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Abstract

Including historical data may increase the power of the analysis of a current clini-
cal trial and reduce the sample size of the study. Recently several Bayesian methods
for incorporating historical data have been proposed. One of the methods consists
of specifying a so-called power prior whereby the historical likelihood is down-
weighted with a weight parameter. When the weight parameter is also estimated from
the data, the modified power prior is needed. This method has been used primarily
when a single historical trial is available. We have adapted the modified power prior
for incorporating multiple historical control arms into a current clinical trial, each
with a separate weight parameter. Three priors for the weights are considered: (1)
independent, (2) dependent and (3) robustified dependent. The latter was developed
to account for the possibility of a conflict between the historical data and the cur-
rent data. We analyze a real life data set and perform a simulation study to compare
the performance of competing Bayesian methods that allow to incorporate historical
control patients in the analysis of a current trial. The dependent power prior borrows
more information from comparable historical studies and thereby can improve the
statistical power. Robustifying the dependent power prior seems to protect against
prior-data conflict.

KEYWORDS:
Bayesian inference, modified power prior, multiple historical trials, dependent weights

1 INTRODUCTION

The randomized controlled trial (RCT) is considered the most appropriate way to establish a cause-effect relationship between
a treatment and outcome1. In the majority of RCTs, historical data are only used as guidance to set up a new study2. Explicitly
including historical data into the analysis of the current trial data may have ethical and economic advantages. This is true when
the characteristics of the control arm of subsequent studies remain basically the same. In that case, including historical controls
into the current study allows to reduce the number of control patients, and conclusions may be reached earlier3–5. However,
gains will only be obtained when the historical controls are comparable with the current control treatment6.
Due to possible differences in patient populations across different trials, it is inappropriate to simply lump all historical controls

into the current trial data. Pocock6 proposed formal methods for incorporating historical controls in both the design and the
analysis of RCTs. Since then, several Bayesian methods have been proposed for the inclusion of historical data into the analysis
of current data, especially in clinical trials7–12. The main approaches are based on: the meta-analytic-predictive (MAP) prior7,
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the power prior10 and the commensurate prior11. These methods share the same feature that they discount historical data to
account for between-trial heterogeneity in the context of a single historical study or multiple historical studies.
The MAP prior proposed by Neuenschwander et al.7 is a popular meta-analytic approach when several historical trials are

available. To make use of information contained in historical controls, the MAP prior assumes that the control parameters of all
trials are exchangeable and are drawn from the same distribution. If the meta-analysis is performed at the design stage of a new
trial, the predictive distribution for the parameter(s) of interest of the new control can be derived from the historical controls.
This distribution summarizes the available knowledge about the control arm in the new trial and provides an informative prior
(MAP prior) to be used in the analysis of that trial. The meta-analytic approach can also be used at the analysis stage of the new
trial and is then referred to as the meta-analytic combined (MAC) approach.
Including historical information into the analysis of a current trial needs to be done with care, especially when there is the

risk of a prior-data conflict. That is, when the historical data support vastly different parameter values than the current data.
Incorporating the historical data could then mislead inference13, i.e. the inference may not be robust. Prior-data conflicts may
be due to (unanticipated) differences of the historical and current trials in study design, conduct or patient population. In that
case, it is probably best to drastically discount or even discard the prior information. To acknowledge the possibility of prior-data
conflict, Schmidli et al.3 proposed a robust version of the MAP prior by adding a weakly informative component. This robust
prior is a mixture of the original MAP prior and a vague prior with weights fixed in advance. When the historical and current
control data are in clear conflict, the robust MAP prior will essentially discard the historical information.
The power prior, introduced by Ibrahim and Chen10 provides another way to incorporate and downweight historical data by

raising the historical likelihood to a power smaller than 1. The power parameter may be fixed in advance or estimated from the
data. In the latter case, the power prior had to be modified to satisfy the likelihood principle leading to the modified power prior
(MPP), see Duan et al.14. The (modified) power prior has been suggested for a single historical study, but Duan et al.14 also
formulated some initial ideas when there are multiple historical studies. A straightforward generalization of the MPP to multiple
historical studies is to assume different and independent weight (power) parameters. However, as with the MAP approach, it is
reasonable to assume in first instance that the historical studies are not too different from each other. This leads to the dependent
prior of the weights referred to here as the dependent modified power prior (DMPP). The performance of the DMPP with a
binary outcome is evaluated in this paper, both analytically as well as via a real data set and simulation studies. We also suggest
a robustified version of the DMPP to be used when there is possible conflict between the historical and current data. Again the
robustified version consists of adding a component that essentially ignores the historical information.
In Section 2 we describe the HOVON data set. The Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) has

organized over the last two decades a series of RCTs to evaluate investigational treatments for acute myeloid leukemia (AML)
in comparison to a control arm. Since the control treatment remained essentially the same (apart from the standard treatment of
care), the question arises whether the control data can be used for future trials in this context. In this section we also check which
of the control data can be used thereby making use of Pocock’s criteria6. Section 3 introduces the MPP for a single historical
trial. Section 4 reviews methods that incorporate multiple historical trials into the design and analysis of a current trial. Section
5 focuses on the DMPP. In Section 6, several methods for the inclusion of multiple historical data are applied to the HOVON
data. In Section 7, a simulation study based on binary outcomes evaluates the performance of these methods across various
scenarios and settings. The paper concludes with a general discussion in Section 8. Derivations and additional results are given
in the appendix.

2 THE HOVON DATASET

Patients suffer from acutemyeloid leukemiawhen their bonemarrow produces immature white blood cells (blasts). For the evalu-
ation of induction treatment and treatment strategies, complete remission or complete response (CR) is an important dichotomous
outcome. Complete AML remission implies no evidence of leukemia after 4 weeks defined using the following criteria15,16:

• Normal values for absolute neutrophil count (> 1000∕�L) and platelet count (> 100, 000∕�L), and independence from
red cell transfusion.

• A bone marrow biopsy that reveals no clusters or collections of blast cells. Extramedullary leukemia (e.g., central nervous
system or soft tissue involvement) must be absent.
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TABLE 1 HOVON data: Descriptive statistics of AML patients with respect to the trials. N = number of patients, CR =
complete response

Trial Group Year N CR (%)
HOVON 4 Control 1988-1992 359 279 (77.7)
HOVON 4A Control 1992-1993 252 208 (82.5)
HOVON 29 Control 1997-2000 693 598 (86.3)
HOVON 42 Control 2002-2004 437 358 (81.9)
HOVON 42A Control 2004-2006 259 214 (82.6)
HOVON 42A Treatment 2004-2006 252 211 (83.7)

The HOVON data set is obtained from a number of RCTs conducted by HOVON since 1988, i.e. the trials called HOVON 4,
HOVON 4A, HOVON 29, HOVON 42 andHOVON 42A. All of these trials had essentially the same control treatment consisting
of one cycle of induction with an anthracycline (daunorubicin or idarubicin) in combination with cytarabine (200 mg∕m2 for
seven days) and a second cycle of amsacrine with intermediate-dose cytarabine (1000 mg∕m2 every 12h for six days). In Table
1 some basic information of the HOVON control data is given. The question is whether and how these historical control data
can be used for the evaluation of the investigational treatment in the HOVON 42A trial. This is the most recently conducted
trial, where the effect of priming has been investigated using a granulocyte colony-stimulating factor (G-CSF) in the remission
induction chemotherapy course for treatment of AML. Whether the historical control data from the HOVON 4, HOVON 4A,
HOVON 29 and HOVON 42 trials can be used for the analysis of the HOVON 42A trial was evaluated in Van Rosmalen et
al.17 using Pocock’s criteria6. These are six criteria to evaluate whether the circumstances in which the historical studies have
been performed are similar to those of the current study. Using these criteria the HOVON 29 and HOVON 42 trials have been
selected. Here, we consider these historical trials for the analysis of the data of the most recent study, HOVON 42A, which was
set up to test whether G-CSF priming (investigational treatment) improves the CR rate of AML patients. The CR rate of the
patients in the HOVON trials ranges between 77.7% and 86.3%, see Table 1 . The response rate of patients with G-CSF priming
of HOVON 42A is 83.7% whereas the rate is 82.6% for the control patients.

