.
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In the surrogate marker 
ontext, when both endpoints are binary, one wants to

predi
t the individual 
ausal treatment e�e
t on the true endpoint ∆T , based on the

individual 
ausal treatment e�e
t on the surrogate ∆S. Let g be a general predi
tion

fun
tion and ∆̃T = g(∆S) denote the predi
ted individual 
ausal treatment e�e
t

on the true endpoint. The probability of a predi
tion error 
an be de�ned as Pe =

P
(
∆̃T 6= ∆T

)
. Using Fano's inequality it 
an easily be shown that

H (Pe) + Pe log
(
|∆T | − 1

)
≥ H(∆T )−min

[
H(∆T ), H(∆S)

]
R2

H (2)

where |∆T | denotes the 
ardinality of the support of ∆T and the fun
tion H is

given by H (Pe) = −Pe log (Pe) − (1− Pe) log(1 − Pe). Some insight 
an be gained

by 
onsidering the fun
tion f (Pe) = H (Pe) + Pe log
(
|∆T | − 1

)
. It 
an easily be

shown that the �rst derivative df/dPe takes positive values if and only if Pe ≤
(
|∆T | − 1

)
/|∆T |. In the present setting |∆T | is equal to 2 or 3 and, 
onsequently,

f will always be an in
reasing fun
tion if Pe ≤ 0.5. If one �xes an upper bound for

the predi
tion error, say δ, then in pra
ti
e one would only be interested in surrogate

endpoints for whi
h Pe ≤ δ ≤ 0.5. Due to the monotoni
ity of f in this region from

(2) one �nds that if Pe ≤ δ ≤ 0.5 then

R2

H ≥
H(∆T )− f(δ)

min
[
H(∆T ), H(∆S)

] ≥ 1−
f(δ)

H(∆T )
= R2

HL (3)

Noti
e that R2

HL does not depend on the surrogate. A
tually, R2

HL 
an be seen as an

intrinsi
 property of the true-endpoint-treatment pair and, in pra
ti
e, it 
ould be

used to assess the plausibility of �nding a good surrogate endpoint. In fa
t, suppose

that one would be willing to use a surrogate only if the probability of a predi
tion

error P
(
∆̃T 6= ∆T

)
≤ δ = 0.3 , i.e., the surrogate may lead to wrong predi
tions in

at most 30% of the 
ases. Suppose further that for δ = 0.3 the R2
HL = 0.9, then one
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would need to �nd a surrogate endpoint that produ
es a R2
H of at least 90% in order

to keep the risk of a predi
tion error smaller than 0.3. Arguably, su
h a surrogate

endpoint may be di�
ult to �nd. On the other hand, if for δ = 0.3 a R2
HL = 0.6

is obtained then surrogate endpoints with a R2

H of at least 60% may be 
apable of

keeping the risk of a predi
tion error smaller than the pre-spe
i�ed δ. Therefore,

although a R2
HL = 0.6 does not guarantee that a good surrogate endpoint exists, it


ertainly makes its existen
e more plausible.

Some important insights 
an be obtained from the analysis of the R2

HL. For instan
e,

limδ→0R
2

HL = 1 and, hen
e, the smaller the risk one is willing to take regarding the

predi
tion error, the more di�
ult it will be to �nd a suitable surrogate. Impor-

tantly, Fano's inequality and the R2
HL allow the data analyst to visualize the balan
e

between the risk he is willing to take when using the surrogate and the plausibility

of �nding a surrogate for that level of risk.

3.4 Identi�ability issues

When assessing R2
HL, one fa
es the problem that neither the distribution of ∆T nor

its entropy are identi�able from the data, without making untestable assumptions

about the asso
iation between the potential out
omes for the true endpoint θT . For

instan
e, if monotoni
ity is assumed for the true endpoint P (T0 > T1) = πT
10

= 0 (or

equivalently θT = ∞), then the distribution of ∆T be
omes identi�able and, hen
e,

H(∆T ) and R2
HL be
ome identi�able as well. However, the use of identi�ability


onditions raises some pra
ti
al problems. In fa
t, often there is not enough subje
t

spe
i�
 knowledge to assess the validity of the identi�ability assumptions and, in

general, they 
an be neither proven nor disproven based on the data.

