
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Fully Generic Queries: Open Problems and Some Partial Answers

Peer-reviewed author version

SURINX, Dimitri; VAN DEN BUSSCHE, Jan & VIRTEMA, Jonni (2019) Fully Generic

Queries: Open Problems and Some Partial Answers. In: Schewe, Klaus-Dieter;

Kumar Singh, Neeraj (Ed.). Model and Data Engineering, NATURE PUBLISHING

GROUP, p. 20 -31..

DOI: 10.1007/978-3-030-32065-2_2

Handle: http://hdl.handle.net/1942/30375

Fully Generic Queries: Open Problems and
Some Partial Answers

Dimitri Surinx, Jan Van den Bussche[0000−0003−0072−3252], and Jonni
Virtema[0000−0002−1582−3718]

Hasselt University
jan.vandenbussche@uhasselt.be

Abstract. The class of fully generic queries on complex objects was
introduced by Beeri, Milo and Ta-Shma in 1997. Such queries are still
relevant as they capture the class of manipulations on nested big data,
where output can be generated without a need for looking in detail at,
or comparing, the atomic data elements. Unfortunately, the class of fully
generic queries is rather poorly understood. We review the big open
questions and formulate some partial answers.

1 Introduction

For the task of querying a database, database systems offer a database query
language. Unlike a general-purpose programming language, a database query
language allows us to formulate queries on the logical level of the data model
on which the database system is based. Working on that higher, logical level
has many advantages. First, programs can be correct independently of how the
data is physically stored. Moreover, it makes it easier for the database query
processor to recognize “tractable” parts of queries that can be processed more
efficiently. Tractability here can mean many things: a selection on an attribute
for which an index is available; a join operation for which a specific algorithm
can be used; and so on [17].

Historically, the logical nature of database queries was explicated indepen-
dently by several researchers [8, 23, 5]. In the relational data model, a database
instance I is viewed as a relational structure. Moreover, a query Q may involve
additional predicates and functions on the atomic values that can appear in I.
For example, consider the following SQL query over relations R(A,B) and S(C):

select A from R, S where B <= C

This query can be applied to instances that are logical structures involving, in
addition to the database relations R and S, a less-than relation ≤.

The logical nature of queries then amounts to the general principle that a
database query commutes with permutations of the atomic values that preserve
all the relations over which the query is formulated. Such permutations are
nothing else than isomorphisms of the relational structures. Thus, concisely, the
principle can be stated as follows: if Q is a query, I is an instance, and f is

2 D. Surinx, J. Van den Bussche, J. Virtema

an isomorphism, then Q(f(I)) = f(Q(I)). Chandra and Harel [16] later called
this principle “the consistency criterion” for database queries. The principle
became finally known under the name genericity [20, 2]. Genericity can be easily
adapted to data models other than the relational model, simply by adopting the
appropriate notion of an isomorphism. Interestingly, genericity coincides with
the definition Tarski proposed in 1966 of “logical notions” [25].

Commuting with isomorphisms is thus a property expected from all database
queries, even the most complex ones. Simpler queries, however, may have stronger
commutation properties. Well known, for example, is the class of queries that
can be formulated without invoking the equality predicate; these queries can
be characterized as those commuting not only with all isomorphisms, but more
generally with all strong surjective homomorphisms [15].1

One the most stringent commutation property of queries one can consider
was proposed by Beeri, Milo and Ta-Shma under the name of full genericity [9].
Recall that a query Q is generic in the classical sense if, for every instance I and
permutation f of atomic values, we have Q(f(I)) = f(Q(I)). Now a query Q is
called fully generic if the same holds for all functions f from atomic values to
atomic values; so f does not need to be a permutation.

In order to get a feeling for full genericity, let us consider the operations of
the relational algebra. Union, projection and cartesian product are fully generic,
but selection, intersection and difference are not. More generally, one can develop
the intuition that the fully generic database queries are those that combine or
restructure the data without really having to look at the concrete data values. In
particular, a fully generic query is not sensitive to the presence of duplicates in
the input. Fully generic queries may produce a lot of output, but the amount of
processing relative to the output size is typically minimal. For example, consider
a Big Data setting, where data is distributed over different compute nodes. When
performing a join, we need to ensure that joinable tuples reside on a common
node [4]. For fully generic queries, however, no such requirement seems to be
necessary.

