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Abstract

Disease mapping is a scientific field that aims to understand and predict disease risk based on counts of

observed cases within small regions of a study area of interest. Hierarchical model-based approaches that borrow

information from neighbouring areas via conditional autoregressive (CAR) random effects on the local disease

rates have gained a lot of popularity, thanks to the readily implemented Markov chain Monte Carlo methods.

Nowadays, many software implementations to model risk distributions exist. Many of these applications differ, to

varying degrees, in the underlying methodology. This paper provides an in-depth comparison between analysis

results, coming from R-packages CARBayes, R2OpenBUGS, NIMBLE, R2BayesX, R-INLA, and RStan. We

investigate CAR models typically used in disease mapping for spatially discrete count data. Data about diabetics

in children and young adults in Belgium are used in a case study, while simulation studies are undertaken to

assess software performance in different settings.
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1 Introduction

Disease mapping is a flourishing study in spatial epidemiology (Lawson 2018, Elliott et al. 2001). The main

goal of disease mapping is to estimate the spatial pattern of disease risk across a set of non-overlapping areal

units and to identify areas that have a high level of disease risk (Anderson et al. 2017). Many different tools for

disease mapping are currently available. Bayesian hierarchical spatial models are commonly used for answering

public health problems (Waller and Carlin 2010, Lawson 2018). In these models, the local disease risk is modelled

using a set of spatial random effects, which borrow information over neighbouring regions to get more reliable

region-specific estimates. Depending on the distributional assumption of these random effects, different models

can be constructed.

The two most commonly used models in spatial epidemiology are the intrinsic conditional autoregressive

(CAR) model and the convolution model. The intrinsic CAR model assumes a spatially autoregressive random

effect to deal with the association among neighbouring regions (Besag et al. 1991). Besag et al. (1991) also

introduced a spatial model in which the random effects are split into two components: a spatially structured CAR

component and an unstructured, independent, random component. This model, called the convolution model or

Besag-York-Mollie (BYM) model, allows for additional area-specific noise. In contrast to the intrinsic CAR model,
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in which the spatial dependence is pre-determined by the neighbourhood structure, the convolution model can more

flexibly capture the underlying spatial dependence via the relative contribution of the two random effects (Eberley

and Carlin 2000). Several other models exist. For example, Leroux et al. (1999) proposed the use of one random

effect, which includes a parameter to measure the level of spatial correlation among the areas. Diggle et al. (1998)

assumed spatial random effects, which are correlated according to the distance between two regions.

A wide range of software implementations to model spatial risk distributions exist, and hierarchical

model-based methods have gained a lot of popularity due to the availability of ready-to-apply software. We will

focus on software tools that implement the intrinsic CAR and convolution model and which can be used within

R software (R Core Team 2018). Many of these implementations, such as OpenBUGS (Lunn et al. 2009), the

R packages CARBayes (Lee 2013) and NIMBLE (de Valpine et al. 2017) make use of a Markov chain Monte

Carlo (MCMC) method for analyzing the CAR models. Other implementations like BayesX (Brezger et al. 2005,

Umlauf et al. 2015) and Stan (Carpenter et al. 2017, Stan Development Team 2018a) estimate CAR models using

either MCMC techniques or an approximation method. BayesX allows to analyze the model with a mixed model

based methodology. Stan offers, as a fast alternative estimation algorithm, the use of variational inference. Another

technique which has gained a lot of popularity is integrated nested Laplace approximations, implemented in the R

package INLA (Rue et al. 2009, Lindgren and Rue 2015).

Several one-to-one comparisons of these software packages have been conducted in literature, some of

which focused on models in the area of spatial epidemiology. Brezger et al. (2005) compared WinBUGS, a

precursor of OpenBUGS, and BayesX in the setting of an additive regression model. They concluded that BayesX

is computationally less expensive and has better mixing properties than WinBUGS for the resulting Markov chains.

Carroll et al. (2015) performed a comparative study between INLA and OpenBUGS, with the focus on spatial

Poisson data models. Computationally, INLA is much more efficient than OpenBUGS. However, major differences

were observed with respect to the precision parameters for spatial random effects, when default values in INLAwere

used. On the other hand, Neyens et al. (2018) concluded that estimates of INLA in its default state and WinBUGS

are very similar, based on a simulation study that focused on a negative binomial CARmodel for count data. Bivand

et al. (2017) recently made a comparison of several software implementations of the spatial intrinsic CAR and

SAR (simultaneous autoregressive) model on two Gaussian examples in the context of spatial econometrics. They

show that spatially structured data may indeed be estimated readily using a variety of approaches and conclude

that robust results across methods of estimation are obtained from INLA and WinBUGS implementation of the

intrinsic CAR model for Gaussian responses. To the best of our knowledge, no comparison study has been

made with the comparison of all previously mentioned software packages, especially no general comparison study

involving the software packages NIMBLE, CARBayes and the approximation method of Stan in the context of

disease mapping. Hence, in this manuscript, a simulation study is conducted to compare several of the available

software implementation in the context of spatial epidemiology, in order to check whether previous results can

be generalized. Focus is on the similarity of the model parameters, the relative risks and computational time.

Differences among the default assumptions and default output from the software packages will be highlighted.
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Further, it will be looked if high-risk detection is performed alike. The focus is on count data, which are typical for

disease mapping.

The remainder of this manuscript is structured as follows. Section 2 describes the used CAR models and

software packages, with their characteristics. Section 3 illustrates and compares the different implementations for

a case study. Section 4 provides an in-depth comparison of the implementations via a simulation study. Finally,

section 5 gives conclusions and recommendations for further research.

2 Methodology

2.1 Models

In disease mapping, a geographic region of interest is partitioned into n small areas such as municipalities, districts,

electoral wards, ... . For each area k, we have observed the number of (newly diagnosed) disease or mortality

cases, denoted by Yk . In order to account for population differences (population size, age/gender distribution), it is

common to compare the observed number of cases to the expected number of cases in that area, indicated by Ek .

This is calculated using an age and/or gender standardization,

Ek =
∑
g

pgngk ,

where g corresponds to the age and/or gender strata, pg is the rate of having the disease in a group g for a

representative standard population (e.g. the country or the continent) and ngk is the number of people in the

age/gender category in area k. Commonly, this is modelled using a Poisson distribution,

Yk |Ek, Rk ∼ Poisson(EkRk), k ∈ {1, ..., n}, (1)

with Rk the unknown relative risks of interest. The maximum likelihood estimate of Rk is given by the standardized

incidence ratio (SIR) or standardized mortality ratio (SMR), which is the ratio of the observed to the expected

number of cases in an area. If the SIR (SMR) is bigger than 1, the area has an elevated risk of disease (mortality)

as compared to the rate at which individuals acquire the disease in the standard population (Lawson 2018).

However, the SIR (SMR) is unstable if the disease is rare and/or the population is small, and it does not

correct for spatial structure of other underlying patterns in disease risk. Spatial models introduce spatial association

to the disease risk, borrowing information from neighbouring areas, and are therefore more sensible solutions. The

spatial models are characterized by the use of spatial random effects φ, while they can also contain a set of p

explanatory variables xT = (x1, ...,xp). A general formulation of the spatial models is

ln(Rk) = µ + x
T
kβ + φk , (2)
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where the regression parameters are noted by β and the intercept term by µ. Depending on the prior distribution

of the random effects φ, different spatial models are constructed. The most commonly used spatial models are: the

intrinsic CAR model and the convolution model. These are described in the next sections.

Note that CAR models make use of a so-called neighbourhood matrix. The neighbourhood structure can

be defined in several ways. In this manuscript, areas are considered to be neighbours when they share at least one

border point, a structure better known as the queen method. Two neighbouring areas j and k are denoted by j ∼ k

and the number of neighbours of area k is denoted by nk .

2.1.1 The intrinsic model

The intrinsic model was introduced by Besag et al. (1991). The full conditional distribution of the random effects

φ is defined by

φk |φ−k, τ
2 ∼ N ©­« 1

nk

∑
j∼k

φ j,
τ2

nk
ª®¬ .

The more neighbours an area has, the smaller the variance of the conditionally random effects. In case of strong

spatial structure, it is a logical consequence of the fact that the more neighbours an area has, the more information

there is. A disadvantage of the intrinsic model is that the joint distribution of φ is improper. This can however be

solved by imposing the restriction
n∑

k=1
φk = 0.

2.1.2 The convolution model

The convolution model or Besag-York-Mollie (BYM) CAR model was proposed by Besag et al. (1991). The

random effects of this model can be formulated as follows

φk = θk + ψk

θk | σ
2 ∼ N(0, σ2)

ψk |ψ−k, τ
2 ∼ N ©­« 1

nk

∑
j∼k

ψj,
τ2

nk
ª®¬ .

Thus, the random effects are split up in a spatial component, represented by ψ and a random noise component,

represented by θ. The advantage is that the relative contributions of the two components allow different strength

of spatial association. A drawback of splitting up the random effects is that only the sum θk + ψk is identifiable.

2.2 Software packages

Several software packages implement the intrinsic CAR and convolution model. Most packages make use of

the Bayesian inference framework using Markov chain Monte Carlo (MCMC) sampling. These methods provide

samples from the joint posterior distribution of the unknown quantities. Posterior summary measures are calculated

from these samples and reported. However, also alternative estimation methods are available. We will discuss and

4



Table 1: Software packages. An overview of the implementations of the CAR models.

Name R Package Version Estimation method Function
CARBayes CARBayes 5.0 Markov chain Monte Carlo S.CARleroux/

S.CARbym

R2OpenBUGS R2OpenBUGS 3.2-3.2 Markov chain Monte Carlo bugs

NIMBLE NIMBLE 0.7.0 Markov chain Monte Carlo nimbleMCMC

R2BayesX-MCMC R2BayesX 1.1-1 Markov chain Monte Carlo bayesx

R2BayesX-REML R2BayesX 1.1-1 Empirical Bayes bayesx

RStan-MCMC RStan 2.18.2 Markov chain Monte Carlo stan

RStan-VI RStan 2.18.2 Variational inference vb

INLA INLA 18.07.12 Integrated nested inla
Laplace approximation

compare software packages that allow estimation of the intrinsic and convolution model in a Bayesian hierarchical

framework. An overview of the software packages, the used version, the estimation method and function is given

in table 1. R (R Core Team 2018), version 3.5.0, was used to perform the data analysis and simulation study. In

appendix A, the implementation code of the software packages listed in table 1 is given.

