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Abstract

Surrogate endpoints need to be statistically evaluated before they can be
used as substitutes of true endpoints in clinical studies. However, even though
several evaluation methods have been introduced over the last decades, the
identification of good surrogate endpoints remains practically and conceptually
challenging. In the present work, the question regarding the existence of a good
surrogate is addressed using information-theoretic concepts, within a causal
inference framework. The methodology can help practitioners to assess, given
a clinically relevant true endpoint and a treatment of interest, the chances of
finding a good surrogate endpoint in the first place. The methodology focuses
on binary outcomes and is illustrated using data from the Initial Glaucoma
Treatment Study. Furthermore, a newly developed and user friendly R package

Surrogate is provided to carry out the necessary calculations.
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1 Introduction

Surrogate endpoints like cholesterol, blood sugar levels, and blood pressure have
enabled pharmaceutical companies and health professionals to carry out faster and
more efficient clinical studies, for evaluating life-saving and health-promoting inter-
ventions. They have also improved our understanding of some disease processes and
helped public health authorities to identify and track health concerns (Michel and
Ball, 2010).

However, the use of surrogate endpoints has been controversial as well. For instance,
long-term hormone replacement therapy significantly lowered “bad” cholesterol and
raised “good” cholesterol in women but, at the same time, it increased their chances of
heart attacks and strokes (Writing Group for the Women’s Health Initiative, 2002).
These unfortunate events made clear that surrogate endpoints need to be evaluated
before they can be used as substitutes of true endpoints in clinical studies and led to
the development of several evaluation strategies within the so-called causal-inference

and meta-analytic paradigms (Joffe and Greene, 2009; Alonso et al., 2017).

In spite of important methodological advances, the identification of good surrogate
endpoints remains extremely challenging (Buyse et al., 2000, 2010). In fact, as prac-
tice has shown, the evaluation of surrogate endpoints is often a strenuous process,
with respect to both the initial demonstration of a relationship between a putative
surrogate and the clinical endpoint, and its subsequent statistical validation (Buyse
et al., 2010). Therefore, addressing the existence question should be an important
first step before embarking on the search for a good surrogate marker and, obvi-
ously, the very meaning of “good” needs to be rigorously defined. Essentially, one
would like, given a clinically relevant true endpoint and a treatment of interest, to

assess the plausibility of finding a good surrogate endpoint in the first place. To our



knowledge, little has been done to address this important issue. Alonso et al. (2015)
studied the existence problem in the setting in which both endpoints are normally

distributed, but many other relevant scenarios have not been investigated yet.

Methodologies have been developed for the evaluation of a binary outcome as a
putative surrogate for a binary true endpoint (Gilbert and Hudgens, 2008; Li, Taylor
and Elliott, 2010; Elliott, Li and Taylor, 2013). Recently, Alonso et al. (2016a)
introduced an information-theoretic metric of surrogacy in the binary-binary setting,
the so-called individual casual association (ICA), and addressed the identifiability
issues using a two-step Monte Carlo procedure. However, the plausibility of finding
a good surrogate in this important scenario has not been studied yet. In the present
work, we address this important problem using information-theoretic concepts, more

specifically, the so-called Fano’s inequality.

In Section 2, a causal-inference model is introduced. In Section 3, an information-
theoretic framework is presented to assess the likelihood of finding a good surrogate
endpoint. The methodology presented in Section 3 is applied in Section 4 to ana-
lyze the likelihood of finding a valid surrogate endpoint in the context of glaucoma

research. Finally, some concluding remarks are given in Section 5.

2 Causal-inference model

We will consider the setting in which both the true (T") and surrogate (S) endpoints
are binary variables coded as 1 (0) when a beneficial outcome is observed (not
observed) and only two treatments are under evaluation (Z = 0/1). In addition,
the standard stable unit treatment value assumption (SUTVA) will also be made

(Rubin , 1980).