A form of full genericity is also found in provenance queries, which track or
propagate provenance annotations from the input to the output. Semantic char-
acterizations of provenance queries [12] involve the property that annotations
can be copied (or omitted), but are not to be compared with each other. Such a
property is similar to full genericity, but applied only to the annotations.

In the relational data model, full genericity is a rather poor notion. Indeed,
if we fix the input database schema and the output relation schema, there are
only finitely many different fully generic queries. All we can do is form cartesian
products of projections of database relations that produce results of the right
output width, and take unions of these. When moving to the complex-object
data model, however, the situation changes.

1 Madelaine [22] has given a complete overview of the classes of morphisms correspond-
ing to classes of queries expressible in different fragments of first-order logic, formed
by the possible combinations of allowed features among existential quantification,
universal quantification, conjunction, disjunction, negation, and equality.

Fully Generic Queries 3

The complex-object data model is a generalization of the relational data
model. A relational database instance is essentially a tuple of relations, where
each relation is a set of tuples of atomic values. The width of the database
instance, i.e., the number of relations, and the widths of these relations, are
given by the database schema. Note that the way tuple and set formations can be
nested is completely fixed in the relational model: we have a tuple of sets of tuples
of atomic values, nothing more, nothing less. Now moving to the complex-object
model [2], we are allowed arbitrary combinations of tuple and set formation.
Complex objects have been around since the early 1980s, and remain relevant
for modern database systems. For example, the data model underlying Apache
Spark [26, 7] is essentially that of complex objects, and also JSON databases
such as MongoDB essentially store complex objects [11].

When thus considering queries over complex objects, where the types of in-
puts and outputs can be nested more and more deeply, the class of fully generic
queries grows substantially. For a simple example, let k be a natural number.
Given as input a set of atomic values, we may output the set of all subsets of the
input having at most k elements. Each value of k gives rise to a different query,
and all of these queries are fully generic. Note that all these queries have the
same signature {d} → {{d}}, i.e., they take as input a set of atomic values and
they output a set of sets of atomic values (the symbol d stands for the atomic
value type).

The goal of this paper is to draw attention to the fascinating class of fully
generic queries. We find this class indeed fascinating because, while full genericity
is a very stringent requirement, we still do not understand it well, especially when
input and output types are deeply nested. What exactly are the fully generic
queries? Some very basic questions about them remain unanswered:

1. Is every fully generic query effectively computable?
2. Can we effectively decide, given an input–output pair (A,B) of complex

objects, whether there exists a fully generic query that maps A to B?
3. Is there a query language that captures the fully generic queries? (I.e., a

language in which only fully generic queries can be expressed, but that is also
complete, in that every computable fully generic query can be expressed.)

In contrast, the corresponding questions for classical generic queries have readily
available answers: obviously negative for the first; affirmative for the second (just
check if every automorphism of A is also an automorphism of B [8, 23]); and again
affirmative for the third [16].

Question 3 originates from Beeri, Milo and Ta-Shma [9], who proposed as
a candidate language the classical powerset algebra for complex objects [21, 1],
from which we remove equality testing, and to which we add the intriguing
operator one-each. Ta-Shma shows in her PhD thesis [24] that the resulting
language, called L, indeed captures the fully generic queries in two special but
interesting cases: the case where the output is a flat relation, and the case where
the signature is {{d}} → {{d}}. Unfortunately, the given arguments are hard
to verify. We will be able to offer a more transparent proof of the first result,
and also of the special case {d} → {{d}}. The language L also prompts various

4 D. Surinx, J. Van den Bussche, J. Virtema

further interesting questions, some already posed by Ta-Shma, which will be
expounded below.

2 Complex Objects, Queries, and Genericity

In order to discuss the issues presented in the Introduction more formally, we
start by defining the complex-object data model, the notion of a query, and the
notions of classical and full genericity.

A type is an expression τ conforming to the following grammar:

τ ::= d | [τ, . . . , τ] | {τ},

where d is a fixed symbol denoting the atomic value type. So, a type is either d,
a tuple of types, or of the form {τ} with τ a type.

We assume, as given, a countably infinite domain dom of atomic values, or
atoms for short. In examples, we will often use natural numbers for atoms. The
set of objects is the smallest set such that

– every atom is an object;
– every tuple [o1, . . . , ok] of objects is an object; and
– every finite set {o1, . . . , on} of objects is an object.