OpenBUGS is the most recent version of the BUGS (Bayesian Inference Using Gibbs Sampling) project

(Lunn et al. 2009), which chooses an appropriate MCMC scheme from either Gibbs, Metropolis Hasting and

slice sampling. It is a general software package to perform Bayesian analyses. OpenBUGS has a built-in function

to implement the intrinsic model and the convolution model: car.normal(). Moreover, it provides the user the

possibility to write their own code. The R2OpenBUGS package offers an R interface to OpenBUGS. It was the

first developed software among the packages being discussed.

An extension of the BUGS language is available in the R package NIMBLE (Numerical Inference for

statistical Models for Bayesian and Likelihood Estimation, de Valpine et al. 2017, NIMBLE Development Team

2019). NIMBLE combines flexible model specification with the possibility to write a variety of algorithms adapted

to the defined model. NIMBLE has a similar built-in function as OpenBUGS to implement the intrinsic and the

convolution model, namely dcar_normal(). Depending on the model definition, several MCMC techniques can

be evoked. A specialized sampling scheme is available for the spatial models. This is a random walk Metropolis

Hasting algorithm.

CARBayes is specifically designed for the analysis of generalized linear mixed models for areal unit data

(Lee 2013). It implements several univariate and multivariate CAR models using MCMC sampling, including

the intrinsic and the convolution model. The intrinsic model can be fitted using the function S.CARleroux(),

a function originally proposed to fit a Leroux model (Leroux et al. 1999), but which allows the user to fit the

intrinsic CAR model by setting "rho" (a spatial dependence parameter) equal to one. The function S.CARbym()
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is the implementation of the convolution model. The MCMC updates for the random effects and the regression

parameters use a combination of Gibbs sampling and either random walk Metropolis steps or Metropolis adjusted

Langevin algorithm (MALA, Roberts and Rosenthal 1998).

Another software package is Stan (Carpenter et al. 2017, Stan Development Team 2018a). It is a

C++-based package to perform Bayesian analyses using fast MCMC algorithms including Hamiltonian Monte

Carlo (HMC) and its variant, the No-U-Turn (NUTS) sampler. Stan can be accessed through R via the package

RStan (Stan Development Team 2018b). There is no built-in function for CAR models, but the user can directly

implement the probability function up to a proportionality constant (Morris 2018). Aside fromMCMC techniques,

Stan also makes use of other estimation techniques, including variational inference (VI). Here, an approximation

of the posterior distribution is created by posing a family of approximate densities and to find the one of the family

that minimizes the discrepancy between the approximation and the true posterior distribution. This discrepancy

is measured with the Kullback-Liebler divergence. The key is choosing a family flexible enough to capture a

density close to the true posterior distribution, but also not too complicated. Due to the difficulty in computing the

Kullback-Liebler diveregence, minimizing the Kullback-Liebler divergence is translated in optimizing the evidence

lower bound (ELBO). The ELBO maximizes the difference between the expectation of the log joint posterior

distribution under the approximation and the expectation of the log approximation under the approximation (Blei

et al. 2017, Kucukelbir et al. 2015, Nathoo et al. 2013, Teng et al. 2017). Being an approximate method, this

can be used to quickly get a rough idea of the parameter distribution. Within the context of disease mapping, the

method is particularly useful when the number of areas is large, or when complex spatial models are used.

BayesX is a software package for analyzing the general class of structured additive regression (STAR)

models (Brezger et al. 2005). One of the techniques implemented in BayesX uses a full Bayesian approach

using MCMC simulation, which consists of a Metropolis Hasting sampling based on iteratively weighted least

squares proposals. An alternative estimation method is an empirical Bayesian approach, based on mixed model

methodology (Fahrmeir et al., 2004). It can also be interpreted as a penalized likelihood method. BayesX has

the build-in function “mrf” or “spatial”, which defines the random effects of the intrinsic model. To include the

spatially unstructured random effect for the convolution model, the function “re” or “random” is available.

Finally, integrated nested Laplace approximation (INLA, Rue et al. 2009) can be used as an alternative to

the MCMCmethods. INLA is a Bayesian method that computes approximations of posterior marginal distributions

for latentGaussianmodels. Marginal posterior distributions of the parameters in the latent field and hyperparameters

are approximated via Laplace approximations. It is implemented in the R package INLA. The intrinsic model is

implemented in INLA via the “besag” model and the convolution model, via the “bym” model.

Several manuscripts compare the Bayesian inference framework. For example, Taylor and Diggle (2013)

compare the Metropolis adjusted Langevin algorithm with integrated nested Laplace approximation in the context

of spatial log-Gaussian Cox processes. In the same context, Teng et al. (2017) made a comparison between

Hamiltonian Monte Carlo, integrated nested Laplace approximation and variational inference. We focus on the

performance of the different techniques implemented in a specific software package. In the next paragraph,
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differences amongst model specification, MCMC characteristics and summary statistics of the different software

packages is discussed.

2.2.1 Differences among model specifications

While all investigated software packages implement the intrinsic CAR and convolution models, there are some

subtle differences. For example, while R2OpenBUGS, NIMBLE, RStan and INLA allow areas without neighbours,

CARBayes and R2BayesX do not allow this.

Another difference among (default) implementations is the specification of priors and hyperpriors

(table 2). Some packages provide default prior and hyperprior specifications and these are used in our simulation

study, when available. We explicitly choose for this approach since many annalists use default program settings.

If there are no defaults, the priors or hyperpriors are chosen such that they are similar for the different software

packages. The priors do not differ drastically, but note that even small differences can cause differences in the

estimates. The choice of the prior for the spatial and random variance parameter is even more challenging due

to the issue of how to choose interpretable hyperpriors. Gelman (2006) states that the inverse-gamma family for

variance parameters can cause serious problems. However, several of the software packages chose this prior as

default for the variance parameter. Generally, it is not recommended to use the default priors blindly. Sφrboye and

Rue (2014) propose guidelines to choose a hyperprior for the precision parameter of the spatial random effects.

Besides the recommendation to not blindly use the defaults priors, the user of a software package also

has to be aware of possible identifiability problems. Identifiability problems can cause that the statistical models

not uniquely estimate the true values of the model parameters. Like mentioned in section 2.1.1, the intrinsic model

has an improper joint distribution of the random effects, which implies an implicit overall intercept (Goicoa et

al. 2018). The different software packages deal with this identifiability problem in a different way. CARBayes,

R2OpenBUGS and R2BayesX automatically imposes the sum-to-zero constraint, namely
n∑

k=1
φk = 0, which solves

the identifiability problem. In the NIMBLE software, it is recommended to not include an additional intercept

parameter, but also gives the user the possibility to impose the sum-to-zero constraint by adding the specification

zero_mean=1. In contrast to the sum-to-zero constraint, RStan offers a soft version by setting a prior on the random

effects which constraints the mean of the random effects to be within some epsilon of zero. INLA also has a default

version of a sum-to-zero constraint to each connected sub-graph.

2.2.2 Differences among MCMC characteristics

Besides differences among model specifications, as discussed in the previous section, the software packages using

MCMC sampling differ in the choice of MCMC features. Some, like R2BayesX-MCMC and RStan-MCMC,

provide default settings while others do not. These defaults can also vary between software packages. An overview

of the default/recommended characteristics of the MCMC algorithms is shown in table 3. These characteristics

are the number of iterations, the burn-in part, thinning and the number of chains. If there are no defaults in

the software packages concerning these characteristics, the user-specified values of this study are given. While
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Table 2: Software packages. An overview of the priors and hyperpriors used for the simulation study. The variance
is used in the formulation of the normal distribution.

Software package CARBayes R2OpenBUGS NIMBLE R2BayesX RStan INLA
Model
Intrinsic

µ Prior ∼ N (0, 10000) An improper An improper An improper ∼ N (0, 102 400) ∼ N (0, 0)
(flat) prior (flat) prior (flat) prior

Default or Default User-specified User-specified Default User-specified Default
user-specific

τ2 Hyperprior τ2 ∼ Inverse- 1
τ2 ∼ Gamma 1

τ2 ∼ Gamma τ2 ∼ Inverse- 1
τ2 ∼ Gamma Log

(
1
τ2

)
Gamma(1,0.01) (1,0.01) (1,0.01) Gamma(0.001, (1,0.01) ∼ Log-

0.001) gamma(1,5x10−5)
Default or Default User-specified User-specified Default User-specified Default
user-specific

Convolution
µ Prior ∼ N (0, 10000) An improper An improper An improper ∼ N (0, 102 400) ∼ N (0, 0)

(flat) prior (flat) prior (flat) prior
Default or Default User-specified User-specified Default User-specified Default
user-specific

τ2 Hyperprior τ2 ∼ Inverse- 1
τ2 ∼ Gamma 1

τ2 ∼ Gamma τ2 ∼ Inverse- 1
τ2 ∼ Gamma Log

(
1
τ2

)
Gamma(1,0.01) (1,0.01) (1,0.01) Gamma(0.001, (1,0.01) ∼ Log-

0.001) gamma(1,5x10−4)
Default or Default User-specified User-specified Default User-specified Default
user-specific

σ2 Hyperprior σ2 ∼ Inverse- 1
σ2 ∼ Gamma 1

σ2 ∼ Gamma σ2 ∼ Inverse- 1
σ2 ∼ Gamma Log

(
1
σ2

)
Gamma(1,0.01) (1,0.01) (1,0.01) Gamma(0.001, (1,0.01) ∼ Log-

0.001) gamma(1,5x10−4)
Default or Default User-specified User-specified Default User-specified Default
user-specific

Table 3: Software packages. An overview of the Markov chain Monte Carlo characteristics.

Software package Default or chosen Number of iterations Burn-in Thin Number of chains
CARBayes Chosen 20 000 10 000 1 1
R2OpenBUGS Chosen 20 000 10 000 1 1
NIMBLE Default 10 000 0 1 1
R2BayesX-MCMC Default 12 000 2000 10 1
RStan-MCMC Default 2000 1000 1 4

R2BayesX-MCMC uses thinning, RStan-MCMC uses multiple chains.