Based on the so-called Rubin’s model for causal inference it will be assumed that
there exists, for each patient, a four dimensional vector of potential outcomes Y =
(To, T4, So, S1)’. The components Ty, Sy, Ty and Sy represent the outcomes for
the true and surrogate endpoint of an individual had he received the treatment or
control, respectively. In the following, the discussion will be temporarily restricted
to the true endpoint, but similar arguments can be put forward for the surrogate

endpoint as well.

The bivariate distribution of the vector of potential outcomes for the true endpoint
Y = (To, T1) is parametrized by n); = P (Ty =i, Ty = j) with ¢,j = 0,1, and this
parametrization leads to the marginals 7/ = >~ @}, 7% = 37, w;. In practice, only
one of the two potential outcomes Ty and T} can be observed and the distribution
of Y is therefore not identifiable (Holland, 1986). More specifically, the odds
ratio Op = wly 7l /7ly md; quantifying the association between the two potential
outcomes cannot be inferred from the data. Unlike 67, the marginal probabilities
wr = (7. ,W{,Tr%,ﬂ'?{)l are identifiable under fairly general conditions. In fact,
under SUTVA, T'=ZT; + (1 — Z)T, and if the treatment assignment mechanism
is independent of the potential outcomes (Y7L1Z), then n{. = E (T|Z = 0) with
7l =1—7l and 7} = E (T|Z = 1) with 75 = 1 — 7. Importantly, due to
the random treatment allocation, the aforementioned assumption of independence
Y 1 Z can often be guaranteed in randomized clinical trials. In addition, once the
odds ratio 67 has been given a value, the full bivariate distribution of Y can be
recovered using 7r (Plackett, 1965).

The individual causal effect of the treatment on the true endpoint can be defined

as AT = T, — Ty; it follows a multinomial distribution with parameters 727 =

P (AT =1i) = qu 7rgq, i = —1,0,1, where the sum is taken over all sub-indexes p, ¢

satisfying ¢ — p = 7. Although the distribution of AT is not generally identifiable



from the data, once 67 is fixed, it becomes fully identifiable.

The potential outcomes Y g = (Sp, S1)’ can be similarly used to define the individual
causal treatment effect on the surrogate AS and its distribution. The vector of
individual causal treatment effects A = (AT, AS)’, which follows the multinomial
distribution given in Table 1, is one of the fundamental concepts needed to assess

the likelihood of finding a good surrogate endpoint.

3 An information-theoretic framework

It has been argued that understanding the association between the causal treatment
effects on the true and surrogate endpoint is critical to understanding the value of
a surrogate from a clinical perspective (Elliott, 1i and Taylor, 2013). Along these
lines, Alonso et al. (2015) proposed to assess surrogacy using the so-called individual
causal association (ICA). When both endpoints are continuous and normally dis-
tributed, these authors quantified the ICA using the Pearson correlation coefficient
pa = corr (AT, AS). However, when one moves way from the realm of normality,
assessing the association between the individual causal treatment effects, in an intu-
itively appealing way, becomes a more challenging task. Alonso et al. (2016a) used
information-theoretic concepts to quantify the ICA when both endpoints are binary
outcomes. Although the technical details need to be worked out for every outcome
type combination, i.e., binary-binary, continuous-binary, among others, information
theory offers a conceptual framework for the evaluation of surrogate endpoints across

all these scenarios.



3.1 Information theory: Some important concepts

Information theory deals with the study of problems concerning complex systems,
and has been applied in a variety of fields such as modern communication theory.
In spirit and concepts, information theory has its mathematical roots connected
to thermodynamics and statistical mechanics. The concept of entropy, introduced
by Shannon (1948), quantifies the “epistemic” uncertainty or lack of knowledge im-
plied by a distribution. Information and entropy are opposite concepts, i.e., to gain
information is to lose uncertainty by the same amount and, hence, their formal def-
initions differ only in sign. For a discrete random variable Y with finite support

{y1, Y2, -.,ym} and probability function P(Y = y;) = m;, entropy is defined as
H(Y) = —Eyllog P(Y)] = = ) " m;logm;.