3 THE POWER PRIOR

In this section, we review the power prior and its modified version for the inclusion of single historical control data into the
analysis of a current trial. Let D0 denote the historical data, D the current data and L(.) the likelihood function. In the power
prior approach, we assume the same model parameter �C in both historical and current control data, but the historical data is
downweighted with a power parameter �.

3.1 The Power Prior
Ibrahim and Chen10 defined the power prior for �C of the current study as

�(�C |D0, �) ∝ L(�C |D0)�p(�C ). (1)

The power parameter � in (1) controls the degree of borrowing from historical data. Initially � was a fixed value between 0 and
1, with � = 0meaning that historical data should be neglected, whereas with � = 1, the historical data is fully incorporated into
the analysis. Since it is difficult to choose a particular value for �, it was suggested to also give � a prior yielding then the joint
prior for (�C , �)10,18 defined as

�(�C , �|D0) ∝ L(�C |D0)�p(�C )p(�). (2)
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For a dichotomous outcome, the historical dataD0 consist of y0 ‘successes’ out of n0 subjects. Assuming a binomial distribution
for y0 with a Beta(�� , ��) prior for the success rate �C , the joint power prior becomes

�(�C , �|D0) ∝ L(�C |y0, n0)�p(�C )p(�)

∝
(

n0
y0

)�

��y0C (1 − �C )�(n0−y0)
���−1C (1 − �C )��−1

B(�� , ��)
p(�)

∝

(n0
y0

)�

B(�� , ��)
��y0+��−1C (1 − �C )�(n0−y0)+��−1p(�), (3)

where B(�� , ��) is the beta function evaluated in �� and �� .

3.2 The Modified Power Prior
The power prior in (2), however, violates the likelihood principle19. In addition, the posterior distribution of � tends to zero
regardless of the compatibility between the historical and the current data14,20. To fix this problem, the modified or normalized
power prior has been proposed given by

�(�C , �|D0) ∝
L(�C |D0)�p(�)p(�C )

C(�)
. (4)

The left-hand side of (4) can be written as �(�C , �|D0) = �(�C |D0, �)p(�), where the conditional prior �(�C |D0, �) is equivalent
to the power prior in (1). However, a normalizing constant should be introduced that depends on � to satisfy the likelihood
principle. To this end the scaling constant C(�) = ∫�C L(�C |D0)�p(�C )d�C is taken as denominator14. The computation of C(�)
with many model parameters can be challenging, but it can be implemented using an algorithm based on the principle of path
sampling17,21,22 or by making use of a Laplace approximation23.
For the above binomial example, C(�) can be computed analytically as

∫
�C

L(�C |y0, n0)�p(�C )d�C =

(n0
y0

)�

B(�� , ��)
B(�y0 + �� , �(n0 − y0) + ��). (5)

The numerator in formula (4) can be given as in (3) and substituting (5) for the denominator in (4), the MPP for binary data,
�(�C , �|y0, n0), can be computed as

��y0+��−1C (1 − �C )�(n0−y0)+��−1p(�)
B(�y0 + �� , �(n0 − y0) + ��)

. (6)

4 THE META-ANALYTIC APPROACH

The meta-analytic prior is the most commonly used approach to incorporate multiple historical controls into the analysis of a
current trial. In this section, we review the MAP prior and its robustified version.
LetD0 = {D01, ..., D0K} represent the control data from K historical studies. Further, the parameters �C1 , ..., �CK express the

‘success’ probabilities in each of the K historical control arms. Let D denote the current data (investigational + control) with
parameter �T for the investigational arm and �CC for the control arm. The aim is to compare the efficacy of the investigational
arm with that of the control arm in the current trial expressed by Δ, which is the difference of �T and �CC (�T − �CC ) on the
original probability scale or a transformed scale thereof.

4.1 The Meta-Analytic Prior
The meta-analytic approach can be applied at the design and the analysis stage of a new trial. All trials, here all control arms,
are assumed to be exchangeable and to have been drawn from the same population7. In the first case, a Bayesian meta-analysis
produces the predictive distribution for �CC , which is the MAP prior. In case the current study has already been completed, the
meta-analytic approach consists in incorporating the current data (investigational + control) into a Bayesian meta-analysis of all
control data. In that case, we speak of the meta-analytic-combined (MAC) approach.
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The original MAP approach assumes a Gaussian distribution of the control parameters. With a dichotomous outcome, it is
advised to transform the parameters �Cj , (j = 1,… , K) to, say,  Cj = logit(�Cj ) and  CC = logit(�CC ). Then assume that the
control data have a sampling distribution F , and the transformed control parameters have a Gaussian distribution. That is,

D0j ∼ F ( Cj ), (j = 1, ..., K), (7)

 C1 , ...,  CK ,  CC ∣ �, �
2 ∼ N(�, �2), (8)

where � is the population mean and � the standard deviation of the control parameters. The posterior distribution with the MAP
prior can be formulated as

pMAP ( C1 , ...,  CK ,  CC ,Δ, �, �
2 ∣ D0, D) ∝ L( CC ,Δ ∣ D)×

p( CC ∣ �, �2)
(

K
∏

j=1
L( Cj ∣ D0)p( Cj ∣ �, �

2)
)

p(Δ)p(�)p(�2). (9)

We note that, if the control arms are heterogeneous, the variance �2 will be increased, which reduces the role of the historical
data for the analysis of the current data.

4.2 The Robust Meta-Analytic Prior
The MAP is relatively robust to discrepant controls, as indicated in the previous section. However, the MAP for  CC can be
inappropriate when the historical data tell a different story than the current data, i.e. when there is a prior-data conflict. At the
design stage of a new trial, one is never sure of a possible prior-data conflict. So to be on the safe side, Schmidli et al.3 suggested
a robustified version of the MAP. They suggested to use a mixture prior with one component the MAP and the other component
a weakly-informative component. More specifically it is assumed that

 CC ∣ �, �2 ∼ (1 −wR) ×N(�, �2) +wR × �R, (10)

where �R is the robust (actually vague prior) component and wR is the proportion of this component. Prior (10) is called the
robustified MAP prior, because in case of prior-data conflict the weakly-informative component will dominate the posterior.
Hence, the robust version of the MAP prior largely ignores the historical information when there is a prior-data conflict. To
realize a large variance for �R, aN(�, �M�2) distribution is chosen, with �M large. Classically, a fixed wR but relatively small
value (≈ 0.1) is taken depending on the relevance of the historical data.
In conclusion, the robustified prior will ignore all historical controls if they are in conflict with the current control.

5 THE POWER PRIOR FOR MULTIPLE HISTORICAL CONTROLS

We now discuss the MPP introduced in Section 3 when multiple historical studies are available. The original MPP can be
generalized by assuming different weight parameters �j for each D0j . We consider three versions of MPP adapted to multiple
historical controls. In Section 5.1 we assume independently distributed �j . In Section 5.2 we assume dependently distributed
weights leading to the dependent MPP (DMPP). Finally, in Section 5.3 the robustified version of the DMPP is investigated.
Important to note is that in the context of the power prior the model parameter is assumed to be the same for all historical controls
and the current control, namely �C1 = ... = �CK = �CC = �C . This is a generalization of the original assumption made in10

and by Chen et al.18 and was also assumed by Duan et al.14 in their suggestions of the MPP for multiple controls. Differential
weighting of the different historical controls is achieved by having a different weighting parameter for each of the historical
controls, �j (j = 1,… , K). We denote the total vector of weights by � = {�1, ..., �K}.
Note that the assumption of equal �’s in the MPP may be considered as not very realistic. However, the assumption could be

considered as a consequence of Pocock’s conditions. The MAP prior uses a modeling approach where the �’s are allowed to
differ according to a hierarchical prior. In the power prior approach, rather than a modeling approach, an algorithmic approach
is adopted regulated via the prior variance, which essentially comes down to varying the value of the power.
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5.1 Independent Power Parameters
Chen et al.18 suggested the joint power prior for multiple historical data and later Duan et al.14 extended the MPP for i.i.d.
distributed �j . A natural prior for �j is a beta prior with hyperparameters � and � set to fixed positive values. The MPP for
multiple historical data with i.i.d. distributed �j is given by