Some of the software packages using MCMC provide a convergence diagnostic statistic. CARBayes

provides convergence checkswithGeweke diagnostic (Geweke 1991). The functionGRStats inR2BayesX computes

Gelman and Rubin diagnostics for multiple chains (Gelman et Rubin 1992). Rstan returns warning messages when

the estimated potential reduction factor, the R̂-statistic (Gelman et Rubin 1992), is substantially greater than 1.

Convergence can also be checked using a traceplot, as available in e.g. R2OpenBUGS.

2.2.3 Differences among summary statistics

In table 4, an overview of summary measures, which are presented by default by the software packages, is given.

We should be aware of these differences when comparing results of the different packages, especially if the posterior

distribution is highly skewed. Results of RStan-VI and INLA are approximations of the posterior. Furthermore,

INLA gives the estimates from the marginals instead of the joint posterior distribution. R2BayesX-REML provides

empirical Bayes posterior mode estimates. The software packages R2OpenBUGS, NIMBLE, RStan and INLA
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Table 4: Software packages. A resume of the summary statistics of the parameters and relative risks, provided by
the different software packages.

Estimates Mean Mode Median Quantiles Standard deviation
Software package
CARBayes × ×

R2OpenBUGS × × × ×

NIMBLE × × × ×

R2BayesX-MCMC × × × ×

R2BayesX-REML ×

RStan-MCMC × × × ×

RStan-VI × × × ×

INLA × × × × ×

provide estimates of the relative risks, while CARBayes and R2BayesX give estimates of the observed counts.

The software packages CARBayes and R2Bayes do not give credible intervals of the relative risks. In this study,

the intervals of the relative risks for the MCMC methods are constructed based on the MCMC samples of the

parameters.

2.3 Comparison techniques

Bivand et al. (2017) mention that model comparisons using values of deviance information criterion (DIC)

are challenging, as values are only comparable within each software implementation, but not among software

implementations. With this argument in mind, we choose to focus on parameter and relative risk estimation, and

not on model selection in this manuscript. The agreement statistic provides a tool to compare parameter estimates

in the Bayesian paradigm (Faes et al. 2011). It gives an indication of the amount of overlap between the two

densities of the same parameter coming from two different software packages. The agreement statistic is based on

the integrated absolute difference (IAD). Let f be the posterior density proposed by one software package and f̃

the posterior density proposed by another software package, then the IAD can be specified as

IAD( f , f̃ ) =
∫ ∞

−∞

| f̃ (x) − f (x) | dx .

Then, the agreement statistic can be formulated as follows

Agreement( f , f̃ ) = 1 −
IAD( f , f̃ )

sup IAD( f , f̃ )
.

If f = f̃ , the agreement is 1. Values of the agreement range between 0 and 1. The R code to compute the agreement

statistic is given in appendix B. Another comparison measure is the relative efficiency. This is the ratio of the

standard deviations of the relative risks in an area k compared between two software packages. Values larger than

1 indicate that the second software package provides a more efficient parameter estimate than the first. Further,

the exceedance probability, which estimates the chance of having the relative risk exceeding a certain value, is

considered.
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For the simulation study, two kinds of mean absolute differences are also used as comparison statistics.

On the one hand, we calculate the mean absolute difference per area, as

MADk =
1
m

m∑
l=1
|RR(l)

k
− R̂R

(l)
k | ,

which represents the difference between the true value RR(l)
k

and the estimated value R̂R
(l)
k . On the other, we

calculate the overall absolute difference for simulation (l)

OAD(l) =
1
n

n∑
k=1
|RR(l)

k
− R̂R

(l)
k | ,

which represents the average absolute difference in relative risk estimates over all areas.

3 Data analysis

In this section, the different software implementations listed in table 1 are considered for the analyze of the diabetic

data.

3.1 Data description

In this study, we investigate the spatial pattern of the number of persons younger than 25 who received medication

or care for diabetes per municipality in Belgium in 2014. The data contain the number of individuals that received

diabetics-relatedmedication among the total number of subscribed individuals for reimbursement. Belgium consists

of 589 municipalities, with a median population of children and young adults of 3336. The data were collected

by the InterMutualische Agentschap (www.ima-aim.be). The number of cases per municipality ranges from 0 to

654. Figure 1 shows the SIR of the diabetic data. An SIR bigger than 1 indicates that there are more observed

diabetic cases in a municipality than expected from the overall incidence in the Belgian population. An elevated

risk of diabetes around Liège, in the east of the country, can be seen from figure 1. As mentioned before, the use

of a spatial model, such as the CAR model, can greatly improve our investigation. As such, this is a typical disease

mapping setting. We will now use different software applications to fit the same CARmodel. Although the focus is

directed towards the comparison of techniques, the epidemiological question at hand is whether there are locations

with increased risk.

3.2 Results

The data are analyzed with the intrinsic and the convolution model, whereby no covariates are used. The analyses

are conducted with the software implementations listed in table 1. In the section “software packages”, detailed

information over the used characteristics, such as e.g. the choice of hyperpriors and the burn-in part of the MCMC

methods, can be found. In order to avoid convergence problems, to use the typically non-zero burn-in and in view
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Figure 1: Children and young adult diabetics study. Standardized incidence ratio (SIR) map of the number of
persons younger than 25 who are getting medication or care for diabetes in the 589 municipalities of Belgium in
2014.

of similarity with the BUGS language, the MCMC characteristics of NIMBLE are taken similar as R2OpenBUGS.

This means 1 chain, 20 000 iterations, a burn-in of 10 000 and no thinning.

The results of the children and young adults diabetics data analysis are given below. The first parts

discusses the differences between parameter results on basis of the estimates and the agreement of the densities.

The second describes the relative risk results in terms of estimates, relative efficiency and the exceedance probability.

The convergence of the different MCMC implementations was checked and no problems were found.

3.2.1 The parameters

Table 5 presents the parameter estimates of the intrinsic model and the convolution model respectively for the

implementations with the different software packages. The estimates of the intercept parameter in model (2) and

the variance parameters of the random effects are given. For most software packages, the estimates for the intrinsic

model are consistent. A slightly higher value can be seen for the intercept parameter achieved from R2BayesX-

REML. Further, RStan-VI underestimates the uncertainty and gives more influence to spatial variability. It is

Table 5: Children and young adult diabetics study. Parameter estimates and standard deviations (sd) of the intrinsic
and convolution model.

Model Intrinsic Convolution
Software package µ (sd) τ2 (sd) µ (sd) τ2 (sd) σ2 (sd)
CARBayes -0.076 (0.013) 0.168 (0.022) -0.078 (0.013) 0.155 (0.021) 0.004 (0.002)
R2OpenBUGS -0.076 (0.012) 0.166 (0.021) -0.077 (0.013) 0.152 (0.021) 0.004 (0.002)
NIMBLE -0.076 (0.012) 0.164 (0.022) -0.078 (0.013) 0.153 (0.022) 0.005 (0.002)
R2BayesX-MCMC -0.076 (0.013) 0.170 (0.023) -0.077 (0.013) 0.161 (0.022) 0.002 (0.002)
R2BayesX-REML -0.064 (0.012) 0.165 -0.066 (0.012) 0.184 1x10−4

RStan-MCMC -0.076 (0.012) 0.167 (0.021) -0.077 (0.012) 0.153 (0.022) 0.005 (0.002)
RStan-VI -0.075 (0.009) 0.231 (0.010) -0.092 (0.020) 0.062 (0.011) 0.115 (0.002)
INLA -0.076 (0.012) 0.165 (0.021) -0.077 (0.013) 0.154 (0.021) 0.004 (0.008)
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Table 6: Children and young adult diabetics study. The agreement statistic whereby the densities of the parameters
from a software package are compared with the density of this parameter achieved from the software package
R2OpenBUGS (in percentage).

Software package CARBayes NIMBLE R2BayesX RStan RStan-VI INLA
-MCMC -MCMC

Model
Intrinsic

µ 97.63 97.67 97.20 97.16 86.71 98.43
τ2 94.91 94.91 92.80 97.57 4.87 98.40

Convolution
µ 95.54 96.43 96.13 97.32 61.71 98.67
τ2 95.66 96.58 84.74 97.98 0.35 97.48
σ2 89.59 93.63 62.11 96.43 0.12 96.82

known that variational inference generally underestimates the variance of the posterior distribution (Blei et al.

2017). For the convolution model, there are differences in estimates with deviations observed for the software

packages R2BayesX and RStan-VI, with R2BayesX assigning more weight to spatial variability.

According to the similar parameter estimates for R2OpenBUGS, CARBayes, NIMBLE, RStan-MCMC

and INLA, the densities obtained from these software packages have a high overlap (table 6). Table 6 shows the

agreement statistic calculated as explained in section 2.3. Note a smaller agreement in table 6 between the densities

resulting from R2OpenBUGS and R2BayesX-MCMC for the variance of the random effects. As expected from

previous results (table 5), the agreement in density between R2OpenBUGS and RStan-VI is very low. For the

intercept parameter in the intrinsic model, this is caused by a more peaked density from RStan-VI, while in the

convolution model it is caused by a wider posterior density (figure 2).
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Figure 2: Children and young adult diabetics study. Map of the densities for the intercept term achieved from
R2OpenBUGS, respectievely RStan-VI.
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Figure 3: Children and young adult diabetics study. Map of point estimates of the the relative risk estimates of
R2OpenBUGS and RStan-VI for the convolution model.
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Figure 4: Children and young adult diabetics study. Caterpillar plots of the point and interval estimates of the
relative risks, sorted by increasing standardized incidence ratio.

3.2.2 The relative risks

The relative risk estimates obtained from R2OpenBUGS and RStan-VI for the convolution model, are displayed in

figure 3. The maps of the relative risk estimates coming from CARBayes, NIMBLE, R2BayesX, RStan-MCMC

and INLA are similar to those from R2OpenBUGS and are presented in appendix C. Relative risk maps for the

intrinsic model can also be found in appendix C. Note that the map resulting from the analysis with R2OpenBUGS

is smoother than the SIR map, presented in figure 1. However, one can see an elevated risk of diabetes around

Liège, in the east of the country, which was also suggested by the SIR map in figure 1. Furthermore, while the

point estimates of the relative risk for most packages lead to similar results, figure 3 shows a difference in relative

risk estimates between R2OpenBUGS and RStan-VI caused by the underestimation of the spatial variability by

RStan-VI.
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Figure 5: Children and young adult diabetics study. Relative efficiency of the relative risks. Results for the intrinsic
model are given to the upper right of the diagonal. The lower left half of the table presents the results for the
convolution model. The color green indicates that the software packages are about as efficient (relative efficiency
between 0.95 and 1.05). The color blue denotes that the software package in the column header is more efficient
(relative efficiency above 1.05 or below 0.95). Red indicates that the package denoted in the row name is more
efficient than the package given in the column header (relative efficiency above 1.05 or below 0.95).