Therefore, a sensitivity analysis may be a more meaningful strategy to handle
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unidenti�ability in this type of situations. Basi
ally, one would like to study the

behavior of R2
HL a
ross all s
enarios 
ompatible with the data at hand. To that

end, noti
e that the entropy of the individual 
ausal treatment e�e
t on the true

endpoint H(∆T ) 
an be written as a fun
tion of πT
10
. Indeed,

H(πT
10) = πT

10 log π
T
10 + (1− λm − 2πT

10) log(1− λm − 2πT
10) + (πT

10 + λm) log(π
T
10 + λm)

with πT
10 in [0,min(πT

1·, π
T
·0)] and λm = πT

.1 − πT
1.. Under SUTVA, if one further

assumes that the treatment assignment me
hanism is independent of the poten-

tial out
omes, then λm be
omes the identi�able expe
ted 
ausal treatment e�e
t

typi
ally estimated in 
lini
al trials. Substituting πT
1·
and πT

·0
by their maximum

likelihood estimates and plugging H(πT
10) into the right side of the last inequality

in (3), one obtains R2
HL as a fun
tion of πT

10
. A plot of this fun
tion on the interval

[0,min(πT
1·
, πT

·0
)] would allow to assess the behavior of the R2

HL a
ross all s
enarios


ompatible with the data.

The previous approa
h 
an also naturally in
orporate expert opinion in 
ases where

it is available. In fa
t, πT
10

has a 
lear 
lini
al interpretation, i.e., it quanti�es the

probability that a patient would have a better response under the 
ontrol than under

the new treatment. In some s
enarios subje
t-spe
i�
 knowledge 
ould be used to

de�ne 
lini
ally meaningful bounds for this probability, for instan
e, do
tors may

assess that 0.1 ≤ πT
10

≤ 0.2. Analyzing the behavior of R2
HL on this interval, one


ould evaluate the plausibility of �nding a good surrogate endpoint, using only the

values of R2

HL that are in agreement with the 
lini
ally meaningful values of πT
10
.

Although appealing, the previous implementation of the sensitivity analysis does

not take into a

ount the sampling variability in the estimates of πT
1· and πT

·0. To

solve this problem, along the lines presented in Alonso et al. (2016a), the following
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sampling algorithm 
an then be used

From k = 1 until M do

1. Uniformly sample a value for πT
1·
and πT

·0
from their 
orresponding 95% 
on�-

den
e intervals I95(π
T
1·
), I95(π

T
·0
)

2. Based on the πT
1· and π

T
·0 sampled in step 1, uniformly sample a value for πT

10

on the interval [0,min(πT
1·, π

T
·0)]

3. Based on the πT
10

sampled in step 2 and the πT
1·
and πT

·0
sampled in step 1


ompute all the others πT
ij = P (T0 = i, T1 = j)

4. Based on the distribution of Y T obtained in step 3 
al
ulate the distribution

of ∆T using the expressions π∆T
−1

= πT
10
, π∆T

0
= πT

00
+ πT

11
and π∆T

1
= πT

01

5. Based on step 4 
al
ulate the H(∆T ) as

H(∆T ) = πT
10
log πT

10
+ (πT

00
+ πT

11
) log(πT

00
+ πT

11
) + (πT

10
) log(πT

10
)

6. Compute R2
HL

This algorithm produ
es a frequen
y distribution for R2
HL. This distribution takes

into a

ount both the un
ertainty indu
ed by the la
k of identi�ability of the distri-

bution of Y T and the sampling variability in the estimates of πT
1·
and πT

·0
. Basi
ally,

this frequen
y distribution 
hara
terizes the behavior of R2

HL a
ross all settings 
om-

patible with the data, i.e., all settings 
ompatible with πT . Given that all points in

[0,min(πT
1·
, πT

·0
)] are equally 
ompatible with the data at hand, the use of a uniform

distribution to sample πT
10
is the most natural 
hoi
e. The behavior of R2

HL 
an then

be visualized using graphi
al te
hniques like histograms and/or summarized using

measures of 
entral tenden
y like, for instan
e, the mean and the median, among

others.
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As stated before, using a uniform sampling s
heme on the 
on�den
e intervals asso
i-

ated with πT
1·
and πT

·0
is intuitively appealing, however, there is a level of arbitrariness

in this 
hoi
e. Alternatively, one 
ould use a standard normal distribution 
entered

at π̂T
1·
and π̂T

·0
and with standard deviations equal to the asso
iated standard errors.

A beta distribution obtained from a �at or Je�reys prior on these probabilities will

also make theoreti
al and pra
ti
al sense. Studying the performan
e of these alter-

native methods via simulations and real examples goes beyond the s
ope of these

manus
ript and will be the fo
us of future resear
h.

In the following se
tion the previous ideas will be applied to analyze the likelihood

of �nding a valid surrogate endpoint in the 
ontext of glau
oma resear
h.

