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Abstract

This study analyzes how researchers’ degrees of freedom in selecting patent counts

influence econometrically estimated policy effects. Using the evaluation of solar energy

policies as an example, we identify 51 strategies to select solar patents from the lit-

erature resulting in 306 different solar patent counts, considering six common quality

levels of patents. We replicate two leading studies in this literature and re-estimate

their econometric models using all of these patent counts. Our results demonstrate

severe uncertainty regarding sizes and even signs of key policy effects, opening up the

potential for p-hacking and posing a fundamental challenge for evidence-based poli-

cymaking. We recommend that more emphasis should be devoted to patent selection

procedures, including careful sensitivity analysis regarding key assumptions, such as

search strategy and patent quality level. More research is needed to develop common

quality standards in working with patent data.

Keywords: Patent data, sensitivity analysis, p-hacking, replication, power, solar

energy technologies

JEL Classification: C18, C40, O31

Highlights:

• Researchers’ degrees of freedom in selecting patent data are analyzed

• 51 distinct search strategies for solar patents are identified from the literature

• Two leading evaluation studies of renewable energy policies are replicated

• Flexibility in selecting patent counts opens up the potential for p-hacking

• Common standards are needed to pave the way for evidence-based policymaking
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1 Introduction

Patent counts have a long tradition in economics as a measure of inventive and innova-

tive activity and are nowadays used to evaluate innovation policies and to elaborate on

technological change and economic growth (see Pavitt, 1985; Basberg, 1987; Griliches, 1990;

Nagaoka et al., 2010, for surveys of the literature). However, there is little consensus on how

relevant patents can be identified and the quality level to be considered. Such researchers’

degrees of freedom in data collection can have substantial influence on the empirical analysis

and may even be misused to p-hack (Simmons et al., 2011). In this study, we analyze how

researchers’ degrees of freedom in extracting solar patent counts from patent databases can

result in severe uncertainty regarding the sizes and even signs of econometrically estimated

policy effects.

Patent counts are frequently used to evaluate policies designed to foster inventive and

innovative activities.1 Based on the induced innovation concept (Hicks, 1932; Acemoglu,

2002), different kinds of policy instruments can be implemented to induce such activities.

These instruments can be distinguished in technology push and demand pull instruments

(Bush, 1945; Schmookler, 1966; Mowery and Rosenberg, 1979). The effects of these policy

instruments on patent counts have been studied, especially for environmentally friendly

technologies. Recent contributions are, for example, Aghion et al. (2016) who use patent

counts to show that higher tax-inclusive fuel-prices spur inventive activities in the clean

auto industry. Calel and Dechezleprêtre (2016) use patent counts to analyze whether the

European Union Emissions Trading System induces inventions in low-carbon technologies.

With respect to climate change, solar energy technologies are of particular importance,

mirrored by extensive and differentiated policy support that these technologies received to

induce inventive and innovative activities. Solar energy technologies can be divided into

photovoltaics (PV) and concentrated solar power (CSP). Two seminal contributions in the

environmental innovation literature are at the center of our analysis. Johnstone et al. (2010)

use patent counts for solar energy technologies (PV and CSP combined) to test how different

policy instruments affect inventive output.2 Peters et al. (2012) test whether domestic or

foreign technology push or demand pull policies influence inventive output in PV. Both

studies show that direct R&D subsidies as well as demand inducing instruments have a

1 Inventive and innovative activities describe different parts of the innovation process. While inventive

activity refers to the discovery or creation of new knowledge, which results, for example, in a patent,

the innovation brings this discovery to the market. In the following we refer to inventive activity if it is

related to patented output and to innovation if the process is considered.
2 While replicating Johnstone et al. (2010), we noticed that a dummy for New Zealand was missing in the

analysis, which affects some of the conclusions. We contacted the authors and they published an Erratum,

Johnstone et al. (2017). Whenever we refer to Johnstone et al. (2010) in the remainder of this article, we

mean the corrected findings.
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positive effect on patent counts. However, there is still a debate about the effectiveness of

these instruments in the literature and especially among policy makers.3

These two and other studies select patent data based on a selection process that is

complex and non-standardized. While Griliches (1990) warns about possible pitfalls in

using patent data, there is no systematic analysis as to how the researchers’ degrees of

freedom in the selection of patent counts can influence econometric analyses.4 The patent

selection process can be divided into two parts: the search strategy and the quality level

of patents. The search strategy refers to how patents are selected based on their content.

The most frequently used search strategies are either based on a classification system or on

keywords to search in the patent documents (there are a multitude of other approaches as

well). Both classifications and keywords target a specific technology, which is an important

part of the search strategy. The quality of patents refers to the technological or economic

value of an invention. There are a large number of patents with low novelty contents and

the value distribution is highly skewed (e.g. Harhoff et al., 2003). Several approaches are

possible to attain a minimum level of patent quality for economic analysis (e.g. Harhoff

et al., 2003; Squicciarini et al., 2013). We focus in the following on the most prominent and

basic approach that distinguishes patents into six quality levels based on their filing and

granting procedure (i.e. priority patents, granted patents, claimed priorities, PCT patents,

transnational patents, and triadic patents). As different combinations of search strategies

and quality levels of patents may appear plausible in analyzing policy effects, uncertainty

in estimated policy effects is likely to be introduced due to these researchers’ degrees of

freedom.

Researchers’ degrees of freedom in patent selection may make it easy to engage in what

has recently been coined p-hacking (Simonsohn et al., 2014). Hacking the p-value refers to

uncertainty in model selection, which can be used to select models that ‘work’, that is, they

provide estimates that fulfill the researcher’s prior and usually confirm the hypothesis of

interest, while those models that did not ‘work’ remain unreported (Hendry, 1980; Leamer,

1985; Bruns and Ioannidis, 2016). Hacking the p-value is eased if flexibility in patent selec-

tion approaches transmits to a wide range of estimated policy effects from which statistically

significant and hypothesis-confirming estimates can be selected. Presumably, only a small

share of researchers are willing to engage in a deliberate search for estimates that ‘work’.

But researchers face substantial uncertainty as to which patent selection approach is best

to proxy inventive activity in a specific technology or industry and, thus, it is natural to

3 With respect to renewable energy technologies in general, Johnstone et al. (2010) also analyzes other

types of renewable energy technologies. Several follow up studies exist that further analyze how policy

instruments affect patent counts of renewable energy technologies. For example, DechezleprÃatre and

Glachant (2014) study the effect of domestic and foreign demand pull policies for wind power, Nesta et al.

(2014) investigate the effect of polices and competition for renewable energies in general and Costantini

et al. (2015b) analyze the effects of technology push and demand pull policies on biofuel patents.
4 Colombelli et al. (2015) point out a possible bias due to different selection approaches, while de Rassenfosse

et al. (2014) show how focusing only on patents from one patent office can bias econometric results.
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explore the results for multiple patent selection approaches. It becomes p-hacking if the

researcher is influenced by motivated reasoning (Kunda, 1990; Bastardi et al., 2011) and

only reports the estimated policy effects that ‘work’ as (s)he believes them to be the best

proxies after seeing the estimates.5 Nevertheless, irrespective of whether researchers p-hack

deliberately or not, published empirical findings become biased and policy effects are likely

to become exaggerated, misleading policy makers and resulting in misallocation.

Empirical evidence suggests that such selective reporting is widespread in empirical

economics. Brodeur et al. (2016) use more than 50,000 estimates extracted from the Amer-

ican Economic Review, Quarterly Journal Economics and Journal of Political Economy to

demonstrate that 10-20% of the marginally significant p-values are inflated, that is, non-

significant p-values are inflated to become marginally significant p-values. Based on more

than 60,000 estimates from 159 research fields in economics, Ioannidis et al. (2017) show that

many studies in economics suffer from low power and that point estimates are exaggerated

to obtain statistical significance.

We analyze how researchers’ degrees of freedom in the selection of patent counts affect

econometrically estimated policy effects by first identifying 51 different search strategies for

solar energy technologies that are used in other studies to identify solar energy patents.

These different search strategies aim to be generic in capturing the inventive activity in the

different solar energy technologies (PV, CSP or both). First, we show how patent counts

obtained by these 51 search strategies differ in magnitude, overlap and country coverage,

although they intend to measure the same inventive activity. Second, we analyze to what

extent the flexibility in the selection of patent counts transmits to variation of economet-

rically estimated policy effects with direct implications for p-hacking and evidence-based

policymaking. To this end, we use as benchmark research designs the two main studies that

analyze how policy instruments may affect inventive activity in solar energy technologies:

Johnstone et al. (2010) and Peters et al. (2012). In these benchmark studies, patent counts

are used as dependent variables and various policy variables are considered as explanatory

variables. We estimate the effects of various policy instruments for both benchmark research

designs by using 306 alternative dependent variables, that is, patent counts obtained by 51

distinct search strategies with six patent quality levels for each search strategy. We analyze

the distribution of each estimated policy effect by means of density plots and vibration plots

that relate the size of the estimated coefficient to statistical significance (Patel et al., 2015).

Third, we analyze which characteristics of the patent selection approaches determine the

sizes of estimated policy effects using meta-regressions (Stanley and Jarrell, 1989).

Our results show that the magnitudes of patent counts obtained by the 51 different search

strategies for solar energy patents show severe differences. The overlap of the selected

patents across the search strategies varies at the technological level, especially between

PV and CSP, while the country coverage is nearly uniform across search strategies. The

5 A philosophy of science perspective on (deliberate and unintentional) p-hacking is given in Wilholt (2009),

Wilholt (2013), citeBiKu2017 and Douglas (2000).
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different patent quality levels affect the number of patent counts, but the correlation between

patent counts of different quality levels is very high. The sensitivity analysis reveals that

the different selection approaches, especially the patent quality levels, result in substantial

uncertainty regarding the signs and sizes of estimated policy effects for the two benchmark

research designs. We obtain for nearly all policy variables positive as well as negative

estimates that are statistically significant. For some of the policy effects the uncertainty

is reduced if we consider only the relevant technology of the respective study. In fact, our

analysis reveals that the core findings of the two studies that are used as benchmark research

designs can be supported in terms of the signs of the estimated policy effects but uncertainty

regarding the sizes and levels of statistical significance remain. Moreover, our results reveal

that all characteristics of the patent selection approach (technology, search strategy and

patent quality level) are key determinants of the sizes of estimated policy effects.