The joint and conditional entropies can be defined in a similarly way as H(X,Y) =
—Exyllog P(X,Y)]and H(Y|X) = —Ex[Ey(log P(Y|X))], with P(z, y) and P(y|z)
denoting the joint and conditional probability functions, respectively. Entropy is al-
ways non-negative and satisfies H(Y|X) < H(Y) for any pair of random variables
(X,Y), with equality holding under independence. The foregoing inequality essen-
tially states that, as an average, uncertainty on Y can only decrease if additional
information (X) becomes available. Furthermore, entropy is invariant under a bi-

jective transformation.

The mutual information 7(.X,Y') quantifies the amount of uncertainty in Y, expected
to be removed if the value of X were known, and it is defined as I(X,Y) = H(Y) —
H(Y|X). Mutual information is always non-negative, zero if and only if X and
Y are independent, symmetric, invariant under bijective transformations of X and

Y, and I(X,X) = H(X). It follows from the definitions of entropy and mutual



information that

P(z,y)
I(X,Y)=HX)+HY) - HX,Y) =S P(z,y 1og(7),
(X¥) = HX) + 1) = H06Y) = 3 Pleaos (s
where P(x,y), P(x), and P(y) denote the joint and marginal probability functions

of X and Y, respectively.

Fano’s inequality is an important result in information theory that relates the proba-
bility of error in predicting a random variable Y, based on another random variable
X, to its conditional entropy H(Y|X). If Y = f(X) is the prediction of ¥ and
P.=P(Y # f/) denotes the probability of a prediction error, then Fano’s inequality
states that

H(X|Y) < H(P,) + P.log(|X| - 1)

where X denotes the support of X, |X| is its cardinality and
H(P.)=—P.log P, — (1 — P.)log(1 — P.)

In the following sections these information-theoretic concepts will be applied to
answer important questions regarding the validity of a putative surrogate and the

likelihood of finding a valid surrogate endpoint.

3.2 Individual causal association: A review

Based on the previous concepts, Alonso et al. (2016a) introduced the following

information-theoretic measure of association to assess the ICA when both endpoints



are binary outcomes

I(AT, AS)
min [H(AT), H(AS)]’

R%(AT,AS) =

where the term in the numerator is given by

1 A
T

ij=—1 ¢

and the denominator in (1) equals the minimum of the entropies of the individual

causal treatment effects H(AT) = Y21 727 log(72T) and H(AS) = Z;:fl 75 log(m?).

)

The mutual information between both individual causal treatment effects quantifies
the amount of uncertainty in AT expected to be removed if the value of AS becomes
known and, hence, it seems sensible to assess surrogacy based on this information-
theoretic measure. Actually, using some theoretical arguments, Alonso et al. (2016a)
showed that, at least in some scenarios, the ICA may offer a more coherent assess-
ment of surrogacy than other previously introduced metrics. Furthermore, it can
be shown that, under normality, the Pearson correlation coefficient pa is a rescaled

version of the mutual information.

The ICA, as given in (1), can also be interpreted as a measure of prediction accu-
racy, i.e., a measure of how accurately one can predict the causal treatment effect
on the true endpoint for a given individual, using his causal treatment effect on
the surrogate. Indeed, Alonso et al. (2016a) showed that R%(AT,AS) is invari-
ant under one-to-one transformations and that it always lies in the unit interval,
taking value zero when AT and AS are independent and value one when there is
a nontrivial transformation ¢ so that P [AT = w(AS)] = 1. Consequently, when

R%(AT,AS) = 1, there exists a deterministic relationship between both individual
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causal treatment effects, namely AT = ¢(AS), and AS predicts AT without error.
In addition, when R% (AT, AS) = 0 both individual causal treatment effects are in-
dependent and no meaningful predictions are possible. In the following section, this
relationship between the ICA and prediction will be used to develop an approach
to evaluate the existence problem, i.e., to assess the likelihood of finding a good

surrogate endpoint in the first place.