Figure 4 shows the caterpillar plots of the relative risks for the intrinsic model, the convolution model and

different software packages. The caterpillar plots present the estimate of the relative risks together with an 95%

equal tail credible interval. The relative risks are sorted according to increasing SIR and the red points indicate

the SIR. The plots look similar in shape and extent, except for RStan-VI. For the convolution model, RStan-VI has

wider credible intervals. Furthermore, the relative risks are more smoothed towards 1.

While the caterpillar plot of CARBayes is very similar to the one of R2OpenBUGS, NIMBLE, R2BayesX-

MCMC, INLA and RStan-MCMC, figure 5 shows a slightly decreased efficiency for CARBayes in some areas.

To significantly improve or decrease the relative efficiency, it has to lie outside the interval from 0.95 to 1.05.
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Table 7: Children and young adult diabetics study. The number of municipalities in Belgium, with an exceedance
probability of one above 0.95.

Software package CARBayes R2OpenBUGS NIMBLE R2BayesX RStan RStan-VI INLA
-MCMC -MCMC

Model
Intrinsic 76 75 75 76 76 46 76

Convolution 75 75 76 75 75 46 76

Otherwise, the software packages are considered as about as efficient, which is indicated with the color green

on figure 5. The software package R2BayesX-MCMC has differing degrees of efficiency. In line with the wider

credible intervals of the software package RStan-VI, which was seen on the caterpillar plots, RStan-VI is the least

efficient. The software packages R2OpenBUGS, NIMBLE, RStan-MCMC and INLA are about as efficient.

Table 7 shows how many municipalities in Belgium have an exceedance probability of one above or

equal to 0.95 according to the analysis with the different software packages. Only minor differences can be seen

from table 7, except for RStan-VI. Although R2BayesX-MCMC has a similar number of municipalities with a

high probability of elevated disease risk, these are other municipalities. Some exceedance probabilities are higher

other lower, but all small differences. The software package RStan-VI has considerably fewer municipalities with

exceedance probability of one above 0.95. Overall, this data analysis shows seriously deviant results from RStan-VI

for both the parameter and relative risk estimates.

4 Simulation study

In this section, a simulation study that compares the performance of the software packages listed in table 1, is

discussed.

4.1 Simulation design

Disease data were simulated using the same study region as in the data analysis, namely for the 589 municipalities

in Belgium. The simulated data are generated under three different scenarios: spatial independence, moderate

spatial dependence and strong spatial dependence. All the data are created from model (2), with no covariates.

In the independent case, the random effects are sampled from an independent normal distribution with mean 0

and standard deviation 0.6. The random effects in the strong spatial dependence scenario are generated from the

intrinsic model with a standard deviation τ of 0.7. The R package SUMMER (Martin et al. 2019) was used to

create the random effects. It simulates spatial random effects based on algorithm 3.1 of Rue and Held (2005). The

moderate spatial dependence scenario is obtained by taking the sum of the random effects of the independent and

strong spatial situation per area, similar to the convolution model. In appendix D, the figures of one of the simulated

random effects under the three different scenarios is given. The intercept parameter is fixed at 0 for all scenarios.

We used the same expected values as in the case study. For each of the three scenarios (independent, moderate
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and strong spatial dependence), 200 datasets are created. The intrinsic and convolution model were fitted to each

simulated dataset, using the different software packages listed in table 1. Due to time constraints, the analysis of

the convolution model with R2BayesX-REML was interrupted if it took longer than 50 minutes. This was the

case for 2 datasets in the independent scenario. The characteristics of the software packages in this simulation

study are equal to those in the data analysis and are given in the section “software packages”, with deviant MCMC

characteristics for NIMBLE like mentioned in the data analysis study. For the software package RStan-VI, three

different scenarios were considered. The first scenario uses a single set of default initial values for the parameters.

The second presents the results without the datasets for which the analysis gave a warning message. Lastly, the use

of multiple initial values for the parameters was examined. Several ways to choose the initial values are possible.

In this study, a random grid of initial values was taken. For the analysis with the intrinsic model, the initial values

-0.5, -0.25, 0, 0.25 and 0.5 were used for the intercept and the values 0.05, 0.25, 0.45, 0.65 and 0.85 for the variance

parameter. In the case of the convolution model, the initial values -0.5, 0 and 0.5 were taken for the intercept

and the values 0.05, 0.4 and 0.75 for both variance parameters. The results of another choice of initial values are

presented in appendix E. For each data analysis, the estimates from the results with the highest ELBO are taken

into consideration.

Two additional simulation studies were conducted to investigate the generalizability of the results obtained

from this simulation. While in the above simulation study, the study region (Belgium) is subdivided into 589

municipalities, we consider the subdivision in either (1) districts and (2) statistical sectors. In Belgium, districts

are larger study areas as compared to municipalities, with a total of 43 districts. The statistical sectors are defined

at a finer resolution as the municipalities, with a total of 19 782 statistical sectors. Data simulation is conducted in

the same way as defined before and the results are presented in appendix F.

4.2 Results

In the subsequent part of this manuscript, the results of the simulation study at the level of the municipalities are

explained. First, the computation time is discussed. Secondly, differences in parameter estimates are examined.

Finally, a comparison of the software packages in terms of the relative risk estimates is made. We will focus on

the next questions: “How well are the relative risk estimated compared to the true relative risks?”, and “Do the

credible intervals of the relative risks contain the true relative risk, without being too large?”.

Convergencewas checked. Therewere no convergence problems detected, except for RStan. The software

package RStan-MCMC displayed a warning message for one analyse of the convolution model in the independent

situation. This message stated that there were 2 transitions after warm-up that exceeded the maximum treedepth.

It indicates an efficiency concern and does not necessarily mean no convergence. As a solution, Stan Development

Team (2018c) has suggested to increase the argument max_treedepth above 10. This ensures that the analysis

techniques of RStan take more steps in each iteration. However, this does increase the computation time. For 52 of

the 1200 analyses with RStan-VI the algorithm may not have converged.
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Table 8: Simulation study. Mean time in seconds (standard deviation) to run the model.

Software CARBayes R2OpenBUGS NIMBLE R2BayesX R2BayesX RStan RStan INLA
package -MCMC -REML -MCMC -VI

Model
Intrinsic 16 (0.2) 135 (4.2) 120 (2.8) 9 (0.2) 68 (16) 94 (9.5) 50 (1.3) 2 (1.3)
Convolution 21 (0.2) 197 (5.8) 154 (4.3) 18 (0.6) 880 (257) 161 (21.1) 48 (1.5) 10 (2.4)

4.2.1 Computation time

Table 8 shows themean time, together with the standard deviation, over the 600 simulations, needed to run themodel

with a specific software package. Note that the computation time for the convolution model with R2BayesX-REML

is underestimated since runs with a computation time longer than 50 minutes, were interrupted. The convolution

model has longer computation time as compared to the intrinsic model, for all the software packages except RStan-

VI (for which computation times amongst the two models are very similar). INLA has the shortest computation

time, closely followed by the software packages CARBayes and R2BayesX-MCMC. Next is the package RStan-VI

the fastest. It is followed by RStan-MCMC and NIMBLE, which is slightly faster as compared to R2OpenBUGS.

The software package with the longest computation time is R2BayesX-REML, especially for the convolution model.

While CARBayes, R2BayesX-MCMC and INLA are at least 10 times faster as compared to R2OpenBUGS, RStan-

VI has a 3-fold computational gain over R2OpenBUGS. It should be noted that the presented computation time

for RStan-VI corresponds to an analysis with a single set of initial values. If multiple initial values are used, the

computation time should be multiplied with the number of analyses.

4.2.2 Parameter estimation

Table 9 and 10 present theminimum, mean andmaximum of the parameter estimates of the intrinsic and convolution

model, respectively, for the three situations (independence, moderate and strong spatial dependence). The software

packages CARBayes, R2OpenBUGS, NIMBLE, R2BayesX-MCMC, RStan-MCMC and INLA give consistent

results for the intrinsic model, with only a slightly larger range for the variance parameter based on CARBayes in

the independence scenario. In the strong spatial dependence scenario, the intrinsic model is the correct underlying

model and the parameter estimates of these software packages give on average the true parameter value (true value

in the intrinsic model is 0 for µ and 0.49 for τ2). Some deviations are seen based on R2BayesX-REML, with

a tendency to yield larger estimates of the intercept and in general smaller estimates of the variance parameter.

The results from the software package RStan-VI deviate much more from the other packages. On average, the

estimates of the intercept improved when multiple initial values were used. On the other hand, higher estimates for

the variance parameter can be noticed when working with multiple initial values, especially in the strong spatial

dependence scenario.