We will work only with well-typed objects. Informally, these are objects
where in every set, all its elements are of the same kind. For example, the set
{1, [2], [1, 2], {1, 2, 3}} is very badly typed: its four elements are all of different
kinds (an atom, a one-tuple, a two-tuple, and a set of atoms, respectively). For-
mally, an object o is said to be of type τ if one of the following holds:

– τ is d and o is an atom;
– τ is a tuple type [τ1, . . . , τk] and o is a k-tuple [o1, . . . , ok] with oi of type τi

for i = 1, . . . , k;
– τ is a set type {τ ′} and o is a finite set of objects of type τ ′.

We will denote the set of objects of type τ by JτK.
For types τin and τout, we now define a query of signature τin → τout, quite

simply, to be a total function q from JτinK to JτoutK. We will denote this by
q : τin → τout. We say that q is

– generic if we have q(f(D)) = f(q(D)), for every object D of type τin and
every permutation f of dom.

– fully generic if we have q(f(D)) = f(q(D)), for every object D of type τin
and every function f : dom→ dom.

Here, by f(D), we naturally mean the object obtained from D by replacing each
atom x by the atom f(x).

The notion of genericity is classical and, for extensive discussion and moti-
vation, we refer to the literature cited in the Introduction, and also to the work
by Abiteboul and Vianu on generic computation [3] and by Blass, Gurevich

Fully Generic Queries 5

and Shelah on Choiceless Polynomial Time [10], on which quite a bit of recent
follow-up work has been performed [18].

In order to get a feeling for full genericity, let us look at two simple examples.
First, consider the query q : {[d, d]} → {[d, d, d]} that takes as an input a binary
relation of atoms. It outputs the ternary relation obtained from the input by
swapping the two columns, and duplicating the second column in a third column.
So, formally, q(D) = {[y, x, y] | [x, y] ∈ D}. We may view q as the projection
operator π2,1,2 from relational algebra. This query is readily verified to be fully
generic:

q(f(D)) = {[y, x, y] | [x, y] ∈ f(D)}
= {[f(v), f(u), f(v)] | [u, v] ∈ D}
= f(q(D)).

In contrast, the query q : [{d}, {d}]→ {d} that takes as an input two sets of
atoms, and outputs their intersection, is not fully generic. Indeed, just consider
the input D = [{1}, {2}]. Then q(D) is empty, so also f(q(D)) is empty for any f .
However, for f that maps both 1 and 2 to 1, we obtain q(f(D)) = q([{1}, {1}]) =
{1}, which is nonempty.

3 Computability

The standard notion of computability, through Turing machines, is only defined
as such for functions from Σ∗ to Σ∗, for some finite alphabet Σ. Consequently,
computability of queries needs a proper definition [2], which we recall next.

We first need to fix some encoding of atoms as strings; as usual, binary
strings will suffice. So, assume some bijection enc : dom→ {0, 1}∗. We can now
consider the finite alphabet obtained by extending {0, 1} with the punctuation
symbols needed to write down objects: the comma, the square brackets, and
the curly brackets. So, Σ = {0, 1} ∪ {,, [,], {, }}. We can similarly consider
the infinite alphabet Λ obtained by adding these punctuation symbols to dom
directly. For any object o, an enumeration of o is a string over Λ that describes
o when interpreted in the obvious manner. For example,

– The only enumeration of the object [9, 7] is the string [9,7].
– The three strings {1,2,3}, {3,2,1}, and {2,1,2,1,3,3} all enumerate the

same object {1, 2, 3}.

When we apply enc to an enumeration of an object o, we obtain what we call
an encoding of o. For example, we can take again the first example above, and
assume enc is the standard binary representation of natural numbers. Then the
string [1001,111] encodes the object [9, 7].

We now agree that a query q : τin → τout is computable under enc if there
exists a Turing machine M that, whenever started on an input that is an encod-
ing of some object o of type τin, will eventually halt and produce an encoding of
q(o) as output. In this case we also say that M computes q under enc.

6 D. Surinx, J. Van den Bussche, J. Virtema

The nice thing about generic queries is that the choice of encoding does not
matter:

Proposition 1. Let q be a generic query and let enc : dom → {0, 1}∗ be a
bijection. Let M be a Turing machine. If M computes q under enc, then M also
computes q under any other bijection enc′ : dom→ {0, 1}∗.