Our results demonstrate that researchers’ degrees of freedom in selecting solar patent

counts result in substantial uncertainty regarding the sizes and even signs of estimated

policy effects. Our analysis does not permit us to identify which selection approach is ‘best’

in identifying solar patent counts, or which selection approach should be used in general to

select patent data. But our findings stress the importance of a sound research design and a

careful motivation and documentation of why a specific search strategy and patent quality

level is chosen. So far, the research community does not agree on common standards of how

to work with patent data. Our findings demonstrate the the need to develop standards for

reliable and comparable research. Furthermore, research designs using patent data should

provide sensitivity analyses to account for systematic variation in results, especially with

respect to patent quality levels. This will help to improve reliability and credibility of

econometric evaluations of policy instruments that aim to foster inventive activities and is

essential to pave the way for evidence-based policymaking.

The paper proceeds by describing the stylized research process when patent data are used

and the two main elements of patent selection approaches. Section 3 describes and analyzes

the 51 different selection approaches that we identified from the literature. Section 4 presents

our empirical strategy and the results. Section 5 provides a discussion and the last Section

concludes with recommendations.

2 Selection of patent counts

2.1 Stylized process of obtaining relevant patents

The beginning of each research project should include a precise research question. Based

on the research question, the relevant data to answer this question need to be defined and

obtained. Caution in this process is especially relevant for empirical research based on

patent data. The stylized process from the research question to a set of patents to answer

this research question as well as the flexibility in this process is shown in Figure 1. From
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Figure 1: Stylized research process and potential sources of researchers’ degrees of freedom.

the research question should follow (i) a clear demarcation of the technology and (ii) a clear

definition of the patent quality level. The final set of patents identified for the analysis should

be determined (at least) by these two transparently discussed decisions of the researcher.6

If there are inconsistencies between the research question and the selection of patents, the

research question cannot be answered meaningfully. If, for example, patents are identified

based on a similar but different technology as was outlined in the research question or on a

narrower or wider interpretation of the scope of this technology, results may become biased

in one or the other direction or may even become meaningless. For example, in the case of

solar energy technologies, different technologies exist but are often used interchangeably, as

discussed in Section 3.

Analogously, the choice of the patent quality level should be guided by the research

question. The quality level is frequently used to assess the relevance of inventions and sets

the scope of the analysis. Furthermore, it can be used to mitigate potential biases due

to different legal settings. For example, in settings where an international comparison is

conducted, a quality level that allows for country comparisons should be used to reduce bias

towards specific countries (Lanjouw et al., 1998; Dernis et al., 2001; van Pottelsberghe de la

Potterie, 2011).

While inconsistencies between the research question, on the one hand, and the analyzed

technology or quality level, on the other hand, may easily be spotted by the reader, ambi-

guities in measurement remain less obvious. Identifying patents that belong to a specific

technology requires a search strategy that is able to identify relevant patents. At the same

6 Depending on the research question, further considerations about the patent data may need to be specified,

but this is beyond the scope of the present article.
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time, patents that may, for example, only share the same technological principle, but do not

economically belong to the analyzed technology, need to be excluded. Generally, the differ-

ent approaches to search for patents may identify too many or too few patents. A clear-cut

demarcation of the technology as well as technical understanding by the researcher is re-

quired to mitigate possible errors in deriving a patent search strategy. The same holds true

for the patent quality level. Several approaches are put forward by the research community

to derive different levels of quality, but there is no consensus as to which level should be

used for which kind of research question (Dernis and Khan, 2004; Sternitzke, 2009). Of

course, each approach has its advantages and disadvantages, which are, however, not always

explicit.

The stylized process demonstrates that researchers are left with substantial degrees of

freedom in selecting patents. The next two subsections provide an in-depth discussion of

the two essential elements of a patent selection approach: search strategy and quality level.

2.2 Search strategies for technology specific patents

The search strategy defines how the relevant patents for a specific technology or product

can be selected from patent databases that are managed by various patent offices. Patent

offices manage their databases to fulfill their needs – to search for prior art and to clarify the

relevance and novelty of the patents they examine. Searching for patents of specific tech-

nologies, products, or processes to conduct economic and econometric analyses is possible

by several strategies (see Benson and Magee, 2013; Abbas et al., 2014, for overviews). The

common strategies to select patents are based on patent classification systems, keywords or

their combination (Eisenschitz and Crane, 1986; Dirnberger, 2011; Xie and Miyazaki, 2013).

However, each strategy has several advantages and disadvantages that need to be considered

when searching for patents.

A patent office uses a classification system that classifies patents according to underlying

technological principles to support the examination process (Jaffe and Trajtenberg, 2002).

Common classification systems are the International Patent Classification (IPC) managed

by the World Intellectual Property Organisation (WIPO) and the recently introduced Co-

operative Patent Classification System (CPC). Classification systems are not designed to

distinguish specific products or fulfil the economist’s needs. This causes problems analyzing

specific technologies, products or processes that combine different technological principles.

If classification systems are used to search for patents, the respective classifications that de-

scribe the specific product or process need to be identified. Here, some issues emerge, since

a technological principle can be used for different products or describes different phenomena

(Vijvers, 1990; Costantini et al., 2015a).7 Using classifications might include patents that

are not related to the product or process under consideration. This can be referred to as a

7 For example, the principle of light absorption is characteristic for PV, but digital cameras or other

products also refer to this technological principle.
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type I error. Additionally, it is also possible that a product or process combines different

technological principles and if these classifications are not considered, relevant patents are

missing. This can be referred to as a type II error.

Keywords are frequently used to search for patents as well. If a product or technology

can be described by a set of technology specific unique keywords, this approach can deliver

reliable results. Several issues exist, since keywords can be used in various technologies or

products not related to the technology under consideration, resulting in a type I error.8

Furthermore, a type II error occurs if patent documents are written in a way to avoid

specific keywords to keep the invention hidden from competitors. Language differences

between patent offices can also reduce the number of selected patents if the keywords do

not account for multiple languages or different terminologies used in different countries

(Montecchi et al., 2013). In addition, patent databases are not always complete, so that

missing titles, abstracts, or other content do not allow searching in all relevant patents. The

combination of classifications and keywords can reduce type I errors, but cannot avoid type

II errors.

2.3 Patent filing procedures as indicator of patent quality

The second element of patent selection approaches is the quality level. Patents contain

codified knowledge, which should be new, non-obvious and applicable. However, the eco-

nomic and technological value or quality of this knowledge is hard to determine (Griliches,

1990). Several studies estimate the values or qualities of patents (e.g. Schankerman and

Pakes, 1986; Harhoff et al., 2003) and find a skewed distribution with a few very valuable

patents and many patents with no or little economic value or technological novelty. There

are several indicators that can be used to assess patent quality (Squicciarini et al., 2013).

One basic indicator is the patent office in which the patent is filed and if it is granted.

Since filing in specific or multiple patent offices is expensive, a patent of higher quality or

economic value will most likely go through specific filing routes.9

The filing procedure can be used as a proxy for patent quality in economic analysis.

While for an assessment of inventive activity inside a country, the overall number of patent

applications can be sufficient, for international comparisons of inventive activities, patents

should be counted on a comparable quality basis because heterogeneity in patent offices

can bias results (Lanjouw et al., 1998; Dernis et al., 2001; van Pottelsberghe de la Potterie,

8 For example, silicon is one of the widely-used materials in PV cells, but it is also used in other semicon-

ductor devices. Furthermore, the product or process can be a non-crucial part of an invention and would

be considered as well. In the case of PV, it could be that an electronic device uses a PV cell as power

source, even though the invention does not contribute to the PV development at all.
9 A further frequently used indicator is weighting patents by citations received. However, this procedure

opens up further degrees of freedom, since the filing procedure of the patent plays a role, as well as how

to count citations.
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2011). In the following, we discuss the six different proxies to measure quality levels used

in this study and their usefulness for international comparisons of inventive output.

The baseline to count patents is to consider all priority patents (first filings) filed

at national patent offices. Several shortcomings are attributed to this approach. There are

differences between the national patent offices, which can influence the propensity to patent,

such as application fees and procedures. Due to this, patents can be quite heterogeneous in

terms of quality if different costs to file a patent exist (Atal and Bar, 2010; van Pottelsberghe

de la Potterie, 2011; de Rassenfosse and van Pottelsberghe de la Potterie, 2011, 2013).10

Granted patents meet some basic quality criteria, since they successfully underwent

examination at a national patent office. The criteria to grant a patent, however, differ

between countries. This is, for example, reflected in the granting rates (Ordover, 1991),

variation in the examination procedures (Lemley and Sampat, 2012), and granting decisions

that are not equal across patent offices (Palangkaraya et al., 2011; de Rassenfosse et al.,

2016). Eckert and Langinier (2014) discuss further issues related to the granting processes

and international comparability.

Claimed priorities refer to patents that have one or several secondary filings at other

patent offices claiming a priority filing under the Paris Convention (OECD, 2009). The

applicant will only consider an application in a second or more jurisdictions if the patent

has the potential to generate revenues to cover these additional costs (OECD, 2009; Haščič

and Migotto, 2015). This results in a patent family with members from at least two patent

offices. The size of the patent family is a frequently used indicator of patent value (Putnam,

1996; Lanjouw et al., 1998; Harhoff et al., 2003).

PCT patents are applications under the Patent Cooperation Treaty (PCT), which

allows the applicant to file a unified application at designated national offices. PCT was

introduced in 1970, but it took some time until the procedure was widely accepted; especially

in early years only a few applications were filed (OECD, 2009). PCT applications can

be of higher value than applications at only the national patent office and allow better

international comparability (Grupp and Schmoch, 1999; Guellec and van Pottelsberghe de la

Potterie, 2000).

Transnational patents comprise patents either filed via a PCT procedure or filed at

the European Patent Office (EPO) (Frietsch and Schmoch, 2010). Both ways of application

can impose higher costs on the applicant than national applications and this reduces low-

quality applications. They also allow for international comparisons.

Triadic patents are patents with family members filed at the Japan Patent Office (JPO)

and the EPO and granted at the United States Patent and Trademark Office (USPTO)

10 Furthermore, this approach follows the implicit assumption that all the patents that are applied at a

certain national office are invented in the respective country. However, this is not always the case and

a geographical bias exists, such that especially many applications filed at the United States Patent and

Trademark Office are invented in neighboring countries (Griliches, 1990; Harhoff et al., 2009; OECD,

2009). To reduce such bias in international comparisons, patents can be attributed to countries based on

the inventor’s residence (de Rassenfosse et al., 2013).
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(Grupp, 1996; Dernis et al., 2001). These patents are considered of high value due to the

imposed costs of filing in these three jurisdictions (Dernis and Khan, 2004; OECD, 2009).