4 Collaborative Initial Glau
oma Treatment Study

A pra
ti
al limitation often en
ountered when validating surrogate endpoints is the

la
k of user friendly software to 
arry out the analysis. All the analyses presented in

this manus
ript 
an be 
arried out using the R pa
kage Surrogate, freely available

at CRAN. For 
on
iseness, in the following only a summary of the main results is

provided and no referen
e to the software is made. However, in the Supplementary

Materials a

ompanying the paper (available from the authors) a more detailed

analysis is provided and the implementation in R dis
ussed.

The Collaborative Initial Glau
oma Treatment Study (CIGTS) was a randomized


lini
al trial 
omparing the e�
a
y of surgery versus a 
onventional therapy in the

treatment of patients su�ering from glau
oma. The study in
luded 228 patients

of whom 102 re
eived the new treatment and 126 the 
onventional therapy. Both

treatments were intended to bring intrao
ular pressure (IOP) down to less than 18
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mm Hg. The surrogate endpoint was de�ned in terms of IOP at 12 months and the

true endpoint at 96 months. S and T were equal to 1 if IOP was less than 18 mm

Hg and to 0 otherwise (Mus
h et al., 1999; Li et al., 2011).

Alonso et al. (2016a) 
arried out a detailed analysis of these data and 
on
luded that

IOP after 1 year seemed to be a poor surrogate for IOP after 8 years. However, the

question remains regarding the existen
e of a good surrogate endpoint for IOP after 8

years in the �rst pla
e. First of all, one needs to de�ne what is understood by a good

surrogate endpoint in terms of predi
tion error. We 
onsidered three upper bounds

δ = 0.05, 0.1 and 0.2, for the probability of a predi
tion error P
(
∆̃T 6= ∆T

)
≤ δ,

where ∆̃T = g(∆S) and g a general predi
tion fun
tion. For ea
h of these values,

the algorithm des
ribed in se
tion 3.3 was applied and the 
orresponding frequen
y

distributions of R2

HL were obtained. Figure 1 (left) summarizes the main results

when monotoni
ity is not assumed. Expe
tedly, δ = 0.05 led to higher values of

R2
HL and, 
onsequently, large values of R2

H are needed to a
hieve this pre-spe
i�ed

risk level. In fa
t, when δ = 0.05, R2
HL ≥ 0.63 for 80% of the generated Y T

distributions. A
tually, the mean and median of R2

HL equaled 0.69 and 0.71 in this

s
enario, respe
tively. Clearly, if one wants to keep the risk of a predi
tion error

smaller than 5% then one may need to �nd a surrogate endpoint whi
h produ
es

a large individual 
ausal asso
iation. Noti
e that a large R2
H implies an almost

deterministi
 relationship between ∆T and ∆S. Therefore, although not impossible,


ommon sense suggests that �nding a surrogate that produ
es a high ICA will likely

be a more daunting task than �nding a surrogate that produ
es a moderate or small

ICA.

Let us now 
onsider δ = 0.1, i.e., the surrogate may lead to wrong predi
tions in at

most 10% of the 
ases. This in
reased risk is translated into smaller values of R2

HL.

Indeed, R2
HL ≤ 0.58 for 80% of the generated Y T distributions and R2

HL ≤ 0.61
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for all of them. The mean and median of R2
HL equaled 0.47 and 0.51, respe
tively.

Even though the previous analysis does not guarantee the existen
e of a good binary

surrogate endpoint in this s
enario, it does suggest that �nding a surrogate that

a
hieved the pre-spe
i�ed risk level may be more likely in this setting than in the

previous one. Ultimately, the data analyst will have to �nd a balan
e between the

risk level he is willing to a

ept and the likelihood of �nding a good surrogate for

that level of risk.

It is important to point out that, in some 
ases, large values of δ produ
ed neg-

ative values of R2

HL and Fano's inequality led to the trivial inequality R2

H ≥ 0.

This be
omes apparent in the peaks observed at zero in the frequen
y distributions

obtained for δ = 0.2. In these 
ases the results of the analysis are 
learly uninfor-

mative. However, at an intuitive level, one may expe
t that if the predi
tion error


omes 
lose to 50% (the tossing 
oin s
enario) then almost any surrogate will be


apable of rea
hing this risk level.

Figure 1 (right) displays the relationship between R2
HL and πT

10
for the di�erent δ

values. It is important to point out that, unlike the previous analysis, this graph

does not take into a

ount the sampling variability in the estimates of πT
1· and π

T
·0.