3.3 Is there a good surrogate?

As stated in section 1, before addressing the existence question, one first needs to
reflect on the very meaning of the term “good” surrogate endpoint. Although this
term is still the subject of scientific debate, it has been argued that good surrogate
endpoints should be able to predict the causal treatment effect on the true endpoint
and many attempts have been made in the literature to evaluate their potential pre-
dictive value (Alonso et al., 2017; Buyse et al., 2000; Alonso and Molenberghs, 2007;
Gilbert and Hudgens, 2008; Alonso, Van der Elst and Meyvisch, 2016b). When both
endpoints are normally distributed, Alonso et al. (2015) proposed a methodology to
assess the possibility of finding a good surrogate, where “good” was defined in terms
of the mean squared error of the prediction of the individual causal treatment effect
on the true endpoint, using the individual causal treatment effect on the surrogate.
However, when both endpoints are binary, the individual causal treatment effects
are categorical variables and the use of the prediction mean squared error becomes
less appropriate. In the following, an information-theoretic approach is proposed to
assess the plausibility of finding a good surrogate when both endpoints are binary.
The method defines “good” in terms of the probability of a prediction error and it

is based on Fano’s inequality.
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In the surrogate marker context, when both endpoints are binary, one wants to
predict the individual causal treatment effect on the true endpoint AT, based on the
individual causal treatment effect on the surrogate AS. Let g be a general prediction
function and AT = g(AS) denote the predicted individual causal treatment effect
on the true endpoint. The probability of a prediction error can be defined as P, =

P (Kf + AT). Using Fano’s inequality it can easily be shown that
H (P.) + P.log (|AT| — 1) > H(AT) — min [H(AT), H(AS)] R}, (2)

where |AT| denotes the cardinality of the support of AT and the function H is
given by H (P,) = —P.log (P.) — (1 — P.)log(1 — P.). Some insight can be gained
by considering the function f(P.) = H (P.) + P.log (|AT| —1). Tt can easily be
shown that the first derivative df /dP, takes positive values if and only if P, <
(JAT| —1) /|AT|. In the present setting AT is equal to 2 or 3 and, consequently,
f will always be an increasing function if P, < 0.5. If one fixes an upper bound for
the prediction error, say ¢, then in practice one would only be interested in surrogate
endpoints for which P, < § < 0.5. Due to the monotonicity of f in this region from

(2) one finds that if P, < ¢ < 0.5 then

HAT) - 1) | _f()

min [H(AT), H(AS)] ~ H(AT)

Ry

v

= R%{L (3)

Notice that R%; does not depend on the surrogate. Actually, R%, can be seen as an
intrinsic property of the true-endpoint-treatment pair and, in practice, it could be
used to assess the plausibility of finding a good surrogate endpoint. In fact, suppose
that one would be willing to use a surrogate only if the probability of a prediction
error P (ZT #+ AT) <9 =0.3, i.e., the surrogate may lead to wrong predictions in

at most 30% of the cases. Suppose further that for 6 = 0.3 the R%; = 0.9, then one
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would need to find a surrogate endpoint that produces a R% of at least 90% in order
to keep the risk of a prediction error smaller than 0.3. Arguably, such a surrogate
endpoint may be difficult to find. On the other hand, if for § = 0.3 a R%; = 0.6
is obtained then surrogate endpoints with a R% of at least 60% may be capable of
keeping the risk of a prediction error smaller than the pre-specified §. Therefore,
although a R%, = 0.6 does not guarantee that a good surrogate endpoint exists, it

certainly makes its existence more plausible.

Some important insights can be obtained from the analysis of the R, . For instance,
lims_,o R%,; = 1 and, hence, the smaller the risk one is willing to take regarding the
prediction error, the more difficult it will be to find a suitable surrogate. Impor-
tantly, Fano’s inequality and the R%, allow the data analyst to visualize the balance
between the risk he is willing to take when using the surrogate and the plausibility

of finding a surrogate for that level of risk.