They are frequently used for international comparisons, since they have no home country

bias (Criscuolo, 2006).

3 Patent counts of solar energy technologies

There is a growing interest in the development of solar energy technologies, especially to

mitigate climate change. Numerous studies use patent data to understand how solar en-

ergy technologies develop over time, which determinants influence their developments and

especially how policy instruments influence the innovation process. Such studies use patent

counts or derive further indicators based on patent counts, but they differ in the search

strategy used to select the respective patent data.

Solar energy technologies can be divided into two different technologies. Photovoltaics

(PV) uses a photovoltaic cell for a direct conversion of sunlight into electricity. Concentrated

solar power (CSP) uses a thermodynamic cycle where a collector stores thermal energy in

an absorber to utilize the heat for (residential) heating or to use a heat engine to convert

heat into electric energy, usually by steam power. Although PV and CSP are often referred

to as solar energy technologies, both technologies differ in their applicability, scalability and

costs (Peters et al., 2011). The underlying technological principles differ significantly and

this results in differences in the innovation processes. The patent search needs to consider

these technological differences, especially if patent counts are used for country comparisons,

since some countries focus on CSP, others on PV or on both technologies. Technological

differences are also relevant for policy evaluations, since countries can implement policies

that are not neutral regarding CSP and PV.

We performed a literature search and identified 51 distinct search strategies that are

used to select patents of solar energy technologies (see Table 1 and Appendix A).11 These

search strategies differ with respect to the type of search used (classifications, keywords

or both) and with respect to the solar energy technology considered (PV, CSP or both).

Search strategies intend to be generic for a given technology, as documented by several

search strategies being used in multiple studies (see Appendix A). Table 1 presents the

search strategies used in the literature disaggregated by type of search and technology.

We use the Worldwide Patent Statistical Database (PATSTAT) (EPO, 2014) to select

patent counts based on the 51 search strategies. For each search strategy, we obtain patent

11 We systematically searched for relevant contributions in the Web of Science, Scopus, Google Scholar,

working paper outlets and conference proceedings. We considered only search strategies that used classi-

fications (IPC or CPC), keywords or both. We do not consider strategies using classification or keyword

co-occurrences (e.g. Liu et al., 2011; Choe et al., 2013), USPTO classifications (e.g. Popp, 1997; Huang

et al., 2011; Benson and Magee, 2013; Dong et al., 2013; Guan and Yan, 2016) or only parts of the tech-

nologies (e.g. Tseng et al., 2011; Lizin et al., 2013; Chen and Pham, 2014). In some cases, strategies are

not provided (e.g. Watanabe et al., 2001; Marinova and Balaguer, 2009; Breyer et al., 2013).
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Table 1: Patent search strategies used in the literature.

PV Solar CSP Total

Classifications 7 12 6 25
Keywords 11 3 2 16
Both 9 0 1 10

Total 27 15 9 51

Notes: The number of patent search strategies identified from the literature are presented
by targeted technology (PV, solar and CSP) and type of search (Classifications, Keywords
and both).

counts for the six patent quality levels outlined in Section 2.3 (priority patents, granted

patents, claimed priorities, transnational patents, PCT patents as well as triadic patents).12

We restrict the data to the period 1978-2005 and to 23 countries13 to be consistent with the

two studies that we use as benchmark research designs for our analysis (see Section 4.1).

We present summary statistics for the patent counts selected based on the 51 search

strategies by aggregating patent counts across all 23 countries and the period 1978-2005.

Table 2 presents these total patent counts for the six quality levels of patents. Total patents

vary substantially across search strategies. For example, the maximum number of patents

is 243 times larger than the minimum for priority patents. While total patent counts vary

across search strategies, relative total patent counts remain similar within each patent qual-

ity level as indicated by correlations close to one.

Table 2: Descriptive statistics and correlations.

No. of patents Correlations
min median mean max sd Priority Granted Claimed Transnat. PCT Triadic

Priority 2,942 20,946 56,426.0 714,877 135,769.7 1
Granted 1,714 7,511 20,695.6 266,964 50,625.6 0.9997 1
Claimed 737 3,762 11,912.6 160,060 30,553.0 0.9991 0.9996 1
Transnat. 440 2,377 5,837.7 64,619 12,530.9 0.9938 0.9944 0.9943 1
PCT 290 1,411 3,210.3 34,083 6,629.4 0.9913 0.9926 0.9925 0.9994 1
Triadic 110 1,109 3,393.6 42,822 8,237.3 0.9967 0.9973 0.9977 0.9983 0.9968 1

Notes: Descriptive statistics for the 51 search strategies identified from the literature are presented by aggregating the patent counts for each
search strategy across all 23 countries and the time period 1978-2005. The descriptive statistics are presented for the different patent quality
levels. For the aggregated patent counts of the 51 search strategies, correlations between the patent quality levels are shown.

For priority patents, Figure 2 shows the total patent counts for each search strategy.

Particularly, search strategies that use classifications can result in extreme patent counts, as

12 We selected patents by first searching for the respected classifications and/or keywords in all patents in

the database and then selected based on the patent’s DOCDB Patent Family the priority patent. This

approach allows us to capture patents where title or abstract is not available for priority patents. Patents

are assigned to a country based on the patent office of the priority patent. Other approaches use the

inventor’s address, but not all patents contain this information. There are concerns that using the patent

office as a proxy for location of inventive activity may introduce bias. As this possible bias would be

present across all selection approaches, it is not a relevant concern for our analysis of flexibility.
13 These countries are: Australia, Austria, Belgium, Canada, Denmark, France, Finland, Germany, Greece,

Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Republic of Korea,

Spain, Sweden, Switzerland, United Kingdom, and United States of America.
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Figure 2: Aggregated patent counts by search strategies (priority patents).

Notes: The horizontal axis shows the 51 search strategies and the vertical axis shows the
number of selected priority patents, aggregated for each search strategy across all 23
countries and the time period 1978-2005. ‘Class’ refers to the use of IPC or CPC
classifications and ‘Key’ refers to the use of keywords.

indicated by both the maximum and minimum of total patent counts stemming from search

strategies based on classifications (Wu and Mathews (2012) and Guan and Yan (2016)).14

Moreover, the degree of overlap between the sets of identified patents for the various

search strategies differ as shown in Figure 3. We measure overlap between two search

strategies by the number of patents that are identified by both search strategies and then

divide by the number of patents identified by the first search strategy. For example, the

overlap of patents between a search strategy based on the CPCs for PV and a search strategy

based on the WIPO Green Inventory for PV is 94% with respect to the total of patents in

the CPCs for PV and only 34% with respect to the WIPO Green Inventory for PV. This

indicates that a search strategy based on the WIPO Green Inventory for PV contains nearly

all PV patents, which can be selected by the CPCs for PV, but the WIPO Green Inventory

for PV contains a large portion of patents that are not considered in the CPCs for PV.

The geographical distribution of patents identified by the 51 different search strategies

is depicted as the share of priority patents per country in Figure 4. Most patents are filed

at the Japan Patent Office across all search strategies (more than 65% on average). This

high share is related partly to the filing procedure at the Japan Patent Office, which allowed

only one claim per patent until 1988 (Sakakibara and Branstetter, 2001). Other countries

14 See Online Appendix A for descriptive figures for the triadic patent quality level.

12



Wong et al. (2014)

Lee et al. (2012)a

Lanjouw and Mody (1996)

Tseng (2014)

Gallagher (2014)

Braun et al. (2011)a

Braun et al. (2011)

WIPO Green Inventory CSP

CPC Classification CSP

Margolis and Kammen (1999b)

Jamasb and Pollitt (2015)

Jamasb and Pollitt (2011)

Wangler (2013)

Popp et al. (2013)

Popp (2001)

Pillu (2009)

Noailly et al. (2010)

Nesta et al. (2014)

Johnston et al. (2010)

Guan and Yan (2016)a

Dechezlepretre et al. (2011)

Dechezlepretre et al. (2009)

WIPO Green Inventory Solar

CPC Classification Solar

Zheng and Kammen (2014)

Shibata et al. (2010)

Rai et al. (2013)

Myong (2014)

Lee et al. (2012)

Jang et al. (2013)a

Jang et al. (2013)

Han and Niosi (2016)

Chen et al. (2010)

Bettencourt et al. (2013)

Andersson and Jacobsson (2000)

Wang and Chiu (2010)

Li et al. (2014)

Lei et al. (2012)

Kazuyuki and Takanori (2014)

Kalthaus (2017)

Haller (2007)

FRINNOV (2009)

de la Tour et al. (2011)

Binz et al. (2017)

Wu and Mathews (2012)

Popp et al. (2011)

Peters et al. (2012)

Guan and Yan (2016)

Böhringer et al. (2014)

WIPO Green Inventory PV

CPC Classification PV

C
P

C
 C

la
s
s
if
ic

a
ti
o
n
 P

V

W
IP

O
 G

re
e
n
 I
n
ve

n
to

ry
 P

V

B
ö
h
ri

n
g
e
r 

e
t 
a
l.
 (

2
0
1
4
)

G
u
a
n
 a

n
d
 Y

a
n
 (

2
0
1
6
)

P
e
te

rs
 e

t 
a
l.
 (

2
0
1
2
)

P
o
p
p
 e

t 
a
l.
 (

2
0
1
1
)

W
u
 a

n
d
 M

a
th

e
w

s
 (

2
0
1
2
)

B
in

z
 e

t 
a
l.
 (

2
0
1
7
)

d
e
 l
a
 T

o
u
r 

e
t 
a
l.
 (

2
0
1
1
)

F
R

IN
N

O
V

 (
2
0
0
9
)

H
a
lle

r 
(2

0
0
7
)

K
a
lt
h
a
u
s
 (

2
0
1
7
)

K
a
z
u
y
u
k
i 
a
n
d
 T

a
k
a
n
o
ri

 (
2
0
1
4
)

L
e
i 
e
t 
a
l.
 (

2
0
1
2
)

L
i 
e
t 
a
l.
 (

2
0
1
4
)

W
a
n
g
 a

n
d
 C

h
iu

 (
2
0
1
0
)

A
n
d
e
rs

s
o
n
 a

n
d
 J

a
c
o
b
s
s
o
n
 (

2
0
0
0
)

B
e
tt
e
n
c
o
u
rt

 e
t 
a
l.
 (

2
0
1
3
)

C
h
e
n
 e

t 
a
l.
 (

2
0
1
0
)