In line with the above proposition, Hull and Su [19] proposed the notion of a
domain Turing machine, which can work directly over the alphabet Λ. Thereto,
the machine is equipped with a register that can hold an arbitrary atom. The
machine can copy the atom from the current tape cell into the register, and
conversely can copy the atom from the register into the current tape cell. Fur-
thermore, the machine can test for equality between the atom in the register and
the atom in the current tape call. Since domain Turing machines can directly
take enumerations of objects as inputs, and can produce such enumerations as
outputs, we no longer need encodings. Now Hull and Su showed that if a domain
Turing machine computes a query q, then q must be generic, and conversely,
every computable generic query can be computed by some domain Turing ma-
chine.

For fully generic queries, we can strengthen the Hull-Su result as follows. A
domain-oblivious Turing machine is a restricted domain Turing machine that
lacks the facility to test for equality in the sense described in the previous para-
graph.

Theorem 1. If query q is computed by a domain-oblivious Turing machine,
then q is fully generic. Conversely, every fully generic computable query can be
computed by some domain-oblivious Turing machine.

The above result provides some insight into the notion of a fully generic query.
It confirms the intuition that to process a fully generic query, we never need to
inspect atoms in detail. We merely copy them or omit them altogether. Good
examples are the relational algebra operations union, projection, and cartesian
product. Furthermore, a fully generic query should not be sensitive to duplicates
in the input, as these are allowed in enumerations as defined above.

Example 1 (Duplicates). To illustrate the sensitivity to duplicates, consider the
query q1 : {{d}} → {{d}} defined as follows. Let D be an input object, D =
{s1, . . . , sn}, where all the sets si are distinct. Then q1(D) consists of all the
sets that can be written as {o1, . . . , on} such that oi ∈ si for i = 1, . . . , n.
Note that the ois picked need not be all distinct; for example, assuming D =
{{1, 2}, {1, 3}}, we can pick o1 = 1 ∈ {1, 2} and o2 = 1 ∈ {1, 3}. Thus, the set
{1, 1} = {1} belongs to q1({{1, 2}, {1, 3}}).

This query is not fully generic, intuitively, because the given prescription
for computing q1 assumes that all the si are distinct. For example, suppose
D = {{1, 2}}. Then q1(D) = {{1}, {2}}. However, if we had presented D as an
input with duplicates, say {{1, 2}, {1, 2}}, the above prescription could generate
{1, 2} as a possible element of the result, which is wrong.

Fully Generic Queries 7

We can formalize the above observation as follows. Let D′ = {{1, 2}, {3, 4}}
and take some f : dom → dom such that f(1) = 1, f(2) = 2, f(3) = 1,
and f(4) = 2. Since {1, 4} ∈ q1(D′), we have f({1, 4}) = {1, 2} ∈ f(q1(D′)).
However, f(D′) = {{1, 2}} and {1, 2} /∈ q1(f(D′)). Hence, q1 is not fully generic.

Theorem 1 begs the following question, which is embarrassingly open:

Question 1. Do there exist fully generic queries that are not computable?

The conjecture is that the answer is negative. We even dare to conjecture
that every fully generic query is computable in time linear in the output size.
(Here, to get a useful notion of linear time, we would need to move from a Turing
machine model to a RAM model of computation.) This conjecture is in line with
the intuition that the processing is done in a manner that is oblivious to the
actual identities of the atoms. Thus, all the processing time can be devoted to
producing the output.

Boolean Queries and Canonical Forms Restricted to Boolean queries, the above
question has quite readily a negatie answer. A Boolean query has just a yes/no
answer and can be modeled as a query q : τ → {[]}. Indeed, there are only two
objects of type {[]}: the empty set and the singleton set containing the empty
tuple. The empty set can be taken to represent ‘no’ and the other set ‘yes’.

To see that any fully generic q : τ → {[]} is computable, let D be an object of
type τ and let 1 be the mapping that maps every atom to 1. We have q(1(D)) =
1(q(D)) = q(D). Consequently, we fully know the behavior of q once we know the
behavior of q on objects in which only the atom 1 occurs. Such objects are called
canonical forms [24]. For any given type τ , there are only finitely many canonical
forms of type τ . Thus, every fully generic Boolean query can be summarized in
a finite table and hence is always computable.

As an example, consider the type {{d}}. There are only four canonical forms:
∅; {∅}; {{1}}; and {∅, {1}}. For example, the canonical form of the object
{{1, 2}, {2, 3, 4}, ∅} is {∅, {1}}; the canonical form of {{1, 2}, {2, 3, 4}, {5}} is
{{1}}. As a consequence, there are exactly 24 = 16 fully generic Boolean queries
with input type {{d}}.