3.4 Identifiability issues

When assessing R%, one faces the problem that neither the distribution of AT nor
its entropy are identifiable from the data, without making untestable assumptions
about the association between the potential outcomes for the true endpoint 6r. For
instance, if monotonicity is assumed for the true endpoint P(Ty > Ty) = 7l = 0 (or
equivalently 67 = co), then the distribution of AT becomes identifiable and, hence,
H(AT) and R%, become identifiable as well. However, the use of identifiability
conditions raises some practical problems. In fact, often there is not enough subject
specific knowledge to assess the validity of the identifiability assumptions and, in

general, they can be neither proven nor disproven based on the data.

Therefore, a sensitivity analysis may be a more meaningful strategy to handle
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unidentifiability in this type of situations. Basically, one would like to study the
behavior of R%; across all scenarios compatible with the data at hand. To that
end, notice that the entropy of the individual causal treatment effect on the true

endpoint H(AT) can be written as a function of 7. Indeed,

H(W%) = 7T1T0 log W% +(1=An— 27?{0) log(1— A\, — 27?{0) + (7{0 + A\n) log(ﬂlTO + )

with 77, in [0, min(x?,7L)] and \,, = 74 — «f. Under SUTVA, if one further

assumes that the treatment assignment mechanism is independent of the poten-

tial outcomes, then A,, becomes the identifiable expected causal treatment effect

typically estimated in clinical trials. Substituting 7{ and 7% by their maximum

likelihood estimates and plugging H(w,) into the right side of the last inequality

in (3), one obtains R%; as a function of wf,. A plot of this function on the interval
T T

[0, min(7{, 77)] would allow to assess the behavior of the R%; across all scenarios

compatible with the data.

The previous approach can also naturally incorporate expert opinion in cases where
it is available. In fact, 71, has a clear clinical interpretation, i.e., it quantifies the
probability that a patient would have a better response under the control than under
the new treatment. In some scenarios subject-specific knowledge could be used to
define clinically meaningful bounds for this probability, for instance, doctors may
assess that 0.1 < 7f, < 0.2. Analyzing the behavior of R?, on this interval, one
could evaluate the plausibility of finding a good surrogate endpoint, using only the
values of R%; that are in agreement with the clinically meaningful values of 77,.

Although appealing, the previous implementation of the sensitivity analysis does

T

not take into account the sampling variability in the estimates of 7r{. and 7%. To

solve this problem, along the lines presented in Alonso et al. (2016a), the following
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sampling algorithm can then be used

From £ = 1 until M do

1. Uniformly sample a value for 7r{. and 7% from their corresponding 95% confi-
dence intervals Ios(7l), los(7h)

2. Based on the 7{ and 7% sampled in step 1, uniformly sample a value for 7,
on the interval [0, min(77, 71)]

3. Based on the 7] sampled in step 2 and the 7 and 7L sampled in step 1
compute all the others 7j; = P (Ty = 4,71 = j)

4. Based on the distribution of Y1 obtained in step 3 calculate the distribution

AT _ T _AT T

: : _ _ T T AT _
of AT using the expressions 72 = 7y, 75 = Ty + 71, and 70" = 7y,

5. Based on step 4 calculate the H(AT) as

H(AT) = miplog myy + (g + m1y) log(mgo + i) + (1) log (i)

6. Compute R%;

This algorithm produces a frequency distribution for R?,. This distribution takes
into account both the uncertainty induced by the lack of identifiability of the distri-
bution of Y7 and the sampling variability in the estimates of 7] and 71. Basically,
this frequency distribution characterizes the behavior of R%; across all settings com-
patible with the data, i.e., all settings compatible with 7w,. Given that all points in
[0, min(n{, 71)] are equally compatible with the data at hand, the use of a uniform
distribution to sample 7} is the most natural choice. The behavior of R%; can then
be visualized using graphical techniques like histograms and/or summarized using

measures of central tendency like, for instance, the mean and the median, among

others.
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As stated before, using a uniform sampling scheme on the confidence intervals associ-
ated with 77 and 77 is intuitively appealing, however, there is a level of arbitrariness
in this choice. Alternatively, one could use a standard normal distribution centered
at 77 and 71 and with standard deviations equal to the associated standard errors.
A beta distribution obtained from a flat or Jeffreys prior on these probabilities will
also make theoretical and practical sense. Studying the performance of these alter-
native methods via simulations and real examples goes beyond the scope of these

manuscript and will be the focus of future research.