H
a
n
 a

n
d
 N

io
s
i 
(2

0
1
6
)

J
a
n
g
 e

t 
a
l.
 (

2
0
1
3
)

J
a
n
g
 e

t 
a
l.
 (

2
0
1
3
)a

L
e
e
 e

t 
a
l.
 (

2
0
1
2
)

M
y
o
n
g
 (

2
0
1
4
)

R
a
i 
e
t 
a
l.
 (

2
0
1
3
)

S
h
ib

a
ta

 e
t 
a
l.
 (

2
0
1
0
)

Z
h
e
n
g
 a

n
d
 K

a
m

m
e
n
 (

2
0
1
4
)

C
P

C
 C

la
s
s
if
ic

a
ti
o
n
 S

o
la

r

W
IP

O
 G

re
e
n
 I
n
ve

n
to

ry
 S

o
la

r

D
e
c
h
e
z
le

p
re

tr
e
 e

t 
a
l.
 (

2
0
0
9
)

D
e
c
h
e
z
le

p
re

tr
e
 e

t 
a
l.
 (

2
0
1
1
)

G
u
a
n
 a

n
d
 Y

a
n
 (

2
0
1
6
)a

J
o
h
n
s
to

n
 e

t 
a
l.
 (

2
0
1
0
)

N
e
s
ta

 e
t 
a
l.
 (

2
0
1
4
)

N
o
a
ill

y
 e

t 
a
l.
 (

2
0
1
0
)

P
ill

u
 (

2
0
0
9
)

P
o
p
p
 (

2
0
0
1
)

P
o
p
p
 e

t 
a
l.
 (

2
0
1
3
)

W
a
n
g
le

r 
(2

0
1
3
)

J
a
m

a
s
b
 a

n
d
 P

o
lli

tt
 (

2
0
1
1
)

J
a
m

a
s
b
 a

n
d
 P

o
lli

tt
 (

2
0
1
5
)

M
a
rg

o
lis

 a
n
d
 K

a
m

m
e
n
 (

1
9
9
9
b
)

C
P

C
 C

la
s
s
if
ic

a
ti
o
n
 C

S
P

W
IP

O
 G

re
e
n
 I
n
ve

n
to

ry
 C

S
P

B
ra

u
n
 e

t 
a
l.
 (

2
0
1
1
)

B
ra

u
n
 e

t 
a
l.
 (

2
0
1
1
)a

G
a
lla

g
h
e
r 

(2
0
1
4
)

T
s
e
n
g
 (

2
0
1
4
)

L
a
n
jo

u
w

 a
n
d
 M

o
d
y
 (

1
9
9
6
)

L
e
e
 e

t 
a
l.
 (

2
0
1
2
)a

W
o
n
g
 e

t 
a
l.
 (

2
0
1
4
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Overlap of priority patents.

Notes: Both axes show the 51 search strategies. Each horizontal line is calculated by
PA∩PB

PA
where PA refers to the number of patents selected by the search strategy on the

horizontal axis and PB to the number of patents selected by the different search strategies
on the vertical axis. The lower the overlap of selected patents between two search
strategies, the darker the corresponding area.

with a considerable average share are the US (14%), Germany (10%), South Korea (3%),

France (3%) and Great Britain (1%).15

In a nutshell, total patent counts vary considerably across search strategies, while relative

patent counts remain similar across quality levels of patents. The overlap in identified

patents varies considerably between technologies. Country shares for selected patents tend

to be stable within quality levels, but vary considerably across quality levels.

15 However, if triadic patents are considered (see Online Appendix A), the US has the highest average share

with 37% followed by Japan (27%), Germany (17%), France (6%), Great Britain (3%) and South Korea

(2%).
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Figure 4: Country shares in priority patents.

Notes: The vertical axis shows the 23 countries in our sample, while the horizontal axis
shows the different search strategies. The darker the area, the lower is the country’s share
in selected priority patents. Black represents no patents at all.

4 Assessing uncertainty in estimated policy effects

4.1 Benchmark research designs

We use the research designs of two leading studies in the field of policy evaluations of

renewable energy policies as benchmark research designs for our analysis. These studies are

Johnstone et al. (2010) and Peters et al. (2012), which are cited more than 1100 and 270

times respectively, according to Google Scholar (retrieved on October 1, 2019). Both are key

contributions to the analysis of demand pull and technology push policy effects on inventive

activity. Patent counts are used in both studies to measure inventive output. We use these

studies to analyze systematically the variation of estimated policy effects that occurs due to

the large variety of patent selection approaches in terms of search strategy, patent quality

level and different solar energy technologies.

Both studies use an unbalanced panel of countries and apply a negative binomial model

with country fixed effects to estimate how patent counts are influenced by policy and other
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variables. Johnstone et al. (2010) consider 23 countries for the period 1978-2003 (N=418),

while Peters et al. (2012) cover 15 countries for 1978-2005 (N=374). The search strategy of

Johnstone et al. (2010) uses several IPCs covering technological principles of PV and CSP.

They consistently refer in their analysis to solar energy technologies. Peters et al. (2012)

also use IPCs, but they focus explicitly on PV and are restrictive in their search strategy,

including only a few classifications. With respect to the patent quality level, Johnstone et al.

(2010) use patents filed at the EPO and assign the patents via the inventors’ address to

countries using fractional counts. Peters et al. (2012) consider three different quality levels,

namely triadic patents16, claimed priorities and all priority patents. For the first two, they

assign patents to countries via the inventor’s address without fractional counting. For the

latter, they use the patent office of the priority patent.

In both studies, several policy variables are considered to analyze their effects on patent

counts. Johnstone et al. (2010) use nine different policy variables, three continuous and six

dummy variables. The continuous variables are R&D expenditures for solar energy tech-

nologies, feed-in tariff levels for solar energy and renewable energy certificate (REC) targets

for renewable energy in general. R&D expenditures serve as a technology push instrument,

while the other two are demand inducing instruments. The other six variables capture the

introduction of several other instruments supporting renewable energies in general, which

cannot be measured continuously (Kyoto protocol, investment incentives, tax measures,

guaranteed price, voluntary programs and obligations). They find a significant influence

of R&D expenditures on inventive activity as well as a weakly significant effect for feed-in

tariff levels for solar energy, depending on the model specification. Furthermore, the Kyoto

protocol as well as investment incentives have a positive and statistically significant effect

on patent output.

Peters et al. (2012) use six variables to capture demand pull and technology push in-

struments. They use R&D funding for PV to account for technology push. R&D funding is

divided into three groups: domestic R&D funding, continental R&D funding and intercon-

tinental R&D funding, to capture domestic and foreign policy effects on domestic inventive

activity. Annually installed PV capacity is used to proxy a demand pull effect. Annually

installed capacity is again divided into domestic, continental and intercontinental capacity

to estimate the effects of domestic and foreign demand pull policies. They find a significant

effect for domestic R&D funding for all of their patent quality levels. Domestic and conti-

nental capacity shows nearly always a positive significant effect, while a significant effect of

intercontinental capacity is only present for priority and claimed patents.

16 Peters et al. (2012) deviate from the OECD definition of triadic patents and follow Sternitzke (2009).

They use “Patent families with publications in at least Germany or the European Patent Office, Japan

or China, and the US” (Peters et al., 2012, P 1301, FN 8).
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We are able to replicate fully the analysis of Johnstone et al. (2010).17 For Peters et al.

(2012), we can replicate the descriptive statistics of the policy variables but we do not have

the patent data to replicate their full analysis.18

4.2 Variation of econometric estimates

We assess the variation in estimated policy effects by estimating the regression models of

Johnstone et al. (2010) and Peters et al. (2012) for all 306 patent selection approaches

(51 search strategies and, for each search strategy, six patent quality levels). The stylized

regression to assess the variation of econometrically estimated policy effects is given by

Patsq = Pjβjsq + Cjγjsq + µj + εjsq (1)

where s = 1, ..., 51 is an index for search strategies and q = 1, ..., 6 is an index for patent

quality levels. The research design of Johnstone et al. (2010) is denoted by j = 1 and the

research design by Peters et al. (2012) is denoted by j = 2. The research design comprises

the study specific policy variables, Pj, control variables, Cj, and country fixed effects, µj,

including the study specific set of countries and the time horizon considered. The vector of

interest is βjsq, which corresponds to the policy variables in Pj. We analyze how β̂jsq varies

if the dependent variable, the patent counts Patsq, is varied where β̂jsq is the estimate of

βjsq.

We use density plots to visualize the uncertainty in estimating β
(k)
jsq due to the researchers’

degrees of freedom in selecting patent counts, where k refers to one policy variable in the vec-

tor βjsq. We do not expect the density to have a specific shape. Specifically, if measurement

error in the dependent variable is random, the estimator remains unbiased but becomes less

precise (e.g. Greene, 2012). In this case, we would expect a normal distribution for the

estimates β̂
(k)
jsq. However, errors in measuring relevant patents corresponding to a specific

technology and quality level are likely to be systematic. For example, keywords that cover

patents beyond the intended technology are likely to do this differently across countries,

e.g. depending on the total number of patents per country. Systematic measurement error

results in biased estimation and one may expect to observe basically any distribution for

the estimates β̂
(k)
jsq. We refrain from linking specific shapes of the densities to selection in the

publication process, such as p-hacking, as this would require that all search strategies were

designed (at least) for similar research designs compared to the two benchmark research

17 The estimates in Johnstone et al. (2017) are obtained by using STATA. We can replicate the exact point

estimates and model characteristics by using R. However, we cannot replicate the robust standard errors

provided by STATA. We use “vcovHC = HC1” from the ‘sandwich’ package and the standard errors are

very similar but tend to be larger. However, these small deviations do not alter the significance levels.
18 We replicated this study with patent counts based on their search strategy and our point estimates are in

the same ballpark. We cannot reproduce the exact patent data of Peters et al. (2012) since they deviate

from the OECD triadic patent definition and use a different database (INPAFAMDB - International

Patent Family Database) to obtain their patent counts.
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designs used in this study, and this is not the case. Moreover, we consider six different qual-

ity levels for each search strategy and most of them were not used in the original studies.

The focus of this study is to analyze how flexibility in extracting patent counts from patent

databases results in uncertainty regarding signs, sizes and levels of statistical significance of

estimated policy effects.

Moreover, we visualize the variation in β̂
(k)
jsq by using vibration plots that relate the point

estimate of β
(k)
jsq to a transformation of its p-value (Patel et al., 2015; Bruns and Ioannidis,

2016). These vibration plots help to assess the potential for p-hacking by illustrating, for

example, whether statistically significant positive and negative estimates can be obtained

for the same policy effect.