We can characterize when two objects have the same canonical form in terms
of a pre-order A ≤ B on objects of the same type. We define A ≤ B to hold
when there exists a function f : dom→ dom such that A = f(B). We can now
show the following.

Proposition 2. Let A and B be objects of the same type. Then 1(A) = 1(B) if
and only if A and B have a common upper bound w.r.t. ≤, i.e., if there exists
an object C such that A ≤ C and B ≤ C.

The ‘if’ implication is immediate; if A = f(C) then 1(A) = 1(f(C)) = 1(C),
and similarly for B. The ‘only if’ implication is less trivial.2

2 A comparable result was shown by Ta-Shma [9, Claim 3.4], [24, Proposition 4.2.4].

8 D. Surinx, J. Van den Bussche, J. Virtema

The Definability Question Another computability question concerns definability
by a fully generic query. This is the following problem:

Problem: Fully generic definability
Input: Two objects A and B
Decide: Does there exist a fully generic query q such that q(A) = B?

Question 2. Is the fully generic definability problem decidable?

In contrast, the corresponding classically generic definability problem is well
understood. For simplicity, assume B is of some set type. Then A and B qualify
if and only if B has only atoms from A, and every automorphism of A is also an
automorphism of B.3 In that case, the generic query mapping A to B can even
taken to be expressible in first-order logic [8, 23, 6].

4 Query Language

More concrete insight in the fully generic queries can be gained by studying
the language L already mentioned in the Introduction [9]. This language is an
algebra of queries, similar to the powerset algebra of Abiteboul and Beeri [1],
presented in monad style [13]. The algebra is built up from the following list of
primitive queries, for all types τ , σ, τ1, . . . , τk:

– The identity query id : τ → τ : o 7→ o.
– The unit query [] : τ → [] : o 7→ [] which always outputs the empty tuple

on every input.
– For each i ∈ {1, . . . , k}, the projection πi : [τ1, . . . , τk] → τi : [o1, . . . , ok] 7→
oi.

– The empty-set query ∅ : τ → {σ} : o 7→ ∅, which always outputs the empty
set of type σ.

– The singleton query {·} : τ → {τ} : o 7→ {o}.
– The flatten query

⋃
: {{τ}} → {τ} : o 7→

⋃
o.

– The union query ∪ : [{τ}, {τ}]→ {τ} : [o1, o2] 7→ o1 ∪ o2.
– The cartesian product × : [{τ}, {σ}]→ {[τ, σ]} : [o1, o2] 7→ o1 × o2.
– The emptiness test

ifempty : [{σ}, τ, τ]→ τ : [s, o1, o2] 7→

{
o1 if s is empty

o2 if s is not empty.

Moreover, we close the algebra under composition, tuple construction, and map,
as follows:

– If q1 : τ1 → τ2 and q2 : τ2 → τ3 belong to L, then so does the composition
q2 ◦ q1 : τ1 → τ3.

3 Here, an automorphism of A is a permutation f of the atoms occurring in A such
that f(A) = A.

Fully Generic Queries 9

– If q : τ → σ belongs to L, then so does

map(q) : {τ} → {σ} : o 7→ {q(o′) | o′ ∈ o}.

– If, for i = 1, . . . , k, we have qi : σ → τi in L, then also [q1, . . . , qk] : σ →
[τ1, . . . , τk] : o 7→ [q1(o), . . . , qk(o)] belongs to L.

So far, we have done nothing else than described the standard nested relational
algebra [13], without equality test. However, the definition of the language L
must be completed by adding to the above list of primitive queries, for every
type τ , the query one-each : {{τ}} → {{τ}} defined by

{s1, . . . , sn} 7→ {s′1 ∪ · · · ∪ s′n | ∅ 6= s′i ⊆ si for i = 1, . . . , n}.

The query one-each is quite intriguing and, compared to the powerset algebra
mentioned above, the only novel aspect of the language L. Actually, a more
correct name would be at-least-one-each, but we stick to the original name. The
query one-each is certainly primitive in L, as it is the only query from L that can
produce exponential-sized outputs. Indeed, when applied to just a singleton {s},
the output is already the powerset of s, except for the empty set. Conversely,
however, it is conjectured that one-each can not be replaced by the powerset
query, but a proof is lacking so far:

Question 3. Let Lpow denote the variant of L where we replace one-each by the
powerset query pow : {τ} → {{τ}} : s 7→ 2s. Does one-each belong to Lpow?

Of course, the million-dollar question is the following:

Question 4. Does L contain all the fully generic queries?