In the following section the previous ideas will be applied to analyze the likelihood

of finding a valid surrogate endpoint in the context of glaucoma research.

4 Collaborative Initial Glaucoma Treatment Study

A practical limitation often encountered when validating surrogate endpoints is the
lack of user friendly software to carry out the analysis. All the analyses presented in
this manuscript can be carried out using the R package Surrogate, freely available
at CRAN. For conciseness, in the following only a summary of the main results is
provided and no reference to the software is made. However, in the Supplementary
Materials accompanying the paper (available from the authors) a more detailed

analysis is provided and the implementation in R discussed.

The Collaborative Initial Glaucoma Treatment Study (CIGTS) was a randomized
clinical trial comparing the efficacy of surgery versus a conventional therapy in the
treatment of patients suffering from glaucoma. The study included 228 patients
of whom 102 received the new treatment and 126 the conventional therapy. Both

treatments were intended to bring intraocular pressure (IOP) down to less than 18
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mm Hg. The surrogate endpoint was defined in terms of IOP at 12 months and the
true endpoint at 96 months. S and T were equal to 1 if [OP was less than 18 mm

Hg and to 0 otherwise (Musch et al., 1999; Li et al., 2011).

Alonso et al. (2016a) carried out a detailed analysis of these data and concluded that
[IOP after 1 year seemed to be a poor surrogate for IOP after 8 years. However, the
question remains regarding the existence of a good surrogate endpoint for IOP after 8
years in the first place. First of all, one needs to define what is understood by a good
surrogate endpoint in terms of prediction error. We considered three upper bounds
0 = 0.05,0.1 and 0.2, for the probability of a prediction error P (Kf =+ AT) <9,
where AT = g(AS) and g a general prediction function. For each of these values,
the algorithm described in section 3.3 was applied and the corresponding frequency
distributions of R%; were obtained. Figure 1 (left) summarizes the main results
when monotonicity is not assumed. Expectedly, 6 = 0.05 led to higher values of
RZ%, and, consequently, large values of R? are needed to achieve this pre-specified
risk level. In fact, when & = 0.05, R%, > 0.63 for 80% of the generated Yr
distributions. Actually, the mean and median of R%, equaled 0.69 and 0.71 in this
scenario, respectively. Clearly, if one wants to keep the risk of a prediction error
smaller than 5% then one may need to find a surrogate endpoint which produces
a large individual causal association. Notice that a large R% implies an almost
deterministic relationship between AT and AS. Therefore, although not impossible,
common sense suggests that finding a surrogate that produces a high ICA will likely
be a more daunting task than finding a surrogate that produces a moderate or small

ICA.

Let us now consider § = 0.1, i.e., the surrogate may lead to wrong predictions in at
most 10% of the cases. This increased risk is translated into smaller values of R%;.

Indeed, R%; < 0.58 for 80% of the generated Yr distributions and R%; < 0.61
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for all of them. The mean and median of R%; equaled 0.47 and 0.51, respectively.
Even though the previous analysis does not guarantee the existence of a good binary
surrogate endpoint in this scenario, it does suggest that finding a surrogate that
achieved the pre-specified risk level may be more likely in this setting than in the
previous one. Ultimately, the data analyst will have to find a balance between the
risk level he is willing to accept and the likelihood of finding a good surrogate for

that level of risk.

It is important to point out that, in some cases, large values of § produced neg-
ative values of R%; and Fano’s inequality led to the trivial inequality R% > 0.
This becomes apparent in the peaks observed at zero in the frequency distributions
obtained for 6 = 0.2. In these cases the results of the analysis are clearly uninfor-
mative. However, at an intuitive level, one may expect that if the prediction error
comes close to 50% (the tossing coin scenario) then almost any surrogate will be

capable of reaching this risk level.