We focus in our graphical representation on the effects of domestic technology push

and demand pull policies as these effects are of particular importance to policy makers.

Specifically, we focus on R&D expenditures and feed-in tariff levels from Johnstone et al.

(2010) and domestic R&D expenditures and domestic installed capacity from Peters et al.

(2012). We show the variation of estimated policy effects for all 306 combinations of search

strategies and quality levels as well as for the subset of search strategies designed for the

technology that was actually used in the original study. Specifically, for Johnstone et al.

(2010) we consider only search strategies for solar, discarding the ones for PV and CSP.

In the same manner, we consider only PV search strategies for Peters et al. (2012). This

allows us to distinguish between the full uncertainty in estimated policy effects including

inconsistencies or imprecisions between the technology outlined in the research question

and the technology used to select patents as well as the uncertainty that remains for the

particular technology analyzed in the respective study.

As a robustness check, we remove search strategies that result in the 10% largest and

10% smallest sum of priority patents for each technology. As discussed in Section 3, some

search strategies identify small sums of priority patents while other search strategies identify

huge sums. These extreme search strategies may result in extreme estimates of βjsq. For

the robustness check the number of search strategies is reduced from 51 to 39.

4.3 Explaining the variation of econometric estimates

We identify determinants of the variation in β̂
(k)
jsq by using meta-regressions. This approach

follows Stanley and Jarrell (1989) who suggest meta-regressions to identify the sources of

variation in estimates. While meta-regressions are typically applied to synthesize estimates

of multiple studies, we apply meta-regressions to the estimated policy effects obtained by

the use of various dependent variables, as outlined in Section 4.1.19 We estimate

19 For a similar application of meta-regressions, see Bruns et al. (2018), and for a note of caution regarding

the use of meta-regressions to synthesize observational studies to infer the presence of genuine effects, see

Bruns (2017).
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β̂
(k)
jsq = Tsδ

(k)
1j + Ssδ

(k)
2j +Qqδ

(k)
3j + log(PPs)δ

(k)
4j + ε

(k)
jsq (2)

where β̂
(k)
jsq denotes the point estimate for policy variable k of research design j for search

strategy s and patent quality level q with s = 1, ..., 51 and q = 1, ..., 6 resulting in 306

estimates of β
(k)
jsq. As determinants, we consider the analyzed technology, Ts, the type of

search strategy, Ss, the quality level of patents, Qq, and total priority patents of a given

search strategy, PPs. Ts contains two dummy variables. The first is one if PV was used in

search strategy s and zero otherwise. The second is one if CSP is used in search strategy s

and zero otherwise. Ss also contains two dummy variables. The first is one if keywords are

used in search strategy s and zero otherwise, and the second is one if keywords in combination

with classifications are used in search strategy s and zero otherwise. Qs contains five dummy

variables that are one if either granted, claimed, PCT, transnational, or triadic patents are

used and zero otherwise. Hence, the baseline is the case where the search strategy is based

on classifications for the technology solar using priority patents. We also include the log of

total priority patents, log(PPs), of search strategy s to control for the breadth of the search

strategy.

4.4 Results

4.4.1 Density and vibration plots

Density and vibration plots for the estimated effects sizes of R&D expenditures from John-

stone et al. (2010) are shown in Figure 5. The first column is based on all 306 patent

selection approaches demonstrating the substantial uncertainty in estimating policy effects

due to researchers’ degrees of freedom in selecting patents. The density plot shows that both

positive and negative estimates are possible, with most probability mass for slightly positive

effect sizes. The vibration plot shows that statistical significance can be even achieved for

both positive and negative effect sizes. The vibration plots show that estimates tend to clus-

ter by the quality level. Specifically, granted patents and priority patents tend to result in

positive and statistically significant estimates, while most other quality levels center around

zero resulting in a right-skewed density. These results may suggest that R&D subsidies

rather increase inventive activity and do not necessarily lead to high quality research out-

put. A possible clustering by search strategy is hard to detect by visual inspection. Only for

granted patents does it seem that some search strategies using IPC create larger estimates

than keywords and their combination.

The second column of Figure 5 presents density and vibration plots based on search

strategies that target solar patents, which is the technology used in Johnstone et al. (2010).

This column can be considered as a robustness check of the original study. Negative and

significant estimates disappear and the vast majority of estimates are positive, with most
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Figure 5: Density and vibration plots for the estimated effect sizes of R&D expenditures from
Johnstone et al. (2010).

Notes: In the first row, density plots for the estimated effect sizes are shown. In the
second row, vibration plots are presented. In the vibration plot, the y-axis displays
−log10(p-value). Thus, all estimates above the solid line are statistically significant at the
0.05 level. “All” covers 306 estimates for all technologies and “Solar” covers 90 estimates
for solar technology only. Original estimates are given by green dots as presented in
Column 5 of Table 1 (Johnstone et al., 2017).
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Figure 6: Density and vibration plots for the estimated effect sizes of feed-in tariff levels from
Johnstone et al. (2010).

Notes: In the first row, density plots for the estimated effect sizes are shown. In the
second row, vibration plots are presented. In the vibration plot, the y-axis displays
−log10(p-value). Thus, all estimates above the solid line are statistically significant at the
0.05 level. “All” covers 306 estimates for all technologies and “Solar” covers 90 estimates
for solar technology only. Original estimates are given by green dots as presented in
Column 5 of Table 1 (Johnstone et al., 2017).
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Figure 7: Density and vibration plots for the estimated effect sizes of domestic R&D funding
from Peters et al. (2012).

Notes: In the first row, density plots for the estimated effect sizes are shown. In the
second row, vibration plots are presented. In the vibration plot, the y-axis displays
−log10(p-value). Thus, all estimates above the solid line are statistically significant at the
0.05 level. “All” covers 303 estimates for all technologies and “PV” covers 161 estimates
for PV technology only. Original estimates are given by green dots as presented in Column
2 and 4 of Table 2 (Peters et al., 2012).
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Figure 8: Density and vibration plots for the estimated effect sizes of domestic capacity from
Peters et al. (2012).

Notes: In the first row, density plots for the estimated effect sizes are shown. In the
second row, vibration plots are presented. In the vibration plot, the y-axis displays
−log10(p-value). Thus, all estimates above the solid line are statistically significant at the
0.05 level. “All” covers 303 estimates for all technologies and “PV” covers 161 estimates
for PV technology only. Original estimates are given by green dots as presented in Column
2 and 4 of Table 2 (Peters et al., 2012).
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probability mass again for slightly positive effect sizes. The density shows a second peak

due to the cluster of estimates stemming from the use of granted patents.

Density and vibration plots for the estimated effect sizes of feed-in tariff levels from

Johnstone et al. (2010) are given in Figure 6. Statistical significance for both positive

and negative estimates can be achieved with most probability mass for slightly positive

estimates. Using granted patents results again in a cluster of estimates, but this time

with a negative sign. Interestingly, estimated effect sizes for PCT patents cluster here

as well, with considerably large and in many cases statistically significant estimates. If

only search strategies for solar patents are considered, negative and significant estimates

disappear again, except for estimates based on granted patents.

For these two key policy variables, most of the estimates are positive if only search

strategies that target solar patents are considered, indicating that the core results of John-

stone et al. (2010) are robust in terms of the signs of the policy effects. This is particularly

true when granted patents are ignored. However, uncertainty remains about the effect sizes.

The estimates can be interpreted as semi-elasticities and, thus, flexibility in the selection

of patent counts results in uncertainty about an increase of solar patents between −0.360%

and +4.817% for an additional billion of R&D expenditures. For feed-in tariff levels, the

range of effects is −0.066% to +0.042% for an additional US cent/kWh of the feed-in tariff.

The extent of variation in econometric estimates is also largely in line with the robustness

check that uses a subsample of search strategies by excluding search strategies with extreme

patent counts (results are available in the Online Appendix C). Some of the negative and

statistically significant estimates disappear.

With respect to the other policy variables used by Johnstone et al. (2010) (see Online

Appendix B), similar clustering by quality levels is observable for guaranteed price and

voluntary programs in the vibration plots. Interestingly, there are a considerable number of

positive significant estimates for higher patent quality levels (PCT, transnational, triadic)

for REC targets and investment incentives, but this large number of positive and statistically

significant policy effects do not tend to occur if search strategies are restricted to those that

target solar patents.

The results for Peters et al. (2012) are given in Figure 7 (domestic R&D funding) and

Figure 8 (domestic capacity).20 The overall findings are similar to those for Johnstone

et al. (2010). The clustering of estimates based on granted patents does not seem to be

as pronounced as in Johnstone et al. (2010), but clustering by other quality levels can be

observed. With respect to the search strategy, systematic patterns are again hard to detect

by visual inspection.

If the search strategies for PV are analyzed, which is the technology used in Peters et al.

(2012), the estimates for the two key policy variables, namely domestic R&D funding and

domestic capacity, are almost exclusively positive indicating that the results of Peters et al.

20 The estimation procedure in R does not converge for three models for Peters et al. (2012). All of these

models use triadic patents. We excluded these three triadic patent counts from the analysis.
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(2012) are robust with respect to the signs of the effects as well. Contrary to the results

of Johnstone et al. (2010), many significant estimates are based on higher patent quality

levels indicating that, for the case of PV, the policy instruments may create higher-valued

patents.

Similar to the research design of Johnstone et al. (2010), uncertainty regarding the ef-

fect sizes of the key variables remains. Again, trimming for potential outliers in selecting

patents does slightly reduce this uncertainty as several significantly negative estimates dis-

appear (results are available in the Online Appendix C). From an economic perspective,

the estimates in Peters et al. (2012) can be directly interpreted as elasticities, as the policy

variables are considered in logs as well. The effect of increasing domestic R&D funding by

1% on the number of PV patents ranges between -0.431 % and +0.874% and the effect of

increasing domestic capacity by 1% between -0.101% and +0.393%.

With respect to the other policy variables used by Peters et al. (2012) (see Online

Appendix B), patterns are similar to those of the two main policy variables.

4.4.2 Determinants of estimated effect sizes

Density and vibration plots demonstrate substantial uncertainty regarding signs, sizes and

levels of statistical significance of estimated policy effects and suggest that quality levels are

a major determinant of effect sizes. Results from the meta-regressions shed further light on

the determinants of estimated effect sizes.