�MPP (�C , �|D0) ∝

[

∏K
j=1 L(�C |D0j)�jp(�j)

]

p(�C )

C(�)
, (11)

with the scaling constant C(�) defined as

C(�) = ∫
�C

[

K
∏

j=1
L(�C ∣ D0j)�j )

]

p(�C )d�C (12)

and introduced such that the likelihood principle is satisfied, see Appendix I.1.
The posterior of �C and Δ after having collected the current data D, which is the MPP equivalent to the MAC approach, is

given by

pMPP (�C ,Δ, � ∣ D0, D) ∝ L(�C ,Δ ∣ D)�MPP (�C , � ∣ D0). (13)

For a dichotomous response with y
0
= {y01, ..., y0K} the number of events out of n

0
= {n01, ..., n0K} subjects, the numerator

and denominator in (11) can be analytically derived (see Appendix I.2.1). The MPP for multiple historical data sets with a
dichotomous outcome and with independent weight parameters then becomes

�MPP (�C , �|y0
,n

0
) ∝

�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1
∏K

j=1 p(�j)

B(
∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)
. (14)

The independence power prior also enjoys some robustness property in that it can ignore a single (or more than one) historical
study if too discrepant from the current controls. Thus, in contrast to the robustified MAP not the whole set of historical controls
will be used or neglected based on its similarity to the current controls.

5.2 Dependent Power Parameters
For comparable historical and current control patients that satisfy Pocock’s criteria, it seems reasonable to desire related weight
parameters for the different historical data. Hence, in this study, we consider the MPP with dependent weight parameters in a
hierarchical Bayesian framework by assuming the same parent distribution for �j , i.e.

�j ∼ Beta(�� , ��), (j = 1, 2,… , K). (15)

The hyperparameters �� and �� control the likely degree of borrowing from the historical data11. For this study, they are also
helpful in the computation of the robustified mixtureMPP of Section 5.3. These hyperparameters are reparametrized to the mean
�� and variance �2� of the beta distribution as �� =

��
��+��

and variance �2� =
��(1−��)
��+��+1

. The DMPP can be given by considering
dependent distributions for the weight parameters as

�DMPP (�C , �, �� , �2� |D0) ∝

[

∏K
j=1 L(�C |D0j)�jp(�j|�� , �2� )

]

p(��)p(�2� )p(�C )

C(�)
. (16)

Including the current data, the posterior distribution of the DMPP is

pDMPP (�C ,Δ, �, �� , �2� |D0, D) ∝ L(�C ,Δ|D)�DMPP (�C , �, �� , �2� |D0). (17)

For dichotomous outcome data, with the scaling constant C(�) as in (14), the MPP with dependent weight parameters can be
given by (see Appendix I.2.2)

�DMPP (�C , �|y0
,n

0
) ∝

�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1
∏K

j=1 p(�j|�� , �
2
� )p(��)p(�

2
� )

B(
∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)
. (18)

Comparing Equations (14) and (18), we see that only the prior for �j is different. The effect of the hierarchical prior on �j
is different than for the MAP. While the MAP assumes that the �’s are similar, but not necessarily the same, now we assume
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that the powers are not too different. A motivation for this prior is that Pocock’s criteria should guarantee the similarity of the
historical controls.

5.3 The Robust Dependent MPP
A robust version of the DMPP can be developed to more effectively account for the possibility of prior-data conflict. This time
we aim to downweight the historical data when there is a conflict between the historical and current data through the distribution
of the weight parameters. This may be achieved with a mixture prior on the weight parameters having the above dependent
prior as one component and a component concentrated at zero. Robustness to the DMPP can be applied in two ways: 1) by
giving each historical trial an individual mixing proportion or 2) by giving the same mixing proportion to all historical trials
simultaneously. If we denote the hierarchical prior in (18) by p(�j|�� , �2� ), then the robustified dependent prior to each individual
weight parameter is given by

�j ∼ (1 −wR) ∗ p(�j|�� , �2� ) +wR ∗ pR(�j), (19)

whereas the second robustified version of the dependent prior is given by

� ∼ (1 −wR) ∗ p(�|�� , �2� ) +wR ∗ pR(�), (20)

with pR(�) the vector of spike components at zero.
For computational reasons, we chose a spike distribution concentrated closely around zero having a small variance. We used

a half-normal distribution with variance parameter �2�
�P

with �P relatively large and �2� the variance of the slab part, see Figure
I0. This component allows the historical data to be largely discarded when there is a prior-data conflict.
The proportionwR of the robust component is fixed depending on the relevance of the historical data. As for the robust MAP,

we have taken herewR = 0.1. Alternatively, one could assume a prior forwR. In Appendix I.4, we show that assuming a robust
DMPP with a fixed wR = 0.5 is equivalent to assuming a uniform prior on [0,1] for wR. Because of this result we will not
consider the case of a stochastic mixing proportion.
Hence, the robust dependent MPP is inspired by the robust MAP but implemented differently.

6 ANALYSIS OF THE HOVON DATA SET

We have applied versions of the MAP and the MPP to incorporate the control data of the two historical trials HOVON 29 and
HOVON 42 for the analysis of the HOVON 42A data. TheMPPmethods include theMPPwith independently distributed weight
parameters (“MPP Ind”), with dependently distributed weight parameters (DMPP) and the robustified version of the DMPP with
robustness on each individual component (“Robust DMPP 1”) or globally (“Robust DMPP 2”). In addition, we applied the MAP
and Robust MAP as well as a “Current data” analysis (a Bayesian analysis of the current trial only, i.e. without historical data)
and a “Pooled data” analysis (a pooled Bayesian analysis that includes the data of all trials without accounting for between-trial
heterogeneity).

6.1 Settings of the Methods
We assume a Beta(1, 1) prior for �C in the MPP methods, but also for the �Cj in the “Pooled data” analysis and for �CC in both
the “Current data” and the “Pooled data” analyses. For the hyperparameters � and �2 in the MAP approach, which are expressed
on a log-odds scale, we assumed aN(0, 106) and aHN(0, 1) half-normal prior, respectively. In all methods, a vagueN(0, 106)
prior is assumed for the treatment effect Δ on the original scale.
In the “Robust MAP”, we set �M = 10 to obtain a larger variance for the weakly-informative component �R with 10%

attributed to the vague component of the mixture prior. For the “MPP Ind” we, assumed a Beta(1,1) prior for each �j . In the
DMPP, the hyperparameters �� and �2� are assumed to have a U (0, 1) and a IG(0.01, 0.01) prior, respectively. For the robust
components pR(�j) and pR(�) in the “Robust DMPP 1” and “Robust DMPP 2”, respectively, we used �P = 25 to obtain a spike
distribution as done by George and McCulloch24.
The computations involve Markov chain Monte Carlo (MCMC) computations. These were done using the JAGS software25

in combination with R statistical software26. For all methods a single chain was initiated and 50,000 MCMC iterations were run
after 5,000 burn-in iterations. Convergence was assessed using Geweke’s diagnostic.
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TABLE 2 The posterior distribution of the treatment effect (in %) in the HOVON 42A trial using different methods for including
historical data.