Nonetheless, the results are rather similar, i.e., the smaller the risk (δ) the larger

the ICA. For δ = 0.05 the ICA ranges from about 0.5 for smaller values of πT
10

till

values 
lose to 0.8 when πT
10

approa
hes 0.20. On the other hand for δ = 0.1 the

ICA is always smaller than 0.4 irrespe
tively of the value of πT
10.

The previous analysis suggests that �nding a binary surrogate endpoint with a

probability of predi
tion error under 5% may be a 
hallenging task, however, if a

10% risk is 
onsidered a

eptable then the 
han
es of su

ess may be substantially

larger. Obviously, other 
lini
al 
onsiderations need to be brought into the dis
ussion
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as well, but the previous analysis of R2
HL 
learly o�ers a useful quantitative element

for the de
ision making pro
ess.

5 Con
lusions

Using information-theoreti
 elements a pro
edure was introdu
ed to assess the like-

lihood of �nding a good surrogate when both endpoints are binary. The method

relates the probability of a predi
tion error with the ICA, i.e., the asso
iation be-

tween the individual 
ausal treatment e�e
ts. Measures of asso
iation, like the ICA,

are easy to interpret and data analysts have a lot of experien
e working with them.

Basi
ally, the methodology gives a quantitative framework to evaluate the relation-

ship between the risk one is willing to take when using a surrogate endpoint and

the likelihood of �nding a surrogate that a
hieved that level of risk. Obviously, it

is a pro
ess that will require not only statisti
al 
onsiderations but also 
lini
al and

pra
ti
al elements will often be taken into a

ount. In general, the assessment of

the possibility of �nding a good surrogate will not be exempt of a 
ertain degree of

subje
tivity and, hen
e, the availability of quantitative elements, like the R2
HL, may

be of great valuable during the de
ision making pro
ess.

The need for su
h a methodology is further motivated by the fa
t that the evalu-

ation of surrogate endpoints is a 
hallenging task. For instan
e, the validity of a

surrogate for a given true endpoint is treatment dependent. In fa
t, stri
tly speak-

ing, an out
ome like progression free survival (PFS) would need to be evaluated

as a putative surrogate for overall survival (OS) for every new treatment. In addi-

tion, the evaluation exer
ise frequently requires large amount of data. A
tually, the

most widely a

epted methodology for the evaluation of surrogate endpoints, the so-


alled, meta-analyti
 approa
h requires the use of information on both the true and
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surrogate endpoint from several 
lini
al trials. Methods that need less information

are available, but they are often predi
ated on untestable assumptions.

In general, even when validated surrogates are used, predi
ting the treatment e�e
t

on the true endpoint, based on the treatment e�e
t on a surrogate, will always 
on-

vey 
ertain level of risk. That is the reason why regulatory agen
ies from around

the globe have framed the use of surrogate endpoints in the drug dis
overy pro
ess

by implementing various provisions and poli
ies. For example, in the United States,

there are me
hanisms available for a

elerated approval based on surrogate end-

points, in order to redu
e the time to review an appli
ation for indi
ations with no

known e�e
tive therapy and for providing a

ess to patients for non-approved drugs.

A

elerated approval (sometimes referred to as �
onditional approval� or �Subpart

H�) refers to an a

eleration of the overall development plan by allowing submission

of an appli
ation, and if approved, marketing of a drug on the basis of surrogate

endpoints while further studies demonstrating dire
t patient bene�t are underway.

A

elerated approval is limited to diseases where no e�e
tive therapies exist and is

based on a surrogate endpoint likely to predi
t 
lini
al bene�t. The implementa-

tion of these �
onditional approval� poli
ies tries to redu
e the potentially harmful


onsequen
es of using a surrogate endpoints in the 
on�rmatory stage, while taking

advantage of their 
apa
ity to a

elerate the overall development plan.

Assessing the likelihood of �nding a good surrogate in other important settings

like, for instan
e, the 
ontinuous-binary, survival-survival, among others, need to be

studied as well. They will be the subje
t of future resear
h.
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Table 1: Distribution of ∆ = (∆T,∆S)′.

∆S

−1 0 1

∆T

−1 π∆
−1−1

π∆
−10

π∆
−11

π∆T
−1

0 π∆
0−1 π∆

00 π∆
01 π∆T

0

1 π∆
1−1

π∆
10

π∆
11

π∆T
1

π∆S
−1 π∆S

0 π∆S
1 1
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Figure 1: R2
HL when monotoni
ity is not assumed (left) and R2

HL versus πT
10 (right).