For the research design of Johnstone et al. (2010), the results on the determinants of the

estimated effect sizes are reported in Table 3. If search strategies for PV rather than for

solar are used, the semi-elasticity of R&D expenditures decreases by 0.913 while the semi-

elasticity of feed-in tariff levels increases by 0.015. This is well in line with how the policy

instruments are used to support the different technologies; R&D expenditures were mostly

used to foster research activity for solar technologies in general, while feed-in tariff levels are

usually available for PV only. For most other policy variables, using a search strategy for PV

increases the semi-elasticities as well. The use of keywords or keywords in combination with

classifications does not have an effect on the semi-elasticity of R&D expenditures and only

the use of keywords decreases the semi-elasticity of feed-in tariff levels by 0.010. Generally,

the use of keywords or the use of keywords in combination with classifications tends to

reduce the semi-elasticities in most cases. This is because the classifications either do not

capture all the relevant patents or the classifications are too broad, including too many

patents. Patent quality levels are decisive for the effect sizes. For R&D expenditures, the

semi-elasticity is increased by 1.752 if granted patents are used instead of priority patents.

At the same time, using other quality levels, the semi-elasticity decreases, for example, by

1.259 in the case of triadic patents. For feed-in tariff levels, the use of granted patents

decreases the semi-elasticity by 0.034, while the use of PCT patents increases the semi-

elasticity by 0.045. The highly significant influence of using granted patents on the effect
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size is also present for all other policy variables and, in some cases, even with a reversed

sign compared to the other patent quality levels.

In the case of Peters et al. (2012), results on the determinants of estimated effect sizes are

reported in Table 4. Since all variables enter the regression for Peters et al. (2012) in logs, the

coefficients can be interpreted as elasticities. Search strategies for PV increase the elasticity

for domestic R&D funding by 0.122, while search strategies for CSP decrease the elasticity

by 0.127. For domestic capacity, surprisingly, PV search strategies reduce the elasticity

by 0.046, while for all other variables, PV search strategies increase the elasticity. The

elasticity for domestic R&D funding increases with keywords and keywords in combination

with classifications by 0.055 and 0.135, respectively. The effect size of domestic capacity

is only affected negatively by search strategies based on keywords. The elasticities of the

other variables are, in most cases, also reduced compared to search strategies based on

classifications. For domestic R&D funding and domestic capacity, all patent quality levels

increase the elasticities. These increases are particularly strong for granted patents, with an

increase of 0.261 and 0.269, respectively. For the other variables, there are mixed results,

but higher quality levels (PCT, transnational, triadic) usually show positive effects. Again,

granted patents show deviating results, especially for intercontinental capacity, where the

elasticity is reduced by 0.217 while PCT patents increase this elasticity by 0.090.

Overall, the regression results often have high adjusted R2 indicating that characteristics

of the patent selection approaches are fundamental determinants of the estimated effect

sizes. Which characteristic matters most for the estimated effect sizes varies across policy

variables. The quality level of patents tends to be important, with granted patents often

exhibiting a strong influence on the estimated effect sizes.

5 Discussion

5.1 Uncertainty in estimated policy effects

Our analysis demonstrates substantial uncertainty in econometrically estimated policy ef-

fects introduced by researchers’ degrees of freedom in extracting patent counts from patent

databases. We identify 51 search strategies for solar energy technologies used in the literature

and consider six different patent quality levels. The different search strategies lead to severe

differences in overall patent counts and the overlap of patents among these search strategies

varies considerably. While the country shares in selected do not vary much between search

strategies, they differ considerably if different patent quality levels are considered.

Using the research designs of Johnstone et al. (2010) and Peters et al. (2012), we find

that researchers’ degrees of freedom in the selection of patent counts result in a wide range

of estimates for the effects of various policy instruments on patent counts. The uncertainty

regarding signs and sizes of these policy effects is substantial, as for almost all policy ef-

fects both positive and negative estimates that are statistically significant can be obtained.

25



T
a
b

le
3
:

D
et

er
m

in
an

ts
o
f

es
ti

m
at

ed
eff

ec
t

si
ze

s
fo

r
th

e
re

se
ar

ch
d

es
ig

n
o
f

J
oh

n
st

on
e

et
al

.
(2

0
10

).

R
&

D
F

ee
d

-i
n

ta
ri

ff
R

E
C

ta
rg

et
s

K
yo

to
p

ro
to

co
l

In
v
es

tm
en

t
T

a
x

m
ea

su
re

s
G

u
ar

a
n
te

ed
V

ol
u
n
ta

ry
O

b
li

ga
ti

on
s

ex
p

en
d

it
u

re
s

le
ve

ls
in

ce
n
ti

ve
s

p
ri

ce
p

ro
gr

a
m

s

In
te

rc
ep

t
3
.8

08
*
*
*

0.
05

2
**

0
.6

26
**

*
1.

69
9*

**
-0

.3
83

**
-0

.4
54

**
*

1.
6
71

**
*

0.
7
79

**
*

0.
8
95

**
*

(0
.3

8
2)

(0
.0

1
7)

(0
.0

58
)

(0
.1

39
)

(0
.1

26
)

(0
.0

97
)

(0
.2

92
)

(0
.0

94
)

(0
.1

24
)

C
S

P
-0

.2
41

*
0.

00
0

0.
01

0
-0

.1
74

**
*

-0
.0

55
0.

0
85

**
-0

.0
9
7

0.
0
08

-0
.1

70
**

*
(0

.1
1
3)

(0
.0

0
5)

(0
.0

17
)

(0
.0

41
)

(0
.0

37
)

(0
.0

29
)

(0
.0

86
)

(0
.0

28
)

(0
.0

37
)

P
V

-0
.9

1
3
**

*
0
.0

15
*
*

-0
.0

16
0.

00
2

0.
13

4*
**

0.
1
72

**
*

0.
2
37

**
-0

.0
8
2*

**
0
.1

3
9*

**
(0

.0
9
8)

(0
.0

0
4)

(0
.0

15
)

(0
.0

36
)

(0
.0

32
)

(0
.0

25
)

(0
.0

75
)

(0
.0

24
)

(0
.0

32
)

C
la

ss
.+

K
ey

w
o
rd

s
0
.1

7
5

-0
.0

05
-0

.1
15

**
*

-0
.2

14
**

*
0.

15
5*

**
-0

.0
5
4’

-0
.3

98
**

*
-0

.1
81

**
*

-0
.0

76
*

(0
.1

1
6)

(0
.0

0
5)

(0
.0

18
)

(0
.0

42
)

(0
.0

38
)

(0
.0

29
)

(0
.0

88
)

(0
.0

29
)

(0
.0

38
)

K
ey

w
or

d
s

-0
.0

7
1

-0
.0

1
0
*

-0
.1

02
**

*
-0

.2
50

**
*

0.
09

7*
*

0.
0
10

-0
.3

0
9*

**
-0

.1
81

**
*

-0
.1

34
**

*
(0

.0
9
3)

(0
.0

0
4)

(0
.0

14
)

(0
.0

34
)

(0
.0

31
)

(0
.0

24
)

(0
.0

71
)

(0
.0

23
)

(0
.0

30
)

G
ra

n
te

d
1
.7

5
2*

*
*

-0
.0

3
4*

*
*

-0
.1

19
**

*
-0

.3
61

**
*

0.
34

8*
**

-0
.3

28
**

*
-0

.4
7
9*

**
-0

.8
9
3*

**
0
.4

0
0*

**
(0

.1
2
7)

(0
.0

0
6)

(0
.0

19
)

(0
.0

46
)

(0
.0

42
)

(0
.0

32
)

(0
.0

97
)

(0
.0

32
)

(0
.0

41
)

C
la

im
ed

-0
.4

80
*
**

0
.0

00
-0

.0
30

0.
01

5
0.

02
2

-0
.1

63
**

*
0
.1

0
3

0
.0

7
3*

0
.2

1
3*

**
(0

.1
2
7)

(0
.0

0
6)

(0
.0

19
)

(0
.0

46
)

(0
.0

42
)

(0
.0

32
)

(0
.0

97
)

(0
.0

32
)

(0
.0

41
)

P
C

T
-0

.9
27

*
*
*

0.
04

5
*
**

-0
.0

71
**

*
-0

.1
02

*
0.

76
8*

**
-0

.1
97

**
*

0.
6
50

**
*

0
.5

1
3*

**
0
.5

3
1*

**
(0

.1
2
7)

(0
.0

0
6)

(0
.0

19
)

(0
.0

46
)

(0
.0

42
)

(0
.0

32
)

(0
.0

97
)

(0
.0

32
)

(0
.0

41
)

T
ra

n
sn

a
ti

o
n

al
-1

.2
7
9
**

*
0.

00
5

-0
.0

51
**

0.
07

2
0.

32
8*

**
-0

.1
20

**
*

0
.2

0
4*

0.
2
24

**
*

0.
1
91

**
*

(0
.1

2
7)

(0
.0

0
6)

(0
.0

19
)

(0
.0

46
)

(0
.0

42
)

(0
.0

32
)

(0
.0

97
)

(0
.0

32
)

(0
.0

41
)

T
ri

a
d

ic
-1

.2
5
9*

*
*

-0
.0

06
-0

.0
86

**
*

0.
15

5*
**

0.
41

8*
**

-0
.0

35
0
.1

8
1’

0
.2

2
5*

**
-0

.0
10

(0
.1

2
7)

(0
.0

0
6)

(0
.0

19
)

(0
.0

46
)

(0
.0

42
)

(0
.0

32
)

(0
.0

97
)

(0
.0

32
)

(0
.0

41
)

N
o.

of
p

at
en

ts
-0

.1
9
6*

*
*

-0
.0

04
*
*

-0
.0

47
**

*
-0

.1
26

**
*

0.
01

7
0
.0

5
7*

**
-0

.1
4
2*

**
-0

.0
5
1*

**
-0

.0
83

**
*

(0
.0

3
5)

(0
.0

0
2)

(0
.0

05
)

(0
.0

13
)

(0
.0

12
)

(0
.0

09
)

(0
.0

27
)

(0
.0

09
)

(0
.0

11
)

A
d

j.
R

2
0
.7

5
7

0
.4

0
3

0.
38

6
0.

48
4

0.
64

0
0
.4

2
0

0.
3
69

0
.8

9
2

0.
5
59

O
b

s.
3
0
6

3
06

30
6

30
6

30
6

3
06

3
06

3
06

30
6

N
ot

es
:

S
ta

n
d

ar
d

er
ro

rs
in

p
a
re

n
th

es
es

.
S

ig
n

ifi
ca

n
ce

le
ve

ls
ar

e
d

ep
ic

te
d

b
y

‘
0.