Parameter estimates for the convolution model are found to be very similar for the software packages

R2OpenBUGS, NIMBLE, RStan-MCMC and INLA. On average, the estimates are in line with the true parameter

values. Results from CARBayes, R2BayesX-REML and R2BayesX-MCMC are somewhat deviating from these
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Table 9: Simulation study. Minimum (min), mean and maximum (max) value of the parameter estimates over the
analyses of the 200 created datasets with the intrinsic model. Scenario 1 is independence, scenario 2 moderate
spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
Software package µ τ2 µ τ2 µ τ2

CARBayes Min -0.084 1.502 -0.054 0.388 -0.039 0.369
Mean -0.002 1.932 -9.101x10−4 0.560 -2.212x10−4 0.500
Max 0.091 2.531 0.046 0.796 0.038 0.620

R2OpenBUGS Min -0.086 1.496 -0.054 0.367 -0.038 0.352
Mean -0.003 1.905 -8.991x10−4 0.550 -1.616x10−4 0.490
Max 0.091 2.398 0.046 0.776 0.039 0.614

NIMBLE Min -0.085 1.485 -0.054 0.365 -0.038 0.348
Mean -0.003 1.905 -9.326x10−4 0.550 -1.608x10−4 0.489
Max 0.091 2.407 0.047 0.779 0.038 0.613

R2BayesX-MCMC Min -0.086 1.509 -0.055 0.370 -0.039 0.355
Mean -0.003 1.915 -0.001 0.555 -4.777x10−4 0.494
Max 0.091 2.410 0.045 0.782 0.039 0.614

R2BayesX-REML Min -0.048 1.435 -0.031 0.365 -0.018 0.348
Mean 0.033 1.824 0.021 0.541 0.021 0.483
Max 0.125 2.292 0.066 0.758 0.06 0.605

RStan-MCMC Min -0.086 1.491 -0.054 0.367 -0.038 0.350
Mean -0.003 1.904 -9.130x10−4 0.550 -1.755x10−4 0.489
Max 0.091 2.399 0.046 0.773 0.039 0.607

RStan-VI Min -3.593 0.031 -4.077 0.005 -2.335 0.008
Mean 0.018 0.783 -0.011 0.369 -0.015 0.453
Max 0.731 1.862 0.201 4.837 0.185 3.155

Whithout datasets Min 0.032 0.341 -0.099 0.005 -0.080 0.055
warning messages Mean -0.071 0.779 0.023 0.325 0.026 0.428

Max 0.131 1.862 0.111 1.255 0.185 1.032

With multiple Min -0.089 0.965 -0.066 0.404 -0.071 0.389
initial values Mean -0.005 1.447 -0.011 0.631 -0.009 0.684

Max 0.108 1.964 0.045 1.013 0.075 1.090

INLA Min -0.086 1.482 -0.054 0.365 -0.038 0.349
Mean -0.003 1.892 -6.682x10−4 0.546 9.158x10−3 0.487
Max 0.091 2.383 0.046 0.770 0.039 0.610

packages. It can be observed that again, for the convolution model, the intercept is estimated somewhat higher when

estimation is done via R2BayesX-REML. Also some slight differences are seen for the variance parameters, as

compared to R2OpenBUGS, RStan-MCMC and INLA. Typically, it assigns more weight to spatial variability. For

CARBayes, while in the moderate case the range of the variance parameters is narrower than for R2OpenBUGS,

RStan-MCMC and INLA, the opposite occurs in the independent and strongly dependent settings. In the

independent setting, there is a tendency to get higher estimates for the spatially correlated random effect, as

compared to the other software packages; while in the strongly dependent case, it is the spatially unstructured

variance, which is higher. A similar effect is seen for the software package R2BayesX-MCMC, but to a lesser

extent, resulting in estimates in between CARBayes and the other MCMCmethods. As in the setting of the intrinsic

model, the parameter estimates based on RStan-VI are deviating quite a lot from the other packages. The use of

multiple initial values improves the intercept estimate and assigns more weight to spatial variability in all three

scenario’s.
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Table 10: Simulation study. Minimum (min), mean and maximum (max) value of the parameter estimates over
the analyses of the 200 created datasets with the convolution model. Scenario 1 denotes independence, scenario 2
moderate spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
Software
package µ τ2 σ2 µ τ2 σ2 µ τ2 σ2

CARBayes Min -0.084 0.008 0.229 -0.052 0.008 0.050 -0.041 0.226 0.007
Mean -0.001 0.228 0.318 -6.210x10−4 0.153 0.085 -0.002 0.387 0.034
Max 0.094 0.914 0.401 0.044 0.300 0.122 0.036 0.514 0.062

R2OpenBUGS Min -0.083 0.006 0.290 -0.052 0.008 0.054 -0.038 0.267 0.005
Mean -9.590x10−4 0.010 0.354 7.193x10−4 0.113 0.091 -4.954x10−5 0.439 0.010
Max 0.095 0.032 0.442 0.045 0.258 0.142 0.039 0.555 0.032

NIMBLE Min -0.086 0.004 0.286 -0.050 0.005 0.050 -0.038 0.283 0.004
Mean 0.002 0.011 0.354 8.739x10−4 0.113 0.091 -1.300x10−5 0.440 0.010
Max 0.095 0.044 0.443 0.046 0.272 0.140 0.039 0.566 0.034

R2BayesX Min -0.082 0.002 0.291 -0.053 0.006 0.050 -0.038 0.258 0.001
-MCMC Mean 0.001 0.009 0.356 2.937x10−4 0.123 0.090 -3.548x10−4 0.457 0.007

Max 0.097 0.063 0.441 0.045 0.274 0.140 0.039 0.581 0.044

R2BayesX Min -0.046 1.981x10−7 0.280 -0.029 0.0002 0.053 -0.018 0.248 1.028x10−6

-REML Mean 0.036 0.005 0.344 0.023 0.119 0.088 0.019 0.486 0.005
Max 0.129 0.077 0.421 0.066 0.247 0.135 0.06 0.734 0.043

RStan Min -0.083 0.007 0.288 -0.052 0.008 0.051 -0.039 0.267 0.005
-MCMC Mean 0.001 0.010 0.354 8.957x10−4 0.113 0.091 -5.395x10−5 0.442 0.009

Max 0.095 0.035 0.441 0.046 0.263 0.140 0.039 0.564 0.038

RStan-VI Min -1.977 0.001 0.011 -5.877 0.002 0.014 -5.164 0.001 0.007
Mean -0.116 0.230 0.365 -0.066 0.125 0.215 -0.122 0.132 0.270
Max 0.601 6.395 3.311 1.355 4.606 5.688 1.242 4.695 4.367

Without datasets Min -1.235 0.001 0.011 -1.284 0.002 0.015 -0.920 0.002 0.007
warning messages Mean -0.090 0.151 0.336 -0.047 0.061 0.165 -0.050 0.091 0.213

Max 0.222 1.256 1.495 0.213 0.636 1.666 0.186 0.926 1.730

With multiple Min -0.159 0.002 0.001 -0.111 0.002 0.001 -0.126 0.004 0.001
initial values Mean -0.019 0.216 0.261 -0.012 0.348 0.043 -0.010 0.590 0.022

Max 0.087 2.013 0.434 0.056 0.862 0.197 0.084 1.268 0.263

INLA Min -0.081 0.007 0.290 -0.052 0.008 0.053 -0.038 0.261 0.005
Mean 0.002 0.009 0.353 0.001 0.110 0.091 2.132x10−4 0.448 0.009
Max 0.097 0.034 0.439 0.046 0.252 0.140 0.040 0.568 0.038

4.2.3 The relative risks

Table 11 presents a summary of the overall absolute difference of the relative risk, over the 200 simulation runs.

R2OpenBUGS, NIMBLE and RStan-MCMC have in general the smallest absolute bias in the relative risks, closely

followed by R2BayesX (both MCMC and REML), INLA and CARBayes. CARBayes has, however, a somewhat

larger bias in some of the simulation runs in the independent setting. The software package RStan-VI has high

values of the overall absolute difference per created dataset. When leaving out results from datasets for which the

analysis gave a warning message, the mean absolute bias in the relative risks is greatly reduced, though still high

as compared to the other software packages. This indicates that the estimates from the software package RStan-VI

are less reliable, especially the ones with warning messages. By using multiple initial values, the overall absolute

difference further decreased, but is still slightly higher compared to the other software packages. Therefore, the use

of multiple intial values for the parameters is recommended.

On the other hand, we can look at the mean absolute difference per area. In appendix G, figures

presenting a summary of the absolute bias are given for three scenarios: a small, medium and large population. The

municipalities with a small, respectively large population, are the 50th municipalities with the smallest, respectively
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Table 11: Simulation study. Minimum (min), mean and maximum (max) value of the overall absolute difference
per simulated dataset over the analyses of the 200 created simulated runs. Scenario 1 is independence, scenario 2
moderate spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
Software package Intrinsic Convolution Intrinsic Convolution Intrinsic Convolution
CARBayes Min 0.200 0.189 0.166 0.159 0.158 0.161

Mean 0.228 0.218 0.182 0.178 0.177 0.177
Max 0.262 0.251 0.200 0.195 0.203 0.201

R2OpenBUGS Min 0.192 0.187 0.162 0.160 0.157 0.157
Mean 0.221 0.215 0.181 0.177 0.175 0.175
Max 0.245 0.241 0.198 0.195 0.199 0.199

NIMBLE Min 0.192 0.187 0.163 0.159 0.157 0.157
Mean 0.221 0.215 0.181 0.177 0.175 0.175
Max 0.245 0.241 0.198 0.195 0.199 0.200

R2BayesX-MCMC Min 0.195 0.189 0.164 0.160 0.158 0.158
Mean 0.222 0.217 0.182 0.178 0.176 0.176
Max 0.248 0.244 0.199 0.196 0.201 0.201

R2BayesX-REML Min 0.193 0.189 0.164 0.16 0.157 0.157
Mean 0.222 0.217 0.182 0.178 0.170 0.176
Max 0.246 0.242 0.198 0.196 0.201 0.204

RStan-MCMC Min 0.192 0.187 0.162 0.159 0.157 0.157
Mean 0.221 0.215 0.181 0.177 0.175 0.175
Max 0.245 0.241 0.198 0.195 0.199 0.199

RStan-VI Min 0.206 0.192 0.172 0.163 0.166 0.174
Mean 4.499x109 0.325 0.280 2445.748 0.247 0.330
Max 8.998x109 12.946 4.521 4.890x105 1.372 11.268

Without datasets Min 0.206 0.192 0.172 0.163 0.166 0.174
warning messages Mean 0.267 0.222 0.231 0.188 0.226 0.206

Max 0.391 0.254 0.340 0.253 0.407 0.256

With multiple Min 0.204 0.186 0.163 0.169 0.164 0.167
initial values Mean 0.227 0.218 0.185 0.187 0.185 0.191

Max 0.254 0.244 0.205 0.214 0.223 0.236

INLA Min 0.194 0.188 0.164 0.16 0.157 0.158
Mean 0.222 0.217 0.182 0.178 0.175 0.175
Max 0.246 0.243 0.198 0.195 0.200 0.200

largest, population. The median population of the municipalities with smallest, respectively medium and largest,

population are 852, 3158 and 16 607 respectively. Since the use of multiple initial values give better relative risk

estimates, only these results are presented for RStan-VI. Comparing CARBayes with R2OpenBUGS, there is a

tendency of increased bias in the relative risks, in highly populated areas. Results from R2OpenBUGS, NIMBLE

and RStan-MCMC are very similar, as well as the results from R2BayesX (MCMC and REML) and INLA. Results

from Stan-VI with multiple initial values give for some areas, typically small population areas, increased bias.