Methods Mean SD 95% CI
Current data 1.13 3.30 (-5.24, 7.60)
Pooled data -0.73 2.52 (-5.88, 4.07)
MAP 0.33 3.07 (-5.73, 6.49)
Robust MAP 0.32 3.10 (-5.65, 6.53)
MPP Ind -0.22 2.75 (-5.96, 5.00)
DMPP -0.28 2.63 (-5.57, 4.75)
Robust DMPP 1 -0.17 2.74 (-5.69, 5.02)
Robust DMPP 2 -0.21 2.67 (-5.47, 4.96)

6.2 Results
In Table 2 , the posterior mean of the treatment effect Δ (difference in CR rates of treatment arm minus control arm) in
the HOVON 42A trial is given for the above defined methods that take the historical trials (HOVON 29 and HOVON 42)
into account. The first observation is that all estimated treatment effects are quite small and do not differ much between the
approaches. The posterior mean of Δ using the “Current data” analysis is 1.13%. When the historical controls are pooled with
the data of the HOVON 42A trial, the posterior mean of Δ becomes -0.73%. The posterior means of Δ obtained with the MPP
and the MAP methods lie between the above two percentages. The posterior means of Δ obtained using the DMPP method
is negative and closer to the posterior mean of the “Pooled data” analysis. Also the posterior SDs of Δ using the DMPP are
smaller as compared to the posterior SDs of other Bayesian methods, which indicates that the DMPP method borrows more
information from the historical controls. Moreover, the MPP and MAP posterior SDs of Δ lie between the “Current data” and
the “Pooled data” posterior SD. Nonetheless, for all methods, the 95% credible interval (CI) of Δ includes zero. This shows that
the investigational treatment (G-CSF priming) in HOVON 42A has no significant effect on the CR rate of the AML patients.
The posterior mean of � using the MAP method is 0.338 (95% CI: 0.017, 1.204) on the log-odds scale (Table I1). This shows

that the variability among the HOVON trials (namely HOVON 29, 42 and 42A) is high. From this particular data set, we can
observe that the posterior means of the weight parameters are closer and lower for the robust DMPPs than the posterior means
obtained using “MPP Ind”.

7 SIMULATION STUDY

7.1 Design and Settings of the Simulation Study
A simulation study was performed to compare the performance of the different borrowing approaches discussed above. We
considered K = 3 and 5 historical trials with 100 and 150 patients per arm in each trial.
Dichotomous outcomes were generated according to a Bernoulli distribution for the historical controls and for both treatment

and control arms of the current trial. The probability of success for the itℎ trial pi, where i = 1, ..., K + 1 with 1, ..., K for the
historical trials and K + 1 for the current trial, was computed as follows

pi = 1∕(1 + exp(−Zi)),
Zi = �0 + �1Ti + �i with �i ∼ N(0, �2Z),

where Ti is a binary covariate equal to 0 for the control arm and value 1 for the treatment arm. �2Z is the variance of the trial-
specific effect on the log-odds scale that varies with the scenario, but the model parameters of the historical controls and the
current control data were kept the same in the simulation study.
In practice, the between-trial heterogeneity �2Z often lies between 0.01 and 0.25 on the log-odds scale, see9,27.We considered in

our simulation study �2Z = 0, 0.01, 0.04 and 0.16 for no, low,moderate and high between-trial heterogeneity, respectively. Inspired
by the HOVON studies, we set the CR rate for AML patients to 72% for the control treatment28 and a treatment effect of 13%
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so that the response rate for investigational arm is 85%. Accordingly, the baseline log-odds is set to �0 = log(0.72∕(1−0.72)) =
0.944.
The log-odds scale is convenient for specifying the variation between trials, but for interpretation purposes the treatment effect

is expressed as Δ = �T − �CC , where �T represents the parameter for the treatment and �CC for the control arms of the current
trial. Hence, we expressed �1 in terms of Δ, i.e. �1 = log(

(0.72+Δ)∕(1−(0.72+Δ))
0.72∕(1−0.72)

). This helps to perform the simulation study with
different settings for the treatment effect Δ: I) with treatment effect (Δ = 0.13) and II) without treatment effect (Δ = 0).
In this paper we consider two scenarios in which the current control group is incompatible with the historical control groups

for 3 historical trials with 150 patients per arm in each. For the first scenario, we let one of the historical control groups differ
from all current and historical control groups. In the second scenario, the current control group is taken to be different from the
historical controls. For these scenarios the deviation is expressed in mean effect. In the first scenario, one of the historical control
groups has a 30% lower response rate than the other, homogeneous control groups, whereas in the second scenario, the 30%
lower response rate applies to the current control group. Such situations are classically referred to a prior-data conflict3. That is,

Zi = �0 + �1Ti − 1.2 for i = 1, ..., K.

We simulated 1000 data sets for each scenario and setting. The methods were compared using frequentist measures like the
type I error rate (no treatment effect) and statistical power (treatment effect of 0.13). To obtain a fair comparison of methods
that incorporates a trade-off between the power and the type I error rate, we calculated a calibrated version of the power. For this
calibrated power, the rejection region was based on that equal-tailed credible interval, which yields approximately an observed
type I error rate of 5% in the simulations. We also computed the precision and root mean square deviation (RMSD) of the
posterior mean of the treatment effect Δ.

7.2 Results of the Simulation Study
The type I error rate and the statistical power of the methods are reported in Tables 3 and 4 , respectively. All MPP methods
yielded higher statistical power than the MAP prior, its robust version and the Current data approach (i.e. an uninformative
prior), but this gain in power comes at the cost of inflated type I error rates with moderate or high between-trial heterogeneity.
The MAP methods produced an estimated type I error rate close to 5% in all scenarios and settings.
Based on the calibrated power in Table 5 , the MPP methods outperformed the MAP methods for homogeneous data and for

low andmoderate between-trial heterogeneities, whereas theMAPmethod had the best results for high heterogeneity. TheDMPP
method produced higher calibrated power than the “MPP Ind” method, especially for homogeneous data and lower between-
trial heterogeneity. For high between-trial heterogeneity, the robust version of DMPP yielded higher calibrated power than the
other MPP methods. The power of the methods considerably increases with the number of patients in the trials, but the increase
in power with respect to the number of historical studies is small. The “Pooled data” analysis had the highest calibrated power
of all methods with low between-trial heterogeneity, but performed poorly for the moderate and high heterogeneity settings.
The average RMSDs show howmuch the differentmethods benefit from incorporating the historical data (Table I2). Compared

to the other methods, the DMPP yielded the smallest RMSDs, even smaller than the “Pooled data” analysis for the high between-
trial heterogeneity. In all scenarios and settings, the four MPP methods achieved lower RMSDs than the MAP methods, and the
“Current data” analysis yielded the largest RMSDs. The RMSDs decreased with the number of patients per trial and the number
of historical trials.
For all methods, increasing the number of patients per trial decreases the SD of the estimated treatment effect (Table I3).

Except for the “Current data” analysis, increasing the number of historical studies has the advantage of increasing the precision
of the estimate. This shows that these different methods borrow a considerable amount of information from the historical data.
The SDs of the MPP methods and the MAP methods lie in between the SDs of the “Pooled data” and “Current data” analysis.
These estimates are lowest for the DMPP method in all scenarios and settings.
In Table 6 the calibrated power computed for the two scenarios of incompatible historical studies is presented. When one of

the historical control groups deviates from the other control groups (scenario 1), the “Robust DMPP 1” produced better calibrated
power than the other methods. However, with a prior-data conflict between all historical control groups and the current control
group, the “Robust DMPP 2” and the MAP methods yielded better power. In that scenario, the “Robust DMPP 2” method gave
the lowest posterior mean (standard deviation) of the weight parameters (3.71E-6 (0.02)) of all MPP methods, and thus shows
the strongest downweighting of the incompatible historical data.
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TABLE 3 The type I error rate of the treatment effect in the simulation study based on 1000 simulated data sets.