1,
*

0.
05

,
**

0.
01

,
*
**

0.
0
01

le
ve

l.

26



T
a
b

le
4
:

D
et

er
m

in
a
n
ts

of
es

ti
m

at
ed

eff
ec

t
si

ze
s

fo
r

th
e

re
se

ar
ch

d
es

g
in

of
P

et
er

s
et

al
.

(2
0
12

).

D
o
m

es
ti

c
C

on
ti

n
en

ta
l

In
te

rc
on

t.
D

om
es

ti
c

C
o
n
ti

n
en

ta
l

In
te

rc
o
n
t.

R
&

D
fu

n
d

in
g

R
&

D
fu

n
d

in
g

R
&

D
fu

n
d

in
g

ca
p

ac
it

y
ca

p
ac

it
y

ca
p

a
ci

ty

In
te

rc
ep

t
0
.4

94
**

*
-0

.3
34

**
*

-0
.0

30
0.

30
9*

*
*

0.
3
82

**
*

0
.2

4
6*

**
(0

.0
6
2)

(0
.0

65
)

(0
.1

22
)

(0
.0

44
)

(0
.0

33
)

(0
.0

57
)

C
S

P
-0

.1
27

**
*

-0
.0

93
**

*
-0

.0
94

**
-0

.0
87

*
**

-0
.0

3
7*

**
0.

0
27

(0
.0

1
8)

(0
.0

19
)

(0
.0

36
)

(0
.0

13
)

(0
.0

10
)

(0
.0

17
)

P
V

0.
12

2*
**

0.
16

7*
**

0.
17

8*
**

-0
.0

46
*
**

0
.0

3
5*

**
0.

0
44

**
(0

.0
1
6)

(0
.0

17
)

(0
.0

31
)

(0
.0

11
)

(0
.0

08
)

(0
.0

15
)

C
la

ss
.+

K
ey

w
or

d
s

0
.1

35
**

*
0.

03
0

-0
.1

38
**

*
-0

.0
06

0
.0

1
0

-0
.1

48
**

*
(0

.0
1
9)

(0
.0

20
)

(0
.0

37
)

(0
.0

13
)

(0
.0

10
)

(0
.0

17
)

K
ey

w
o
rd

s
0
.0

55
**

*
0.

06
1*

**
-0

.2
29

**
*

-0
.0

44
*
**

-0
.0

0
7

-0
.1

05
**

*
(0

.0
1
5)

(0
.0

16
)

(0
.0

30
)

(0
.0

11
)

(0
.0

08
)

(0
.0

14
)

G
ra

n
te

d
0
.2

61
**

*
-0

.0
01

-0
.2

02
**

*
0.

26
9*

**
-0

.0
3
9*

**
-0

.2
17

**
*

(0
.0

2
1)

(0
.0

22
)

(0
.0

41
)

(0
.0

15
)

(0
.0

11
)

(0
.0

19
)

C
la

im
ed

0.
0
40

’
-0

.0
25

0.
12

7*
*

0.
09

4*
*
*

-0
.0

47
**

*
0.

0
34

’
(0

.0
2
1)

(0
.0

22
)

(0
.0

41
)

(0
.0

15
)

(0
.0

11
)

(0
.0

19
)

P
C

T
0
.1

66
**

*
0.

35
2*

**
0.

32
2*

**
0.

17
9*

**
0.

0
67

**
*

0
.0

9
0*

**
(0

.0
2
1)

(0
.0

22
)

(0
.0

41
)

(0
.0

15
)

(0
.0

11
)

(0
.0

19
)

T
ra

n
st

io
l

0
.1

27
**

*
0.

10
6*

**
0.

49
5*

**
0.

06
6*

*
*

-0
.0

45
**

*
0.

0
43

*
(0

.0
2
1)

(0
.0

22
)

(0
.0

41
)

(0
.0

15
)

(0
.0

11
)

(0
.0

19
)

T
ri

ad
ic

0.
21

9*
**

0.
15

6*
**

0.
57

4*
**

0.
07

5*
**

-0
.0

15
-0

.0
40

*
(0

.0
2
1)

(0
.0

22
)

(0
.0

41
)

(0
.0

15
)

(0
.0

11
)

(0
.0

19
)

N
o
.

o
f

p
a
te

n
ts

-0
.0

53
**

*
0.

01
1’

-0
.0

14
-0

.0
19

**
*

-0
.0

33
**

*
-0

.0
13

*
(0

.0
0
6)

(0
.0

06
)

(0
.0

11
)

(0
.0

04
)

(0
.0

03
)

(0
.0

05
)

A
d

j.
R

2
0
.7

2
1

0.
71

8
0.

67
4

0.
62

4
0.

5
36

0.
5
75

O
b

s.
30

3
30

3
30

3
3
03

30
3

3
03

N
ot

es
:

S
ta

n
d

a
rd

er
ro

rs
in

p
a
re

n
th

es
es

.
S

ig
n

ifi
ca

n
ce

le
ve

ls
ar

e
d

ep
ic

te
d

b
y

‘
0
.1

,
*

0.
0
5,

**
0.

0
1,

**
*0

.0
0
1

le
ve

l.

27



Uncertainty regarding the signs of the core policy variables is substantially reduced if we

account for the specific technology used in the original research design. Additionally, ex-

cluding search strategies that result in the 10% smallest and 10% largest number of priority

fillings helps to slightly reduce uncertainty regarding the signs. However, the economic effect

sizes still vary substantially, which makes it difficult to derive recommendations.

For the research design of Johnstone et al. (2010), we can demonstrate that the use

of search strategies that focus on the identification of PV patents lead to larger estimates

for many policy effects compared to search strategies that aim to identify solar or CSP

patents. This indicates that the policy variables considered in Johnstone et al. (2010) seem

to encourage inventive activity, particularly in PV and not solar in general, which is the

study’s original technology choice. This is consistent with the findings for Peters et al.

(2012) where estimates of policy effects are in most cases larger if search strategies for PV

patents are considered compared to search strategies for solar patents.

With respect to the patent quality levels, we observe deviating results between Johnstone

et al. (2010) and Peters et al. (2012). In the former, patent quality levels for higher value

patents (PCT, transnational, triadic) result, in many cases, in a decrease in effect sizes, while

for Peters et al. (2012), we usually find an increase in effect sizes. Estimates of policy effects

for granted patents, however, seem to follow no clear pattern but show usually larger and, in

some cases, opposing effects than obtained for the other quality levels. This indicates that

granted patents should be used with great care. Many previous studies use granted patents

from the U.S. and may need to be interpreted with caution or even reassessed, as most

studies present results only for one quality level. As emphasized in Section 2.1, the quality

level chosen for the analysis should be transparently derived from the research question and

sensitivity analyses should be conducted due to the large influence that quality levels can

have on the estimated effect sizes.

We identify characteristics of patent selection approaches as key determinants of policy

effects sizes as indicated by large adjusted R2. All characteristics, namely, search strategy,

technology, patent quality level and the total number of identified patents matter in ex-

plaining the variation of estimated effect sizes. However, none of the characteristics has a

systematic influence on all policy effects besides total priority patents selected by a given

search strategy which have mostly a negative influence on the estimated effect sizes. This

indicates that the policy effects are targeted towards the technology and do not increase

patenting in general, which is likely to be measured if the search strategy is too broad.

A precise research question with a clear identification of the relevant technology and an

appropriate search strategy can reduce potential measurement errors and reduce potential

biases.

Nevertheless, we find that the core results of Johnstone et al. (2010) and Peters et al.

(2012) tend to be fairly robust if we consider subsets of search strategies that focus on

the respective technologies analyzed in the original studies, even though effects are larger

for PV in the case of Johnstone et al. (2010). Especially the two variables measuring
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technology push and demand pull effects have, in most cases, a high share of positive and

statistically significant estimates. This is in line with the theoretical considerations on

induced innovation.21

5.2 Implications for p-hacking and evidence-based policymaking

Researchers’ degrees of freedom in patent selection approaches do not only lead to severe

uncertainty with respect to the sizes and levels of statistical significance of estimated policy

effects, but also opens up the possibility to deliberately search for results that confirm a

hypothesis of interest. The vibration plots intriguingly show that, for almost all policy

effects, positive and negative estimates that are statistically significant can be obtained.

Moreover, our analysis of the determinants of policy effect sizes reveals that characteristics

of the patent selection approaches explain a large fraction of the observed variation. Hence,

(small) changes to the selection approach can be used to alter the estimated policy effect

until the hypothesis of interest is confirmed. Since patent data for many patent offices and

in various forms are nowadays easily available, the deliberate search comes at very low costs.

Although uncertainty opens up the possibility for deliberate p-hacking, we do not believe

that empirical research is dominated by researchers who intentionally search for estimates

that fulfil their prior beliefs. p-hacking may occur in a much subtler form. Researchers

are usually aware of the vast range of estimates that can be often obtained for an effect of

interest and they may be affected by motivated reasoning (Kunda, 1990; Bastardi et al.,

2011) when they choose to present the empirical model that ‘makes sense’ according to prior

beliefs. There is empirical evidence that such selective reporting is widespread in empirical

economics research (Brodeur et al., 2016).

Ioannidis et al. (2017) show that empirical economics research is characterized by low

power. This means that the utilized sample sizes are often too small to detect reliably an

effect that actually exists. Low power may incentivize authors to p-hack by exaggerating the

point estimates in order to find a statistically significant effect. These exaggerations of effect

sizes due to p-hacking can be substantial as shown by Ioannidis et al. (2017). Our findings

reveal that low power seems to be a problem in the two benchmark studies as well. Some

policy effects show a considerably large share of positive but statistically non-significant

estimates, indicating that the sample sizes may be too small to ensure standard errors that

result in statistically significant estimates. For example, the core variables in Johnstone et al.

(2010) (R&D expenditures and feed-in tariff levels) and Peters et al. (2012) (domestic R&D

funding and domestic capacity) have, in most cases, a share of positive point estimates close

to one. This finding particularly occurred if we use the respective technology of the original

research design. Researchers may thus be tempted to use their degrees of freedom in the

21 As an anonymous reviewer pointed out, the two benchmark research designs do not put much emphasis

on the identification of causal effects. In the present study, we can only analyze robustness of the original

findings with respect to alternative patent selection approaches. Our analysis does not contribute to the

analysis of causality.
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selection of patent counts to search for large effect sizes that result in statistically significant

estimates. While an explicit discussion of economic significance is desirable (McCloskey and

Ziliak, 1996; Cumming, 2014), exaggerated effect sizes may mislead policymakers and result

in misallocation. Hence, careful sensitivity analysis regarding the economic significance of

estimated policy effects can help to pave the way for evidence-based policymaking.