Table 12 shows the mean coverage of the relative risks, estimated as the percentage of the credible

intervals that contain the true relative risk. It also shows the percentage of estimated intervals that are at least

0.1 wider or narrower than the credible intervals coming from the software package R2OpenBUGS. While results
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Table 12: Simulation study. For the different software packages, the first line under the specific model gives the
coverage of the true relative risk. The second line under the specific model presents the percentage of estimated
credible intervals that are at least 0.1 wider than the credible intervals achieved from the software package
R2OpenBUGS. The third line under the specific model presents the percentage of estimated credible intervals that
are at least 0.1 narrower than the credible intervals achieved from the software package R2OpenBUGS. This is an
overview for the independence scenario.

Software package CARBayes R2OpenBUGS NIMBLE R2BayesX RStan RStan-VI RStan-VI INLA
Multiple

-MCMC -MCMC initial
values

Intrinsic model
Coverage (%) 93.76 94.52 94.56 94.32 94.48 89.63 94.38 94.42
Increased length of the 9.27 0.46 2.09 0.46 55.28 30.92 1.43
credible interval (%)
Decreased length of the 3.69 0.4 2.74 0.49 11.19 50.01 0.04
credible interval (%)
Convolution
Coverage (%) 95.31 94.96 94.94 95.17 94.9 95.93 94.43 94.83
Increased length of the 11.08 0.321 3.52 0.47 45.5 42.28 0.43
credible interval (%)
Decreased length of the 0.37 0.3 1.13 0.46 1.51 37.74 0.005
credible interval (%)

are presented for the independence scenario, the other scenarios lead to similar conclusions; only the independent

situation is a little more apparent. Except for one analysis with RStan-VI, all software packages have a high coverage

probability, close to the nominal level of 95%. However, CARBayes often has wider credible intervals for some of

the areas and thus is estimated with more uncertainty. When working with multiple initial values for RStan-VI, the

coverage increases.

5 Discussion

In this manuscript, several of the available software implementations in the context of spatial epidemiology are

compared. The investigated software packages were CARBayes, NIMBLE, R2OpenBUGS, R2BayesX, INLA and

RStan. Focus was on the most commonly used models in spatial epidemiology for spatially discrete count data,

namely the intrinsic and the convolution model. Software packages were examined in terms of differences in

implementations characteristics, the parameter and relative risk estimates. They were applied to the data about

diabetics in children and young adults in Belgium. Furthermore, simulation studies were undertaken to assess

the software performance in different settings. Through the study at the level of the municipalities, the following

conclusions can be drawn about the different software packages.

OpenBUGS is the standard (oldest) software package to do Bayesian disease mapping. The R package to

use this program from the R environment, R2OpenBUGS, shows good performance in terms of parameter estimates

and low mean absolute difference between true and estimated relative risks. On the other hand, it has the largest

computation time of all MCMC implementations. As an extension of the BUGS language, the R package NIMBLE

has very similar estimates as R2OpenBUGS, but preformances faster. The software package RStan with MCMC

methods is also faster as compared to R2OpenBUGS and similar in time as NIMBLE. It gives stable estimates,

very similar to R2OpenBUGS.
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CARBayes is an R package that also uses MCMC updates for estimates. Although it is a user-friendly

software packages, some differences in comparison to the software packages R2OpenBUGS, NIMBLE, RStan with

MCMC techniques and INLA occur. From the simulation study, we noticed slight differences in variance estimates

for the random effects of the convolutionmodel compared to R2OpenBUGS,NIMBLE, RStanwithMCMCmethods

and INLA. In addition, the software package has slightly more difficulties with estimating the relative risks in large

population areas. Moreover, the credible intervals of the relative risks resulting from CARBayes are wider.

The software package R2BayesXwithMCMC techniques gives somewhat different results. This could be

noticed in the data analysis: R2BayesX with MCMC methods assigns more weight to spatial variability, fluctuates

between being less and more efficient and reports some other exceedance probabilities. Further, in the simulation

study, the parameter estimates are in between those coming from CARBayes and OpenBUGS.

Besides MCMC implementations, approximation methods were considered. One of these is INLA.

Although INLA uses an approximation to estimate parameters and relative risks, it has very good performances and

it gives similar results as compared to R2OpenBUGS, NIMBLE and RStan with MCMC techniques. Moreover, it

is the fastest implementation technique for the considered disease mapping models.

The software packages R2BayesX and RStan offer, besides MCMC techniques, also approximation

methods. We do not recommend the use of the software package R2BayesX based on mixed model methodology

and RStan via variational inference in this context of disease mapping models. R2BayesX based on mixed model

methodology has the longest running time and shows bias in parameter estimates compared to R2OpenBUGS, RStan

with MCMC techniques and INLA. The software package RStan via variational inference uses a fast approximation

method. However, it results in deviant parameter estimates and gives poor relative risk estimates as seen for the

mean absolute difference comparison technique used in the simulation study. Working with multiple initial values

will improve the relative risks estimates, but it will also give loss to time gain compared to the other software

packages. These conclusions are based on a geographic region with many subdivided areas. To see if the number

of subdivided areas has an impact on the performance of the different software packages, two additional simulation

studies were conducted, one with less subdivided areas and one with more. In the situation with less subdivided

areas, the computation time seriously decrease. Only the software package RStan has almost no gain in computation

time. However, the performance of software packages in terms of computation time depends on the characteristics

of the data like for example the number of subdivide, the computer specifications, ... More importantly, the

performance in terms of parameters and relative risks estimates leads to similar conclusion. When the number

of subdivided areas seriously increase, some problems arise. The computational time, for example, exponential

increases. Therefore, further investigation is needed to compare the performance of the software packages for a

huge amount of subdivided areas. These results can, of course, not be generalized to other contexts.

The software packages were compared for parameter and relative risk estimates. Future work will involve

the examination on how the different software packages do model comparison. This study is also limited to the most

commonly used spatial models. It would be interesting to conduct a similar study with spatio-temporal models.
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Appendix A. Software codes

• CARBayes

formula <- Observed ~ offset(log(Expected))

adjn <- poly2nb(map.shp, queen=TRUE)

W <- nb2mat(adjn,style="B")

The code of the intrinsic model

S.CARleroux(formula=formula,family="poisson",W=W,burnin=burnin,n.sample=n.sample,

fix.rho=TRUE,rho=1)

The code of the convolution model

S.CARbym(formula=formula,family="poisson",W=W,burnin=burnin,n.sample=n.sample)

• R2OpenBUGS

adjn <- poly2nb(map.shp, queen=TRUE)

adj=unlist(adjn)

num=card(adjn)

sumNumNeigh=sum(card(adjn))

The code of the intrinsic model

model {

for (k in 1 : n_area) {

Y[k] ~ dpois(b[k])

log(b[k]) <- log(E[k]) + mu + phi[k]

RR[k] <- exp(mu+phi[k]) # Area-specific relative risks

# Exeedance probability

PP1[k] <- step(RR[k]-1+eps)

PP2[k] <- step(RR[k]-2+eps) }

eps <- 1.0E-6
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# CAR prior distribution for random effects

phi[1:n_area] ~ car.normal(adj[],weights[],num[],pr)

for(i in 1:sumNumNeigh)

{ weights[i] <- 1 }

# Other priors and hyperpriors:

mu ~ dflat()

pr ~ dgamma(1,0.01) # prior on precision

tau2 <- 1/pr }

The code of the convolution model

model {

for (k in 1 : n_area) {

Y[k] ~ dpois(b[k])

log(b[k]) <- log(E[k]) + mu + phi[k] + psi[k]

RR[k] <- exp(mu+phi[k]+psi[k]) # Area-specific relative risks

psi[k] ~ dnorm(0,sigma.pr) # Unstructured random effects

# Exeedance probability

PP1[k] <- step(RR[k]-1+eps)

PP2[k] <- step(RR[k]-2+eps) }

eps <- 1.0E-6

# CAR prior distribution for spatial random effects

phi[1:n_area] ~ car.normal(adj[],weights[],num[],pr.tau)

for(i in 1:sumNumNeigh)

{ weights[i] <- 1 }

# Other priors and hyperpriors:

mu ~ dflat()

pr.tau ~ dgamma(1,0.01) # prior on precision of unstructured random effects

tau2 <- 1/pr.tau

sigma.pr ~ dgamma(1,0.01) # prior on precision of spatial random effects

sigma2 <- 1/sigma.pr }
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• NIMBLE

adjn <- poly2nb(map.shp, queen=TRUE)

adj=unlist(adjn)

num=card(adjn)

sumNumNeigh=sum(card(adjn))

The code of the intrinsic model

nimbleCode({

for (k in 1 : n_area) {

Y[k] ~ dpois(b[k])

log(b[k]) <- log(E[k]) + mu + phi[k]

RR[k] <- exp(mu+phi[k]) # Area-specific relative risks

# Exeedance RR

PP1[k] <- step(RR[k]-1+eps)

PP2[k] <- step(RR[k]-2+eps) }

eps <- 1.0E-6

# CAR prior distribution for random effects

phi[1:n_area] ~ dcar_normal(adj[1:sumNumNeigh],weights[1:sumNumNeigh],

num[1:n_area], pr, zero_mean=1)

for(i in 1:sumNumNeigh)

{ weights[i] <- 1 }

#other priors:

mu ~ dflat()

pr ~ dgamma(1,0.01) # prior on precision

tau2 <- 1/pr })

The code of the convolution model

nimbleCode({

for (k in 1 : n_area) {

Y[k] ~ dpois(b[k])

log(b[k]) <- log(E[k]) + mu + phi[k] + psi[k]
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RR[k] <- exp(mu+phi[k]+psi[k]) # Area-specific relative risks

psi[k] ~ dnorm(0,sigma.pr) # Unstructured random effects

# Exeedance RR

PP1[k] <- step(RR[k]-1+eps)

PP2[k] <- step(RR[k]-2+eps) }

eps <- 1.0E-6

# CAR prior distribution for spatial random effects

phi[1:n_area] ~ dcar_normal(adj[1:sumNumNeigh],weights[1:sumNumNeigh],

num[1:n_area], tau.pr, zero_mean=1)

for(i in 1:sumNumNeigh)