Number of Number of Between trial heterogeneity

historical patients No Low Moderate High
trials (H) (N) Method heterogeneity heterogeneity heterogeneity heterogeneity

Current Data 0.050 0.051 0.045 0.062
Pooled Data 0.051 0.073 0.106 0.240
MAP 0.039 0.050 0.043 0.060

N = 100 Robust MAP 0.039 0.050 0.043 0.062
MPP Ind 0.039 0.054 0.048 0.099

H = 3

DMPP 0.040 0.055 0.057 0.109
Robust DMPP 1 0.041 0.057 0.054 0.100
Robust DMPP 2 0.035 0.052 0.054 0.100

Current Data 0.045 0.048 0.054 0.051
Pooled Data 0.044 0.078 0.128 0.302
MAP 0.036 0.041 0.051 0.058

N = 150 Robust MAP 0.036 0.043 0.049 0.057
MPP Ind 0.035 0.043 0.061 0.091
DMPP 0.036 0.051 0.076 0.122
Robust DMPP 1 0.040 0.049 0.064 0.106
Robust DMPP 2 0.040 0.047 0.066 0.093
Current Data 0.054 0.043 0.046 0.056
Pooled Data 0.051 0.076 0.115 0.255
MAP 0.043 0.042 0.052 0.052

N = 100 Robust MAP 0.043 0.042 0.050 0.050
MPP Ind 0.045 0.053 0.073 0.126

H = 5

DMPP 0.041 0.057 0.074 0.120
Robust DMPP 1 0.043 0.043 0.068 0.111
Robust DMPP 2 0.044 0.056 0.077 0.065

Current Data 0.047 0.043 0.045 0.044
Pooled Data 0.051 0.074 0.139 0.304
MAP 0.048 0.046 0.050 0.044

N = 150 Robust MAP 0.046 0.045 0.048 0.048
MPP Ind 0.050 0.049 0.080 0.132
DMPP 0.048 0.050 0.084 0.138
Robust DMPP 1 0.048 0.048 0.071 0.119
Robust DMPP 2 0.043 0.049 0.074 0.105

8 DISCUSSION

The MPP has become an established method for including historical data. However, previous applications of this method either
included data from only a single historical study, or naively pooled the data of the historical studies. This study evaluated the
extension of MPP methods to account for multiple historical trials in the analysis of a current trial, with different possible
priors for the study-specific weight parameters. For the inclusion of historical controls in the analysis of current clinical trial,
the evaluation of Pocock’s criteria for the comparability of the historical and current control patients is central. Accordingly,
the power prior approach assumes the same parameter for the historical controls and the current controls, albeit with a lower
weight for the historical data in the analysis. Based on a real dataset and simulation study, the DMPP method, which assumes
dependent weight parameters for the different historical studies, borrows more historical information than the other methods. For
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TABLE 4 The power of the treatment effect in the simulation study based on 1000 simulated data sets.

Number of Number of Between trial heterogeneity

historical patients No Low Moderate High
trials (H) (N) Method heterogeneity heterogeneity heterogeneity heterogeneity

Current Data 0.621 0.612 0.617 0.589
Pooled Data 0.786 0.786 0.754 0.708
MAP 0.696 0.677 0.656 0.605

N = 100 Robust MAP 0.688 0.672 0.645 0.607
MPP Ind 0.728 0.716 0.694 0.667

H = 3

DMPP 0.754 0.748 0.727 0.699
Robust DMPP 1 0.742 0.730 0.713 0.679
Robust DMPP 2 0.734 0.721 0.701 0.666

Current Data 0.789 0.785 0.779 0.778
Pooled Data 0.935 0.936 0.912 0.848
MAP 0.853 0.861 0.832 0.795

N = 150 Robust MAP 0.852 0.856 0.826 0.794
MPP Ind 0.901 0.904 0.884 0.855
DMPP 0.914 0.916 0.896 0.860
Robust DMPP 1 0.898 0.905 0.887 0.851
Robust DMPP 2 0.899 0.905 0.875 0.824
Current Data 0.610 0.614 0.598 0.623
Pooled Data 0.817 0.819 0.791 0.727
MAP 0.720 0.706 0.673 0.641

N = 100 Robust MAP 0.714 0.704 0.662 0.637
MPP Ind 0.761 0.768 0.745 0.691

H = 5

DMPP 0.772 0.789 0.761 0.711
Robust DMPP 1 0.771 0.776 0.757 0.710
Robust DMPP 2 0.774 0.762 0.761 0.709

Current Data 0.779 0.764 0.765 0.751
Pooled Data 0.946 0.927 0.900 0.835
MAP 0.879 0.867 0.835 0.789

N = 150 Robust MAP 0.879 0.866 0.834 0.785
MPP Ind 0.915 0.906 0.876 0.853
DMPP 0.919 0.909 0.889 0.850
Robust DMPP 1 0.919 0.910 0.885 0.863
Robust DMPP 2 0.910 0.902 0.874 0.848

homogeneous controls and lower between-trial heterogeneities this method outperforms the other methods in terms of statistical
power.
Despite the fact that the MPP methods produce better power, they resulted in inflated type I error rates for higher between-

trial heterogeneities. As studied by the same research group17, the MAP approach is able to control the type I error rate to
approximately 5% in all scenarios and settings. For the trade-off between the type I error rate and the power, in this study the
calibrated power was computed by fixing the type I error rate in the simulations to 5%. Based on this criterion the MAPmethods
seem to perform better for incorporating comparable historical controls with high between-trial heterogeneity. However, the
robust versions of the DMPP that protect against prior-data conflict improve the power for incorporating heterogeneous and
non-compatible historical trials.
In the HOVON application, for all methods considered, the treatment of G-CSF priming had no significant effect on the

response rate of the AML patients in HOVON 42A. This adds to previous studies by Sung et al.29 and Löwenberg et al.30 which
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TABLE 5 The calibrated power of the treatment effect in the simulation study based on 1000 simulated data sets.

Number of Number of Between trial heterogeneity

historical patients No Low Moderate High
trials (H) (N) Method heterogeneity heterogeneity heterogeneity heterogeneity

Current Data 0.621 0.612 0.641 0.556
Pooled Data 0.783 0.727 0.648 0.332
MAP 0.731 0.677 0.674 0.586

N = 100 Robust MAP 0.727 0.672 0.663 0.570
MPP Ind 0.776 0.704 0.700 0.523

H = 3

DMPP 0.791 0.717 0.706 0.543
Robust DMPP 1 0.781 0.711 0.688 0.533
Robust DMPP 2 0.771 0.713 0.688 0.532

Current Data 0.795 0.799 0.777 0.774
Pooled Data 0.938 0.906 0.814 0.425
MAP 0.885 0.882 0.820 0.780

N = 150 Robust MAP 0.884 0.869 0.827 0.779
MPP Ind 0.918 0.915 0.872 0.729
DMPP 0.928 0.915 0.868 0.736
Robust DMPP 1 0.915 0.906 0.869 0.745
Robust DMPP 2 0.917 0.905 0.858 0.740
Current Data 0.581 0.647 0.613 0.607
Pooled Data 0.816 0.751 0.638 0.363
MAP 0.733 0.726 0.659 0.624

N = 100 Robust MAP 0.730 0.736 0.662 0.631
MPP Ind 0.780 0.747 0.678 0.534

H = 5

DMPP 0.802 0.770 0.689 0.556
Robust DMPP 1 0.767 0.791 0.708 0.581
Robust DMPP 2 0.785 0.752 0.690 0.603

Current Data 0.785 0.779 0.781 0.769
Pooled Data 0.945 0.907 0.757 0.521
MAP 0.887 0.872 0.835 0.796

N = 150 Robust MAP 0.885 0.868 0.840 0.795
MPP Ind 0.911 0.907 0.831 0.670
DMPP 0.922 0.909 0.847 0.698
Robust DMPP 1 0.894 0.897 0.856 0.749
Robust DMPP 2 0.920 0.902 0.836 0.733

suggested no benefit of CSF priming on response rates in patients receiving chemotherapy for AML. In the analysis of HOVON
42A, only two historical trials that satisfy Pocock’s comparability criteria are incorporated, namely HOVON 29 and HOVON
42. The heterogeneity among these HOVON trials was estimated to be high. The DMPP method gained more information from
HOVON 29 and HOVON 42 than the other methods, as it estimated a lower SD of the treatment effect, and the posterior mean of
the treatment effect was closer to the posterior mean of the “Pooled data” analysis. The MAP methods on the other hand tended
to borrow less information from the historical studies than the MPP methods in both the real-life example and in the simulation
study. Since all versions of the MPP borrow more historical information than the MAP methods and the robust DMPP achieves
better calibrated power in case of prior-data conflict, it would be appropriate to consider the (robust) DMPP (if robustness is
applied carefully) for incorporating multiple historical studies in the analysis of current data. However, the issue of inflated type
I errors in the DMPP method should be addressed, for example by ruling out the possibility of a high level of heterogeneity
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TABLE 6 Calibrated power of the treatment effect for non-compatible scenarios for 3 historical trials with 150 patients per arm
in each trial based on 1000 simulated data sets.