A rigorous documentation of why a specific search strategy is used and why certain

quality levels are considered needs to be implemented to reduce measurement errors and

the potential for p-hacking. Particularly, the quality levels of patents need more attention.

Peters et al. (2012) can be seen as a good example of how to deal with different patent

quality levels, since they demonstrate the flexibility of their results with respect to three

patent quality levels. However, such robustness tests towards different measures of patent

quality are not common, even in top economics journals.

6 Conclusions and recommendations

We show that the presence of researchers’ degrees of freedom in the selection of patent counts

calls for a careful interpretation of results obtained with patent data, providing empirical

evidence for the warnings made by Griliches (1990). We demonstrate the potential for

conscious and unconscious p-hacking by estimating policy effects based on different solar

patent counts obtained by different patent selection approaches that vary by search strategy,

patent quality level and the type of solar technology considered. Thereby we show how

flexibility in the selection of patent counts translates into uncertainty for policy makers in

how to evaluate the effectiveness of policy instruments. Moreover, our findings indicate

that power may be low in the analysis of patent counts at the country level, potentially

incentivizing researchers to exaggerate effect sizes to obtain statistically significant findings

(Ioannidis et al., 2017). Exaggerated effect sizes may misinform policymakers about the

cost effectiveness of alternative policies and pose a threat to evidence-based policymaking.

We use Johnstone et al. (2010, 2017) and Peters et al. (2012) as benchmark research

designs for our comprehensive analysis of variation in estimated policy effects. To this end,

our analysis includes replications of these studies with systematic sensitivity analyses. We

can show that the key findings of the two studies tend to be robust regarding the signs

of the estimated policy effects, which is good news given the large amount of alternative

patent counts considered in our analysis. These results are also in line with the theoretical

arguments that technology push and demand pull policies induce inventive activities. How-

ever, substantial uncertainty remains regarding the effect sizes. For Johnstone et al. (2010),

an additional billion of R&D expenditures may result in a change of solar patents between

−0.360% and +4.817% and a one US cent/kWh increase of the feed-in tariff level may result

in a change of solar patents in the range of −0.066% to +0.042%. For Peters et al. (2012),

a 1% increase of domestic R&D funding may result in a change of PV patents in the range
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-0.431% to +0.874% and a 1% increase of domestic capacity may result in a change of PV

patents between -0.101% and +0.393%.

Our analyses and findings result in recommendations for future research that involves

patent data. We hope that these recommendations may serve as a starting point for a

discussion within the scientific community at which end mutually agreed standards for the

analysis of patent data emerge.

• More emphasis should be devoted to the patent selection approach as our findings in-

dicate that characteristics of the selection approach can substantially influence econo-

metrically estimated policy effects. For some research designs, Figure 1 in Section 2.1

may prove to be useful to discuss transparently and comprehensively how technology

demarcations and patent quality levels directly follow from a precise research question

and why they can be best measured by a specific search strategy and quality proxy,

including a discussion of potential measurement errors.

• Most importantly, sensitivity analyses regarding the important decisions made in the

research process should become obligatory standard. Such a sensitivity analysis im-

poses relatively low costs on the researcher, since patent databases nowadays provide

easy access to the data. Sensitivity analysis seems to be particularly important with re-

spect to the quality levels of the underlying patents, if proxied by the filing procedure,

as our findings suggest that the quality level may have a large and heterogeneous influ-

ence on econometric estimates. As an example, (Peters et al., 2012) explore robustness

of their findings to alternative patent quality levels. Regarding search strategies, new

search strategies should be compared to previous ones in the related literature and

manual inspection of the obtained patents (ideally by experts) is advised (e.g. Porter

et al., 2008; Costantini et al., 2015a). If demarcations based on technological charac-

teristics are needed, narrow and broad search strategies can be compared (e.g. Braun

et al., 2011). Insights from future sensitivity analyses may proof useful in developing

common standards for research based on patent data.

We have analyzed how flexibility in patent selection approaches transmits to variation

in estimated policy effects for a very simple case, the count of patents per country and year.

Patent data, however, are used for more sophisticated analyses relying on patents’ contents

and further meta information. For example, patent data are frequently used to assess

technological or economic performance, to map knowledge flows, to reconstruct innovation

networks, or to analyze other economic relationships. Such studies are most likely subject

to greater flexibility in their results than the two cases presented here, which rely on simple

patent counts only.

While we use a specific technology for our analysis, the underlying problem of flexibility

is very likely to be present in other technology studies using patent data. For example,

similar problems are likely to exist in studies that analyze new and emerging technologies,
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which are not well captured by specific classifications or keywords such as biotechnology or

nanotechnology.

With respect to the researchers’ degrees of freedom in patent selection approaches, we

focus on three different levels: the search strategy, the patent quality level as well as tech-

nological ambiguity. There are further degrees of freedom in the selection and use of patent

data that are not considered in the present study. For example, using different classifica-

tion schemes, selecting patents from different databases or operationalizing patent quality

in different ways, such as weighting by patent citations.
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A Search strategies for solar energy patents

Table 5: Search strategies for solar energy patents
Article Technology Type of search No. of priority patents Also used in
CPC Classification PV PV Class. 24,617 Bointner et al. (2013); Bointner

(2014); Stek and van Geenhuizen
(2015); Leydesdorff et al. (2015); Wu
and Hu (2015); Bäckström et al.
(2014); Diederich and Althammer
(2016); Breul et al. (2015); Glachant
and Dechezleprêtre (2016); Jamali
et al. (2016)

WIPO Green Inventory PV PV Class. 67,305 Lei et al. (2013); Martinez et al.
(2013); Groba and Cao (2015); Choi
and Anadn (2014); Gallagher (2014)

Böhringer et al. (2014) PV Class. 688,292 Diederich and Althammer (2016)
Guan and Yan (2016) PV Class. 2,942
Peters et al. (2012) PV Class. 8,088 Diederich and Althammer (2016)
Popp et al. (2011) PV Class. 22,511 Brunel (2016)
Wu and Mathews (2012) PV Class. 714,877 Wu (2014)
Binz et al. (2017) PV Class. + Key. 16,161
de la Tour et al. (2011) PV Class. + Key. 37,352
FRINNOV (2009) PV Class. + Key. 10,587
Haller (2007) PV Class. + Key. 22,109
Kalthaus (2017) PV Class. + Key. 17,926 Cantner et al. (2016); Herrmann and

Töpfer (2017); Kalthaus (2016);
Herrmann (2017)

Kazuyuki and Takanori (2014) PV Class. + Key. 8,954
Lei et al. (2012) PV Class. + Key. 17,329 Lei et al. (2013)
Li et al. (2014) PV Class. + Key. 11,571
Wang and Chiu (2010) PV Class. + Key. 12,228
Andersson and Jacobsson (2000) PV Keywords 17,756
Bettencourt et al. (2013) PV Keywords 11,931
Chen et al. (2010) PV Keywords 24,803 Huang et al. (2013)
Han and Niosi (2016) PV Keywords 13,736
Jang et al. (2013) PV Keywords 19,721
Jang et al. (2013)a PV Keywords 101,334
Lee et al. (2012) PV Keywords 5,833 Lee and Lee (2013); Geng and Ji

(2016); Wong et al. (2014, 2016)
Myong (2014) PV Keywords 74,890
Rai et al. (2013) PV Keywords 6,155 Venugopalan and Rai (2015)
Shibata et al. (2010) PV Keywords 12,775
Zheng and Kammen (2014) PV Keywords 19,139
CPC Classification Solar Solar Class. 37,420 Marin and Lotti (2017); Calel and

Dechezleprêtre (2016)
WIPO Green Inventory Solar Solar Class. 98,668 Albino et al. (2014); Colombelli et al.

(2015); Marin and Lotti (2017); Kruse
(2016); Kruse and Wetzel (2016)

DechezleprÃatre et al. (2009) Solar Class. 20,946

DechezleprÃatre et al. (2011) Solar Class. 22,324 Costantini and Mazzanti (2012);
Wurlod and Noailly (2016)

Guan and Yan (2016)a Solar Class. 4,588
Johnstone et al. (2010) Solar Class. 38,350 Noailly and Shestalova (2017); Noailly

and Smeets (2012); Noailly and
Ryfisch (2015); Braun et al. (2010);
Ayari et al. (2012); Zachmann et al.
(2015); Dalmazzone and Corsatea
(2012); Diederich and Althammer
(2016)

Nesta et al. (2014) Solar Class. 23,946 Diederich and Althammer (2016)
Noailly et al. (2010) Solar Class. 19557 Noailly (2012); Costantini et al.

(2014, 2015c)

Pillu (2009) Solar Class. 27,171 Pillu and KolÃ c©da (2009)
Popp (2001) Solar Class. 96307
Popp et al. (2013) Solar Class. 35,632 Popp (2016)
Wangler (2013) Solar Class. 23,946 Corsatea (2014)
Jamasb and Pollitt (2011) Solar Keywords 31,601
Jamasb and Pollitt (2015) Solar Keywords 47,483
Margolis and Kammen (1999b) Solar Keywords 25,437 Margolis and Kammen (1999a)
CPC Classification CSP CSP Class. 14,004 Wu and Hu (2015)
WIPO Green Inventory CSP CSP Class. 34,239
Braun et al. (2011) CSP Class. 14,402
Braun et al. (2011)a CSP Class. 195,172
Gallagher (2014) CSP Class. 5,319
Tseng (2014) CSP Class. 8,657
Lanjouw and Mody (1996) CSP Class. + Key. 13,062
Lee et al. (2012)a CSP Keywords 43,880 Lee and Lee (2013); Geng and Ji

(2016)
Wong et al. (2014) CSP Keywords 4,693 Wong et al. (2016)

Notes: Search strategies for solar energy patents as used in the literature are presented (collected in March 2017). For each article, the targeted
technology, type of search and number of identified priority patents as well as the use of the respective search strategy in other studies is given.
’Class.’ refers to the used of classifications (IPC, CPC), ’Key.’ refers to the use of keywords and ’Class. + Key.’ refers to the use of both. ’PV’

refers to photovoltaics and ’CSP’ to concentrated solar power and ’solar’ to both. Articles marked with an ’a’ contain more than one search
strategy.
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