{ weights[i] <- 1 }

#other priors:

mu ~ dflat()

tau.pr ~ dgamma(1,0.01) # prior on precision of unstructured random effects

sigma.pr ~ dgamma(1,0.01) # prior on precision of spatial random effects

tau2 <- 1/tau.pr

sigma2 <- 1/sigma.pr })

• R2BayesX

adjn <- poly2nb(map.shp, queen=TRUE)

reg <- nb2gra(adjn)

reg.struct <- as.numeric(rownames(reg))

data <- data.frame(reg.struct,Y,E,reg.struct)

The code of the intrinsic model

formula_intr <- Y ~ sx(reg.struct,bs="spatial",map=reg)

bayesx(formula_intr,family="poisson",method="..", data=data,offset=log(data$E))

The code of the convolution model

formula_conv <- Y ~ sx(reg.struct,bs="random") + sx(reg.struct,bs="spatial",map=reg)

bayesx(formula_conv,family="poisson",method="..", data=data,offset=log(data$E))

method=“MCMC” or “REML” depending on the estimation technique
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• RStan

adjn <- poly2nb(map.shp, queen=TRUE)

adj=unlist(adjn)

num=card(adjn)

n_edges=length(adj)/2

node1=rep(NA,n_edges)

node2=rep(NA,n_edges)

iAdj=0

Edge=0

for (i in 1:n_area) {

for (j in 1:num[i]) {

iAdj = iAdj + 1

if (i < adj[iAdj]) {

Edge = Edge + 1

node1[Edge] = i

node2[Edge] = adj[iAdj] } } }

The code of the intrinsic model

data {

int<lower=0> n_area; // The number of areas

int<lower=0> n_edges;

int<lower=1, upper=n_area> node1[n_edges]; // node1[i] adjacent to node2[i]

int<lower=1, upper=n_area> node2[n_edges]; // and node1[i] < node2[i]

int<lower=0> Y[n_area]; // count outcomes

vector<lower=0>[n_area] E; // expected numbers

}

transformed data {

vector[n_area] log_E = log(E); }

parameters {

real mu; // intercept

real<lower=0> pr; // precision of spatial effects
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vector[n_area] phi; }

transformed parameters {

real<lower=0> tau=inv(sqrt(pr)); // convert precision to standard deviation

}

model {

Y ~ poisson_log(log_E + mu + phi * tau);

target += -0.5 * dot_self(phi[node1] - phi[node2]);

mu ~ normal(0.0, 320);

pr ~ gamma(1.0,0.01);

// soft sum-to-zero constraint on phi)

sum(phi) ~ normal(0, 0.001 * n_area); // equivalent to mean(phi) ~ normal(0,0.001)

}

generated quantities {

vector[n_area] eta = mu + phi * tau;

vector[n_area] RE = phi * tau; // Relative risks

vector[n_area] RR = exp(eta);

real<lower=0> tau2 = square(tau); }

The code of the convolution model

data {

int<lower=0> n_area; // The number of areas

int<lower=0> n_edges;

int<lower=1, upper=n_area> node1[n_edges]; // node1[i] adjacent to node2[i]

int<lower=1, upper=n_area> node2[n_edges]; // and node1[i] < node2[i]

int<lower=0> Y[n_area]; // count outcomes

vector<lower=0>[n_area] E; // expected numbers

}

transformed data {

vector[n_area] log_E = log(E); }
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parameters {

real mu; // intercept

real<lower=0> pr_psi; // precision of heterogeneous effects

real<lower=0> pr_phi; // precision of spatial effects

vector[n_area] psi; // heterogeneous effects

vector[n_area] phi; // spatial effects

}

transformed parameters {

real<lower=0> sigma = inv(sqrt(pr_psi)); // convert precision to standard deviation

real<lower=0> tau = inv(sqrt(pr_phi)); // convert precision to standard deviation

}

model {

Y ~ poisson_log(log_E + mu + phi * tau + psi * sigma);

target += -0.5 * dot_self(phi[node1] - phi[node2]);

mu ~ normal(0.0, 320);

// soft sum-to-zero constraint on phi)

sum(phi) ~ normal(0, 0.001 * n_area); // equivalent to mean(phi) ~ normal(0,0.001)

pr_psi ~ gamma(1.0, 0.01);

pr_phi ~ gamma(1, 0.01);

psi ~ normal(0,1); }

generated quantities {

vector[n_area] eta = mu + phi * tau + psi * sigma;

vector[n_area] RR = exp(eta); // Relative risks

vector[n_area] RE = phi * tau + psi * sigma;

real<lower=0> tau2=1/pr_phi;

real<lower=0> sigma2=1/pr_psi; }

• INLA

reg.struct.inla <- seq(1,n_area)

adjn <- poly2nb(map.shp, queen=TRUE)
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nb2INLA("adjn.inla", adjn)

data <- data.frame(reg.struct.inla,Y,E,reg.struct.inla)

The code of the intrinsic model

formula_intr=Y~f(reg.struct.inla, model="besag",graph="adjn.inla")

inla(formula_intr,control.inla = list(strategy = "simplified.laplace"),family="poisson",

E=data$E, data=data)

The code of the convolution model

formula_conv=Y~f(reg.struct.inla, model="bym",graph="adjn.inla")

inla(formula_conv,control.inla = list(strategy = "simplified.laplace"),family="poisson",

E=data$E, data=data)

Appendix B. Agreement statistic

DensParamSoftw1 <- density(MCMCsamplesParamSoftw1,

from=min(MCMCsamplesParamSoftw1, MCMCsamplesParamSoftw2),

to=max(MCMCsamplesParamSoftw1, MCMCsamplesParamSoftw2),n=2^(16))

DensParamSoftw2 <- density(MCMCsamplesParamSoftw2,

from=min(MCMCsamplesParamSoftw1, MCMCsamplesParamSoftw2),

to=max(MCMCsamplesParamSoftw1, MCMCsamplesParamSoftw2),n=2^(16))

AbsDiffDens = abs(DensParamSoftw1$y- DensParamSoftw2$y)

StepsizeDens=(max(DensParamSoftw1$x)-min(DensParamSoftw1$x))/(length(DensParamSoftw1$x)-1)

AgreementParam=1-0.5*sum(AbsDiffDens*StepsizeDens)
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Appendix C. Relative risks children and young adult diabetics study

Figure 6: Children and young adult diabetics study. Map of the relative risks estimates for the different software
packages and for the intrinsic model.
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Figure 7: Children and young adult diabetics study. Map of the relative risks estimates for the different software
packages and for the convolution model.
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Appendix D. Random effects simulation study.

Figure 8: Simulation study. Map of one of the simulated random effects under the three different scenarios: spatial
independence, moderate spatial dependence and strong spatial dependence.
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Appendix E. Multiple initial values RStan-VI

In this appendix, the results of the use of particular multiple initial values for the parameters in the analysis with

the software package RStan-VI are given. The parameter estimates in the previous analysis for which the ELBO

was maximized were chosen as initial values. Table 13 and 14 present the minimum, mean and maximum of the

parameter estimates of the intrinsic and convolution model, respectively, for the three situations (independence,

moderate and strong spatial dependence). A summary of the overall absolute difference of the relative risks, over

the 200 simulation runs, is given in table 15.

Table 13: Simulation study. Minimum (min), mean and maximum (max) value of the parameter estimates over
the analyses of the 200 created datasets with the intrinsic model. Scenario 1 is independence, scenario 2 moderate
spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
µ τ2 µ τ2 µ τ2

Min -0.110 0.880 -0.086 0.389 -0.078 0.319
Mean -0.007 1.424 -0.017 0.626 -0.009 0.668
Max 0.088 1.921 0.058 1.053 0.069 1.421

Table 14: Simulation study. Minimum (min), mean and maximum (max) value of the parameter estimates over
the analyses of the 200 created datasets with the convolution model. Scenario 1 denotes independence, scenario 2
moderate spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
µ τ2 σ2 µ τ2 σ2 µ τ2 σ2

Min -0.133 0.002 0.008 -0.087 0.003 0.001 -0.081 0.018 0.001
Mean -0.027 0.124 0.282 -0.020 0.386 0.037 -0.014 0.551 0.022
Max 0.076 1.507 0.450 0.045 0.828 0.169 0.072 1.095 0.257
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Table 15: Simulation study. Minimum (min), mean and maximum (max) value of the overall absolute difference
per simulated dataset over the analyses of the 200 created simulated runs. Scenario 1 is independence, scenario 2
moderate spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
Intrinsic Convolution Intrinsic Convolution Intrinsic Convolution

Min 0.2 0.185 0.165 0.163 0.164 0.163
Mean 0.229 0.218 0.186 0.187 0.185 0.191
Max 0.282 0.247 0.216 0.225 0.22 0.227

Appendix F. Simulation study districts.

As a means to investigate software performance for datasets of small sizes, we present a simulation study in which

43 Belgian districts rather than 589 municipalities are the spatial entities of interest. The expected values are

calculated based on the age, gender, population size of a district in comparison to the rate of people having diabetic

in the respectively age, gender category of Belgium. The study design is identical to the simulation study with

municipalities in Belgium. Figure 9 shows one of simulated random effects under the three different scenarios,

which were defined as independence, moderate spatial dependence and strong spatial dependence. No convergence

problems were detected, except for the software package RStan. For 456 of the 600 simulation runs, RStan-MCMC

stated that a number of transitions after warm-up had exceeded the maximum treedepth. For two analyses of the

convolution model in the independent scencario and one analysis in the strong spatial dependence scenario, RStan-

MCMC reported that there were a number of divergent transitions after warm-up. As a solution, Stan Development

(2018c) suggested to increase the argument adapt_delta above 0.8. This ensures that RStan takes smaller steps,

which could possible avoid divergence problems, at the cost of computational efficiency. For 1024 of the 1200

performed analyses with RStan-VI, the algorithm may not have converged.

F.1. Computation time

Table 16 presents the mean time, together with the standard deviation, over the 600 simulations needed to run the

model with a specific software package. Except for RStan, there is a huge time gain when the number of subdivided

Figure 9: Simulation study districts. Map of one of the simulated random effects under the three different scenarios:
spatial independence, moderate spatial dependence and strong spatial dependence.
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Table 16: Simulation study districts. Mean time in seconds (standard deviation) to run the model.