Non compatible Non compatible
Method one historical control current control

MAP 0.812 0.851
Robust MAP 0.810 0.850
MPP Ind 0.875 0.771
DMPP 0.896 0.770
Robust DMPP 1 0.911 0.758
Robust DMPP 2 0.863 0.851

between studies through a strict application of comparability criteria, or by applying more conservative priors for the weight
parameters.
Sampling from the posterior distribution in the power prior approach is computationally difficult due to the challenging

implementation of the scaling constant with which the posterior is multiplied to satisfy the likelihood principle. For a binary
endpoint with a binomial distribution, the integration of the scaling constant can be implemented analytically. However further
studies on models with multiple parameters for incorporating several historical studies using the power prior approach are
needed. In this study, the MPP methods were performed using MCMCPack package in R, whereas the “Current data”, the
“Pooled data” analysis, the MAP and its robust version were performed using another program, Jags.
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I APPENDIX

In this supplementary material, the proof that the MPP methods satisfy the likelihood principle is given, as well as a deriva-
tion of the posteriors of the MPP methods for multiple historical trials with independently and dependently distributed weight
parameters for binary end points. Plots of the spike-and-slab distribution, results based on real life data and simulation studies
are also presented.

I.1 The likelihood principle
Let �C be the model parameter and � = {�1, ..., �K} denote the total set of the weight parameters for theK historical datasetD0,
the joint power prior for multiple historical data that has been proposed by Ibrahim and Chen10 is given as

�(�C , �|D0) ∝
[

K
∏

j=1
L(�C |D0j)�jp(�j)

]

p(�C ). (I.1)

If each likelihood functionL(�C |D0j) is multiplied by a constant �j , j = 1,… , K , the joint prior distribution of (�C , �) becomes

�(�C , �|D0) ∝
[

K
∏

j=1
��jj

][

K
∏

j=1
L(�C |D0j)�jp(�j)

]

p(�C ). (I.2)

Hence, the joint prior of (�C , �) and consequently the posterior will be changed by a factor of
∏K

j=1 �
�j
j . This violates the

likelihood principle that multiplying the likelihood function by a constant term should not affect the posterior distribution.
However, this problem is solved in the MPP due to the scaling constant multiplied with the joint power prior.

�(�C , �|D0) ∝

[

∏K
j=1 �

�j
j

][

∏K
j=1 L(�C |D0j)�jp(�j)

]

p(�C )
[

∏K
j=1 �

�j
j

]

∫�C
[

∏K
j=1 L(�C |D0j)�j )

]

p(�C )d�C

∝

[

∏K
j=1 L(�C |D0j)�jp(�j)

]

p(�C )

∫�C
[

∏K
j=1 L(�C |D0j)�j )

]

p(�C )d�C
. (I.3)

This means that if each likelihood function L(�C |D0j) is multiplied by a constant �j , the MPP will not be changed.

I.2 The MPP for Multiple Historical Trials
I.2.1 With independent weight parameters
The MPP for multiple historical studies is defined as

�MPP (�C , �|D0) ∝

[

∏K
j=1 L(�C |D0j)�jp(�j)

]

p(�C )

C(�)
. (I.4)
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For dichotomous historical data with sample sizes n01, ..., n0K and numbers of successes y01, ..., y0K , the scaling constant C(�)
used in (I.4) can be computed analytically as

C(�) = ∫
�C

[

K
∏

j=1
L(�C |D0j)�j )

]

p(�C )d�C = ∫
�C

[

K
∏

j=1
L(�C |y0j , n0j)�j )

]

p(�C )d�C

=

∏K
j=1

(n0j
y0j

)�j

B(�� , ��) ∫
�C

�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1d�C

=

∏K
j=1

(n0j
y0j

)�j

B(�� , ��)
B
(
∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��
)

. (I.5)

The numerator in (I.4) can be computed as
[

K
∏

j=1

(

n0j
y0j

)�j
��jy0jC (1 − �C )�j (n0j−y0j )p(�j)

]���−1C (1 − �C )��−1

B(�� , ��)

=

[
∏K

j=1
(n0j
y0j

)�j ]

B(�� , ��)
�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1
K
∏

j=1
p(�j). (I.6)

Substituting (I.5) and (I.6) in (I.4), the MPP for multiple historical studies with a binary endpoint can be computed as
[

∏K
j=1 (n0jy0j

)�j
]

B(�� ,��)
�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1
∏K

j=1 p(�j)
[

∏K
j=1 (n0jy0j

)�j
]

B(�� ,��)
B(

∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)

=

�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1
∏K

j=1 p(�j)

B(
∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)
. (I.7)

I.2.2 With Dependent Weight Parameters
The DMPP is defined as

�(�C , �, �, �|D0j) ∝

[

∏K
j=1 L(�C |D0j)�jp(�j|�, �)

]

p(�)p(�)p(�C )

C(�)
. (I.8)

With the scaling constant C(�) as in (I.5), the MPP for the dichotomous data �(�C , �, �, �|y0j , n0j) can be computed as
[

∏K
j=1

(n0j
y0j

)�j��jy0jC (1 − �C )�j (n0j−y0j )p(�j|�, �)
]

p(�)p(�) �
��−1
C (1−�C )��−1

B(�� ,��)
[

∏K
j=1 (n0jy0j

)�j
]

B(�� ,��)
B(

∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)

=

[

∏K
j=1 (n0jy0j

)�j
]

B(�� ,��)
�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1
∏K

j=1 p(�j|�, �)p(�)p(�)
[

∏K
j=1 (n0jy0j

)�j
]

B(�� ,��)
B(

∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)

=

�
∑

�jy0j+��−1
C (1 − �C )

∑

�j (n0j−y0j )+��−1
∏K

j=1 p(�j|�, �)p(�)p(�)

B(
∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)
. (I.9)

Let us have n samples for each of the treatment and the control arms of a new trial with x and y number of successes and
parameters �T and �C , respectively. The treatment effect is defined asΔ = �T −�C . We can put �T as �C +Δ and we can perform
the analysis to compare both arms using �C and Δ. Hence, the posterior distribution after incorporating the current data can be
computed as

p(�C ,Δ, �, �, �|y0j , n0j , y, x, n) ∝ L(�C ,Δ|y, x, n)�(�C , �, �, �|y0j , n0j) ∝
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(�C + Δ)x(1 − (�C + Δ))n−x×

�
∑

�jy0j+y+��−1
C (1 − �C )

∑

�j (n0j−y0j )+(n−y)+��−1
∏K

j=1 p(�j|�, �)p(�)p(�)p(Δ)

B(
∑

�jy0j + �� ,
∑

�j(n0j − y0j) + ��)
. (I.10)

I.3 Spike-and-Slab Prior for the Weight Parameter
To achieve the Robust DMPP a mixture prior on the weight parameters having the dependent prior Beta(�� , ��) as a slab
component and a spike component at zero can be applied. For the spike component, we can use a half-normal distribution that
has the same height as a spike distribution with a smaller variance �2�

�
with �P relatively large, like � = 25 and �2� the variance

of the slab part (George and McCulloch)24. As an example, let a weight parameter � has a mixture prior with a slab component
Beta(10, 10). This distribution has a mean �� =

��
��+��

= 0.5 and a variance �2� =
��(1−��)
��+��+1

= 0.0119. The spike distribution

can be formed with variance �2

25
= 0.00047. A half-normal distribution with variance �2�

6.25
= 0.0019 has the same height as

this spike distribution. Figure I0 demonstrates the spike-and-slab plot of this particular example. It is always true that a beta
distribution with variance �2�

25
has the same height as a half-normal distribution with variance �2�

6.25
. As a result, in this study we

used a half-normal distribution with variance �2�
6.25

as a spike distribution in the mixture prior, where �2� is the variance of the
slab part Beta(�� , ��).

I.4 Random Proportion for a Robust Component in the Mixture Prior for the Distribution of the
Weight Parameter
Below is the proof of how the power prior with a mixture prior for the weight parameter with a random wR can be equivalent
to a fixed wR = 0.5. For simplicity, the proof is based on a single historical trial. Note that the power prior of �C for a current
study is defined as

�(�C , �|D0) ∝
L(�C |D0)�p(�C )p(�)

C(�)
. (I.11)

We let a mixture prior for the weight parameter � to form the robust version of the power prior through the weight parameter.