Figure 1 (right) displays the relationship between R%; and m}, for the different §
values. It is important to point out that, unlike the previous analysis, this graph
does not take into account the sampling variability in the estimates of 7]. and 7%.
Nonetheless, the results are rather similar, i.e., the smaller the risk (J) the larger
the ICA. For 6 = 0.05 the ICA ranges from about 0.5 for smaller values of 7} till
values close to 0.8 when 7, approaches 0.20. On the other hand for § = 0.1 the

ICA is always smaller than 0.4 irrespectively of the value of 7.

The previous analysis suggests that finding a binary surrogate endpoint with a
probability of prediction error under 5% may be a challenging task, however, if a
10% risk is considered acceptable then the chances of success may be substantially

larger. Obviously, other clinical considerations need to be brought into the discussion
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as well, but the previous analysis of R%; clearly offers a useful quantitative element

for the decision making process.

5 Conclusions

Using information-theoretic elements a procedure was introduced to assess the like-
lihood of finding a good surrogate when both endpoints are binary. The method
relates the probability of a prediction error with the ICA, i.e., the association be-
tween the individual causal treatment effects. Measures of association, like the ICA,
are easy to interpret and data analysts have a lot of experience working with them.
Basically, the methodology gives a quantitative framework to evaluate the relation-
ship between the risk one is willing to take when using a surrogate endpoint and
the likelihood of finding a surrogate that achieved that level of risk. Obviously, it
is a process that will require not only statistical considerations but also clinical and
practical elements will often be taken into account. In general, the assessment of
the possibility of finding a good surrogate will not be exempt of a certain degree of
subjectivity and, hence, the availability of quantitative elements, like the R%;, may

be of great valuable during the decision making process.

The need for such a methodology is further motivated by the fact that the evalu-
ation of surrogate endpoints is a challenging task. For instance, the validity of a
surrogate for a given true endpoint is treatment dependent. In fact, strictly speak-
ing, an outcome like progression free survival (PFS) would need to be evaluated
as a putative surrogate for overall survival (OS) for every new treatment. In addi-
tion, the evaluation exercise frequently requires large amount of data. Actually, the
most widely accepted methodology for the evaluation of surrogate endpoints, the so-

called, meta-analytic approach requires the use of information on both the true and
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surrogate endpoint from several clinical trials. Methods that need less information

are available, but they are often predicated on untestable assumptions.

In general, even when validated surrogates are used, predicting the treatment effect
on the true endpoint, based on the treatment effect on a surrogate, will always con-
vey certain level of risk. That is the reason why regulatory agencies from around
the globe have framed the use of surrogate endpoints in the drug discovery process
by implementing various provisions and policies. For example, in the United States,
there are mechanisms available for accelerated approval based on surrogate end-
points, in order to reduce the time to review an application for indications with no
known effective therapy and for providing access to patients for non-approved drugs.
Accelerated approval (sometimes referred to as “conditional approval” or “Subpart
H”) refers to an acceleration of the overall development plan by allowing submission
of an application, and if approved, marketing of a drug on the basis of surrogate
endpoints while further studies demonstrating direct patient benefit are underway.
Accelerated approval is limited to diseases where no effective therapies exist and is
based on a surrogate endpoint likely to predict clinical benefit. The implementa-
tion of these “conditional approval” policies tries to reduce the potentially harmful
consequences of using a surrogate endpoints in the confirmatory stage, while taking

advantage of their capacity to accelerate the overall development plan.

Assessing the likelihood of finding a good surrogate in other important settings
like, for instance, the continuous-binary, survival-survival, among others, need to be

studied as well. They will be the subject of future research.
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Table 1: Distribution of A = (AT, AS)'.
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Figure 1: R?%; when monotonicity is not assumed (left) and R%

versus 71, (right).