Software CARBayes R2OpenBUGS NIMBLE R2BayesX R2BayesX RStan RStan INLA
package -MCMC -REML -MCMC -VI

Model
Intrinsic 2 (0.1) 13 (0.9) 39 (8.4) 1 (0.1) 1 (0.1) 125 (25.3) 107 (29.0) 3 (1.0)
Convolution 3 (0.1) 18 (1.2) 32 (2.8) 1 (0.1) 1 (1.1) 144 (33.6) 92 (28.8) 3 (2.1)

areas decreases. Similarly as for the simulation study of the municipalities in Belgium, the software packages

CARBayes, R2BayesX-MCMC and INLA have the shortest computation time. For this simulation study, the

approximation method R2BayesX-REML also has one of the smallest computation times. In contrast, the software

package R2OpenBUGS is faster than NIMBLE and RStan (both MCMC as VI) has the longest computation time.

F.2. Parameter estimation

The minimum, mean, and maximum of the parameter estimates of the intrinsic and convolution model, for the

three scenarios, are shown in table 17 and 18. Due to an infinite precision for the random noise component of the

random effects of the convolution model from INLA in the strong spatial dependence scenario, one analysis of the

convolution model from INLA is not taken into account. In line with the simulation study on the municipality scale,

the software packages R2OpenBUGS, NIMBLE, RStan-MCMC and INLA show similar results and the estimates

are in line with the expected values for the corresponding scenario. The software package CARBayes has slightly

different estimates for the variance parameters as compared to R2OpenBUGS, NIMBLE, RStan-MCMC and INLA.

For example, it assigns more weight to spatial variability in the independence and the moderate spatial dependence

scenario for the convolution parameter estimates. R2BayesX-MCMC also gives somewhat deviant estimates, as it

assigns more weight to spatial variability for the intrinsic parameter estimates in the independence and moderate

spatial dependence scenario. Bias in parameter estimates can also be noticed for the approximation method

R2BayesX-REML. Especially in the strong spatial dependence scenario, very large spatial variance estimates for

the convolution model are reported. Furthermore, the parameter estimates based on RStan-VI differ considerably

from the other packages.

F.3. Relative risks

A summary of the overall absolute difference of relative risks, over the 200 simulation runs, is presented in table

19. Again, similar conclusions as seen in the simulation study at the level of the municipalities can be made for the

relative risk estimates. The software package R2OpenBUGS, NIMBLE, RStan-MCMC, R2BayesX (both MCMC

and REML) and INLA have the smallest absolute bias in the relative risks. Large bias is seen in some of the

simulation runs from CARBayes. Furthermore, RStan-VI has higher values of the overall absolute difference per

created dataset.
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Table 17: Simulation study districts. Minimum (min), mean and maximum (max) value of the parameter estimates
over the analyses of the 200 created datasets with the intrinsic model. Scenario 1 denotes independence, scenario
2 moderate spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
Software package µ τ2 µ τ2 µ τ2

CARBayes Min -0.264 0.712 -0.132 0.251 -0.0349 0.215
Mean 0.008 1.664 -0.003 0.528 0.012 0.485
Max 0.242 3.045 0.1019 0.997 0.064 0.784

R2OpenBUGS Min -0.264 0.696 -0.131 0.239 0.003 0.201
Mean 0.003 1.626 -0.004 0.512 0.011 0.466
Max 0.202 3.013 0.1013 0.927 0.023 0.754

NIMBLE Min -0.265 0.694 -0.132 0.239 0.003 0.202
Mean 0.003 1.625 -0.004 0.512 0.011 0.466
Max 0.202 3.009 0.101 0.935 0.023 0.761

R2BayesX-MCMC Min -0.264 0.726 -0.132 0.255 0.002 0.213
Mean 0.002 1.706 -0.005 0.540 0.011 0.492
Max 0.202 3.104 0.102 0.957 0.0232 0.795

R2BayesX-REML Min -0.259 0.717 -0.128 0.249 0.006 0.209
Mean 0.006 1.672 -0.0015 0.529 0.014 0.481
Max 0.205 3.089 0.104 0.955 0.026 0.779

RStan-MCMC Min -0.265 0.695 -0.131 0.237 0.003 0.203
Mean 0.003 1.629 -0.004 0.512 0.011 0.465
Max 0.202 2.995 0.101 0.912 0.022 0.742

RStan-VI Min -6.861 4.099 x10−4 -1.421 3.424 x10−4 -2.857 5.897x10−4

Mean -0.012 0.596 0.009 0.250 0.026 0.299
Max 1.5621 3.861 0.790 2.047 1.179 4.559

INLA Min -0.264 0.694 -0.131 0.238 0.003 0.201
Mean 0.003 1.624 -0.004 0.511 0.011 0.465
Max 0.202 3.008 0.101 0.927 0.023 0.753

Table 18: Simulation study districts. Minimum (min), mean and maximum (max) value of the parameter estimates
over the analyses of the 200 created datasets with the convolutionmodel. Scenario 1 denotes independence, scenario
2 moderate spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
Software
package µ τ2 σ2 µ τ2 σ2 µ τ2 σ2

CARBayes Min -0.269 0.543 0.062 -0.136 0.139 0.031 -0.049 0.174 0.025
Mean 0.004 1.228 0.210 -0.006 0.4921 0.091 0.009 0.554 0.090
Max 0.230 2.750 0.447 0.098 1.514 0.419 0.033 3.396 0.623

R2OpenBUGS Min -0.247 0.009 0.049 -0.129 0.009 0.021 0.003 0.010 0.008
Mean 0.005 0.034 0.314 -0.004 0.084 0.087 0.012 0.304 0.033
Max 0.2056 1.04 0.542 0.104 0.477 0.181 0.021 0.655 0.150

NIMBLE Min -0.265 0.008 0.021 -0.126 0.008 0.016 -4.708x10−4 0.009 0.008
Mean 0.007 0.037 0.316 -0.004 0.081 0.089 0.011 0.304 0.035
Max 0.259 1.226 0.540 0.096 0.492 0.198 0.031 0.664 0.166

R2BayesX Min -0.263 0.005 0.107 -0.132 0.005 0.005 0.003 0.004 0.003
-MCMC Mean 0.003 0.057 0.326 -0.004 0.118 0.086 0.011 0.345 0.031

Max 0.204 0.895 0.566 0.100 0.538 0.173 0.022 0.675 0.180

R2BayesX Min -0.257 1.870x10−7 5.574x10−4 -0.128 1.240x10−6 5.212x10−4 -0.012 1.404x10−4 1.870x10−3

-REML Mean 0.007 0.058 0.337 -8.404x10−4 0.121 0.087 0.014 25.337 0.032
Max 0.207 1.173 0.621 0.103 0.546 0.210 0.023 4929.460 1.565

RStan Min -0.263 0.011 0.067 -0.132 0.010 0.013 0.003 0.011 0.007
-MCMC Mean 0.004 0.024 0.318 -0.004 0.084 0.087 0.011 0.318 0.029

Max 0.203 0.650 0.534 0.100 0.479 0.179 0.023 0.657 0.146

RStan-VI Min -5.836 2.620x10−4 0.002 -6.022 0.002 0.002 -5.202 0.003 0.001
Mean -0.258 0.076 0.491 -0.256 0.041 0.726 -0.214 0.112 0.279
Max 1.059 3.419 12.927 0.250 2.189 89.430 0.995 5.211 4.381

INLA Min -0.261 0.011 0.154 -0.131 0.010 0.011 0.003 0.011 0.007
Mean 0.004 0.016 0.329 -0.003 0.075 0.093 0.012 0.322 0.033
Max 0.204 0.114 0.541 0.100 0.558 0.190 0.023 0.678 0.181
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Table 19: Simulation study districts. Minimum (min), mean and maximum (max) value of the overall absolute
difference per simulated dataset over the analyses of the 200 created simulated runs. Scenario 1 is independence,
scenario 2 moderate spatial dependence and scenario 3 strong spatial dependence.

Scenario 1 2 3
Software package Intrinsic Convolution Intrinsic Convolution Intrinsic Convolution
CARBayes Min 0.051 0.057 0.046 0.044 0.051 0.056

Mean 0.118 0.105 0.060 0.063 0.073 0.074
Max 0.281 0.323 0.134 0.184 0.249 0.194

R2OpenBUGS Min 0.049 0.048 0.044 0.043 0.049 0.049
Mean 0.063 0.063 0.054 0.054 0.060 0.060
Max 0.080 0.079 0.071 0.070 0.074 0.073

NIMBLE Min 0.048 0.048 0.044 0.043 0.049 0.049
Mean 0.063 0.063 0.054 0.054 0.060 0.060
Max 0.080 0.080 0.071 0.069 0.074 0.073

R2BayesX-MCMC Min 0.049 0.048 0.043 0.043 0.050 0.048
Mean 0.063 0.063 0.054 0.054 0.060 0.060
Max 0.080 0.080 0.069 0.069 0.073 0.073

R2BayesX-REML Min 0.049 0.048 0.043 0.043 0.050 0.049
Mean 0.063 0.063 0.054 0.054 0.060 0.062
Max 0.080 0.080 0.070 0.068 0.073 0.479

RStan-MCMC Min 0.049 0.048 0.044 0.043 0.049 0.049
Mean 0.063 0.063 0.054 0.054 0.060 0.060
Max 0.080 0.079 0.071 0.070 0.074 0.074

Rstan-VI Min 0.053 0.048 0.048 0.046 0.057 0.053
Mean 0.367 0.224 0.222 0.096 0.347 3.700x104

Max 24.534 16.803 1.370 1.498 21.513 7.399x106

INLA Min 0.049 0.048 0.043 0.043 0.050 0.049
Mean 0.063 0.063 0.054 0.054 0.060 0.060
Max 0.081 0.080 0.071 0.069 0.074 0.073
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Appendix G. Absolute bias per area.

Figure 10: Simulation study. Box plots of the absolute difference per area for a small, medium and large
population in the independence situation. The top three rows correspond to the intrinsic model, the bottom three to
the convolution model.
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Figure 11: Simulation study. Box plots of the absolute difference per area for a small, medium and large population
in the moderate dependence situation. The top three rows correspond to the intrinsic model, the bottom three to
the convolution model.
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Figure 12: Simulation study. Box plots of the absolute difference per area for a small, medium and large population
in the strong dependence situation. The top three rows correspond to the intrinsic model, the bottom three to the
convolution model.
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