� ∼ (1 −wR) ∗ Beta(�� , ��) +wR ∗ pR(�), (I.12)

where pR(�) is the robust component and wR is the proportion of this component. If we fix the value of the proportion wR to
e.g. 0.1 or 0.5, the formulation in (I.11) will not be changed. Simply it can be formulated conditional on the proportion wR as:

�(�C , �|D0, wR) ∝
L(�C |D0)�p(�C )p(�|wR)

C(�)
. (I.13)

However, if a random proportion having a Beta(1, 1) distribution is assumed for wR, then the power prior in (I.13) can be
formulated as

�(�C , �, wR|D0) ∝ L(�C |D0)�p(�C )p(�|wR)p(wR). (I.14)

The joint posterior distribution of (�c , �) can given by:

p(�c , �) =

1

∫
0

p(�c , �, wR)dwR =

1

∫
0

L(�C |y0, n0)�p(�C )p(�|wR)p(wR)dwR

=

1

∫
0

(

n0
y0

)�

��y0C (1 − �C )�(n0−y0)
���−1C (1 − �C )��−1

B(�� , ��)
p(�|wR)p(wR)dwR

=

(n0
y0

)�

B(�� , ��)
��y0+��−1C (1 − �C )�(n0−y0)+��−1

1

∫
0

p(�|wR)p(wR)dwR. (I.15)
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Let us call the constant part c =
(n0y0)

�

B(�� ,��)
��y0+��−1C (1− �C )�(n0−y0)+��−1. Consider the distribution of the weight parameter in (I.12)

and assume that the proportion wR assumes Beta(�w, �w). Then Equation (I.15) will be

= c

1

∫
0

p(�∕wR)p(wR)dwR

= c

1

∫
0

[(1 −wR) ∗ Beta(�� , ��) +wR ∗ pR(�)]Beta(�w, �w)dwR

= c
[

1

∫
0

Beta(�� , ��)Beta(�w, �w)dwR −

1

∫
0

wR ∗ Beta(�� , ��)Beta(�w, �w)dwR+

1

∫
0

wR ∗ pR(�)Beta(�w, �w)dw
]

= c
[

Beta(�� , ��)

1

∫
0

Beta(�w, �w)dwR − Beta(�� , ��)

1

∫
0

wR ∗
w�w−1
R (1 −wR)�w−1

B(�w, �w)
dwR+

pR(�)

1

∫
0

wR ∗
w�w−1
R (1 −wR)�w−1

B(�w, �w)
dwR

]

= c
[

Beta(�� , ��)
(

1 −
B(�w + 1, �w)
B(�w, �w)

)

+ pR(�)
B(�w + 1, �w)
B(�w, �w)

]

(I.16)

Setting wR =
B(�w+1,�w)
B(�w,�w)

shows that the power prior methods with a random and a fixed proportion for the robust component are
equivalent.

I.5 Additional Outputs
Table I1 presents the posterior distributions of the parameters for the amount of borrowing information from historical (HOVON
29 and HOVON 42) trials using the MPP and the MAP methods in the analysis of current (HOVON 42A) trial. In Tables I2 and
I3 the RMSD and SD of the treatment effect in the simulation study using the different methods are presented.

How to cite this article:Banbeta A., van Rosmalen, J., Dejardin, D., and Lesaffre, E. (2018), Modified power prior with multiple
historical trials for binary endpoints, Statistics in Medicine, 2018;00:00–00.
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FIGURE I0Examples of a spike-and-slab distribution and a half-normal distribution for the weight parameter in the Robust
DMPP.

TABLE I1The posterior distributions of parameters for the amount of borrowing from the historical data using the MPP and
the MAP methods.

Methods Mean SD 95% CI
MAP
� 0.342 0.315 (0.015, 1.217)
Robust MAP
� 0.336 0.315 (0.016, 1.203)
MPP Ind
�1 0.476 0.282 (0.027, 0.969)
�2 0.549 0.276 (0.045, 0.978)
DMPP
�1 0.515 0.179 (0.179, 0.852)
�2 0.518 0.176 (0.184, 0.847)
Robust DMPP 1
�1 0.451 0.193 (0.014, 0.838)
�2 0.496 0.175 (0.150, 0.847)
Robust DMPP 2
�1 0.473 0.212 (0.036, 0.891)
�2 0.479 0.212 (0.033, 0.887)

Page 19 of 21 Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

20 A. Banbeta et al

TABLE I2The average root mean square deviation (95% confidence interval) of the estimated treatment effect in the simulation
study.

Number of Number of Between trial heterogeneity

historical patients No Low Moderate High
trials (H) (N) Method heterogeneity heterogeneity heterogeneity heterogeneity

Current Data 0.076 (0.075 - 0.078) 0.077 (0.076 - 0.079) 0.078 (0.076 - 0.079) 0.081 (0.079 - 0.082)
Pooled Data 0.057 (0.056 - 0.058) 0.058 (0.057 - 0.059) 0.061 (0.059 - 0.062) 0.069 (0.067 - 0.071)
MAP 0.066 (0.065 - 0.067) 0.067 (0.066 - 0.069) 0.070 (0.068 - 0.071) 0.075 (0.074 - 0.077)

N = 100 Robust MAP 0.066 (0.065 - 0.067) 0.068 (0.067 - 0.069) 0.070 (0.069 - 0.071) 0.075 (0.074 - 0.077)
MPP Ind 0.062 (0.060 - 0.063) 0.063 (0.061 - 0.064) 0.064 (0.063 - 0.065) 0.068 (0.067 - 0.069)

H = 3

DMPP 0.060 (0.059 - 0.061) 0.061 (0.060 - 0.062) 0.063 (0.061 - 0.064) 0.067 (0.066 - 0.068)
Robust DMPP 1 0.062 (0.060 - 0.063) 0.063 (0.061 - 0.064) 0.063 (0.061 - 0.064) 0.068 (0.067 - 0.070)
Robust DMPP 2 0.062 (0.061 - 0.063) 0.063 (0.062 - 0.064) 0.065 (0.063 - 0.066) 0.070 (0.069 - 0.072)

Current Data 0.063 (0.062 - 0.064) 0.063 (0.062 - 0.064) 0.064 (0.063 - 0.066) 0.066 (0.065 - 0.067)
Pooled Data 0.046 (0.046 - 0.047) 0.047 (0.046 - 0.048) 0.049 (0.048 - 0.050) 0.059 (0.057 - 0.061)
MAP 0.055 (0.054 - 0.056) 0.055 (0.054 - 0.056) 0.058 (0.056 - 0.059) 0.062 (0.060 - 0.063)

N = 150 Robust MAP 0.055 (0.054 - 0.056) 0.055 (0.054 - 0.056) 0.058 (0.057 - 0.059) 0.062 (0.061 - 0.063)
MPP Ind 0.051 (0.050 - 0.052) 0.051 (0.050 - 0.051) 0.052 (0.051 - 0.053) 0.055 (0.054 - 0.057)
DMPP 0.049 (0.049 - 0.050) 0.049 (0.049 - 0.050) 0.051 (0.050 - 0.052) 0.055 (0.054 - 0.057)
Robust DMPP 1 0.051 (0.050 - 0.052) 0.051 (0.050 - 0.051) 0.052 (0.051 - 0.053) 0.056 (0.055 - 0.057)
Robust DMPP 2 0.051 (0.050 - 0.052) 0.051 (0.050 - 0.052) 0.053 (0.052 - 0.054) 0.058 (0.057 - 0.060)
Current Data 0.077 (0.076 - 0.079) 0.077 (0.076 - 0.079) 0.078 (0.077 - 0.080) 0.079 (0.078 - 0.081)
Pooled Data 0.055 (0.054 - 0.056) 0.055 (0.054 - 0.057) 0.058 (0.057 - 0.060) 0.068 (0.066 - 0.070)
MAP 0.064 (0.062 - 0.065) 0.064 (0.063 - 0.065) 0.067 (0.066 - 0.068) 0.073 (0.071 - 0.074)

N = 100 Robust MAP 0.064 (0.063 - 0.065) 0.064 (0.063 - 0.065) 0.068 (0.066 - 0.069) 0.073 (0.072 - 0.075)
MPP Ind 0.059 (0.058 - 0.060) 0.059 (0.058 - 0.060) 0.061 (0.060 - 0.062) 0.066 (0.064 - 0.067)

H = 5

DMPP 0.059 (0.058 - 0.060) 0.059 (0.058 - 0.060) 0.061 (0.059 - 0.062) 0.066 (0.064 - 0.067)
Robust DMPP 1 0.059 (0.058 - 0.061) 0.059 (0.058 - 0.060) 0.061 (0.060 - 0.063) 0.066 (0.065 - 0.067)
Robust DMPP 2 0.060 (0.058 - 0.061) 0.060 (0.059 - 0.062) 0.062 (0.061 - 0.063) 0.069 (0.067 - 0.070)

Current Data 0.063 (0.062 - 0.064) 0.063 (0.062 - 0.064) 0.064 (0.062 - 0.065) 0.065 (0.064 - 0.066)
Pooled Data 0.044 (0.043 - 0.045) 0.045 (0.044 - 0.046) 0.049 (0.048 - 0.050) 0.058 (0.056 - 0.060)
MAP 0.051 (0.050 - 0.052) 0.053 (0.052 - 0.054) 0.055 (0.054 - 0.056) 0.060 (0.059 - 0.061)

N = 150 Robust MAP 0.051 (0.051 - 0.052) 0.053 (0.052 - 0.054) 0.056 (0.055 - 0.057) 0.060 (0.059 - 0.062)
MPP Ind 0.047 (0.046 - 0.048) 0.048 (0.047 - 0.049) 0.050 (0.049 - 0.051) 0.054 (0.053 - 0.055)
DMPP 0.047 (0.046 - 0.048) 0.048 (0.047 - 0.049) 0.050 (0.049 - 0.051) 0.055 (0.053 - 0.056)
Robust DMPP 1 0.048 (0.047 - 0.048) 0.049 (0.048 - 0.049) 0.051 (0.050 - 0.052) 0.054 (0.053 - 0.055)
Robust DMPP 2 0.048 (0.047 - 0.049) 0.049 (0.048 - 0.050) 0.052 (0.051 - 0.053) 0.057 (0.056 - 0.058)
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TABLE I3The average standard error (95% confidence interval) of the estimated treatment effect in the simulation study.

Number of Number of Between trial heterogeneity

historical patients No Low Moderate High
trials (H) (N) Method heterogeneity heterogeneity heterogeneity heterogeneity

Current Data 0.057 (0.057 - 0.057) 0.057 (0.057 - 0.057) 0.057 (0.057 - 0.057) 0.057 (0.056 - 0.057)
Pooled Data 0.042 (0.042 - 0.042) 0.042 (0.042 - 0.042) 0.042 (0.042 - 0.042) 0.042 (0.042 - 0.043)
MAP 0.050 (0.050 - 0.051) 0.051 (0.051 - 0.051) 0.052 (0.052 - 0.053) 0.054 (0.054 - 0.055)

N = 100 Robust MAP 0.051 (0.050 - 0.051) 0.051 (0.051 - 0.051) 0.052 (0.052 - 0.053) 0.055 (0.054 - 0.055)
MPP Ind 0.047 (0.047 - 0.047) 0.047 (0.047 - 0.048) 0.048 (0.048 - 0.048) 0.050 (0.050 - 0.050)

H = 3

DMPP 0.046 (0.046 - 0.046) 0.046 (0.046 - 0.046) 0.046 (0.046 - 0.047) 0.048 (0.048 - 0.049)
Robust DMPP 1 0.047 (0.047 - 0.047) 0.047 (0.047 - 0.047) 0.048 (0.047 - 0.048) 0.050 (0.049 - 0.050)
Robust DMPP 2 0.047 (0.047 - 0.047) 0.047 (0.047 - 0.048) 0.048 (0.048 - 0.048) 0.050 (0.050 - 0.051)

Current Data 0.046 (0.046 - 0.047) 0.046 (0.046 - 0.046) 0.046 (0.046 - 0.046) 0.046 (0.046 - 0.046)
Pooled Data 0.034 (0.034 - 0.034) 0.034 (0.034 - 0.034) 0.034 (0.034 - 0.034) 0.034 (0.034 - 0.034)
MAP 0.041 (0.041 - 0.042) 0.042 (0.042 - 0.042) 0.043 (0.043 - 0.043) 0.044 (0.044 - 0.045)

N = 150 Robust MAP 0.042 (0.041 - 0.042) 0.042 (0.042 - 0.042) 0.043 (0.043 - 0.043) 0.044 (0.044 - 0.045)
MPP Ind 0.037 (0.037 - 0.037) 0.039 (0.039 - 0.039) 0.039 (0.039 - 0.040) 0.041 (0.041 - 0.041)
DMPP 0.038 (0.037 - 0.038) 0.037 (0.037 - 0.038) 0.038 (0.038 - 0.038) 0.040 (0.039 - 0.040)
Robust DMPP 1 0.038 (0.038 - 0.038) 0.038 (0.038 - 0.039) 0.039 (0.039 - 0.039) 0.041 (0.040 - 0.041)
Robust DMPP 2 0.038 (0.038 - 0.039) 0.038 (0.038 - 0.039) 0.040 (0.039 - 0.040) 0.041 (0.041 - 0.042)
Current Data 0.057 (0.057 - 0.057) 0.057 (0.056 - 0.057) 0.057 (0.056 - 0.057) 0.056 (0.056 - 0.057)
Pooled Data 0.040 (0.040 - 0.040) 0.040 (0.040 - 0.040) 0.040 (0.040 - 0.040) 0.040 (0.040 - 0.040)
MAP 0.048 (0.047 - 0.048) 0.048 (0.048 - 0.049) 0.050 (0.050 - 0.051) 0.054 (0.053 - 0.054)

N = 100 Robust MAP 0.048 (0.048 - 0.048) 0.048 (0.048 - 0.049) 0.051 (0.050 - 0.051) 0.054 (0.053 - 0.054)
MPP Ind 0.044 (0.044 - 0.044) 0.044 (0.044 - 0.044) 0.044 (0.044 - 0.045) 0.046 (0.046 - 0.046)

H = 5

DMPP 0.044 (0.044 - 0.044) 0.044 (0.043 - 0.044) 0.044 (0.044 - 0.045) 0.046 (0.045 - 0.046)
Robust DMPP 1 0.044 (0.044 - 0.045) 0.044 (0.044 - 0.045) 0.045 (0.045 - 0.045) 0.047 (0.046 - 0.047)
Robust DMPP 2 0.045 (0.044 - 0.045) 0.045 (0.045 - 0.045) 0.045 (0.045 - 0.046) 0.048 (0.047 - 0.048)

Current Data 0.047 (0.046 - 0.047) 0.047 (0.046 - 0.047) 0.046 (0.046 - 0.047) 0.046 (0.046 - 0.046)
Pooled Data 0.033 (0.033 - 0.033) 0.033 (0.033 - 0.033) 0.033 (0.033 - 0.033) 0.033 (0.032 - 0.033)
MAP 0.039 (0.039 - 0.039) 0.040 (0.040 - 0.040) 0.042 (0.042 - 0.042) 0.044 (0.044 - 0.044)

N = 150 Robust MAP 0.039 (0.039 - 0.040) 0.040 (0.040 - 0.040) 0.042 (0.042 - 0.042) 0.044 (0.044 - 0.045)
MPP Ind 0.036 (0.036 - 0.036) 0.036 (0.036 - 0.036) 0.037 (0.036 - 0.037) 0.038 (0.038 - 0.038)
DMPP 0.036 (0.036 - 0.036) 0.036 (0.036 - 0.036) 0.036 (0.036 - 0.037) 0.038 (0.037 - 0.038)
Robust DMPP 1 0.036 (0.036 - 0.037) 0.037 (0.036 - 0.037) 0.037 (0.037 - 0.037) 0.039 (0.039 - 0.039)
Robust DMPP 2 0.037 (0.036 - 0.037) 0.037 (0.037 - 0.037) 0.038 (0.038 - 0.038) 0.040 (0.039 - 0.040)
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