An affirmative answer to this question would immediately yield a negative answer
to Question 1 on the existence of noncomputable fully generic queries.

The only investigation on Question 4 so far was done in the PhD thesis by
Paula Ta-Shma [24]. Her main result is that L does contain all the fully generic
queries of signature {{d}} → {{d}}. While her arguments are rich in valuable
ideas, the arguments are also very intricate, and at some point no longer fully
rigorous. We have failed to verify the arguments in detail; nevertheless, the thesis
is a must-read for anyone interested in solving the above open question.

In our attempt to find more transparent arguments, we could prove the fol-
lowing result. For any natural number k, define the k-powerset of a set s as the
set of all subsets of s of cardinality at most k.

Theorem 2. The only fully generic queries of signature {d} → {{d}} are:

– the powerset query;
– for any k, the k-powerset query;
– for any of the above queries q, also the queries q(0) : s 7→ q(s) − {∅}; q(1) :
s 7→ q(s) ∪ {s}; and q(2) : s 7→ (q(s)− {∅}) ∪ {s}.

10 D. Surinx, J. Van den Bussche, J. Virtema

Note that all queries mentioned in the above theorem belong to L, so this answers
Question 4 for the special case of the signature {d} → {{d}}.

As already mentioned, the language L without one-each is the standard
nested relational algebra without equality test. Equivalence of nested relational
algebra expressions is well known to be undecidable. When emptiness test is
removed, and equality test is restricted to atoms, equivalence becomes decidable
[14]. However, the equivalence problem when keeping emptiness test, but remov-
ing equality test altogether, seems to have escaped attention so far. We have the
following interesting questions:

Question 5. Is the equivalence problem for expressions in L without one-each
decidable? What about L including one-each? And what about Lpow?

5 Technical Observations

A possible approach to comprehending the fully generic queries better is to
investigate how large inputs we must consider to show the difference between
two fully generic queries. For example, we cannot see the difference between the
5-powerset and the 6-powerset by considering only input sets with at most five
elements. We can also investigate how many different atoms must come into play.

Consider, for example, the behavior of one-each : {{d}} → {{d}} on inputs
in which at most two distinct atoms can occur. We can show:

Proposition 3. Let q′ : {{d}} → {{d}} be fully generic, such that q′(D) =
one-each(D) for every D in which at most two distinct atoms appear. Then q′

equals one-each.

We summarize the above result by saying that one-each is 2-determined. In
general, we say that a query q is k-determined if no other fully generic query
agrees with q on all inputs involving at most k distinct atoms. If q is k-determined
for some k, we also say that q is finitely determined.

For example, the k-powerset query of signature {d} → {{d}} is (k + 1)-
determined. In contrast, the powerset query is not finitely determined, because
for any k, it agrees up to k atoms with the k-powerset query.

A special class of queries, also considered by Ta-Shma, are the flat-output
queries, defined as those of signature of the form τ → {[d, . . . , d]} (the output is
a flat relation). We can show:

Theorem 3. Let q be a fully generic flat-output query and let k be the width of
its output tuple type. Then q is (k + 1)-determined.

As a corollary, we obtain a more transparent proof of the result by Ta-Shma to
the effect that every fully generic flat-output query belongs to L. We only sketch
the argument in this conference paper. Fix some ` atoms and, for a signature
τin → τout, define JτinK(`) and JτoutK(`) as the (finite) subsets of JτinK and JτoutK
consisting of the objects involving only the ` given atoms. There are only finitely

Fully Generic Queries 11

many fully generic functions q : JτinK(`) → JτoutK(`), and these can be represented
in L.

In general, the usefulness of finite determinacy remains unclear, as it is not
preserved by composition. For example, both {·} and one-each are finitely de-
termined, but their composition, the powerset query, is not.

6 Conclusion

This paper is an invitation, a “call to arms”, for a renewed investigation of the
forgotten, but very natural and fascinating class of fully generic queries. Indeed,
we have characterized these queries as those that can be processed in a domain-
oblivious manner, and are insensitive to duplicates in the input. Various data
transformations or restructurings have this property. We have posed the main
open questions and have proposed some possible approaches. We are looking
forward to answers appearing in the near future.

It should also be investigated how full genericity behaves in a setting where
collections are bags instead of sets. For example, the bag version of the query
q1 from Example 1, where we do not assume that all the si are distinct, is fully
generic in the bag setting. Some of the questions we have posed may become
easier in the bag setting, but others (e.g., Question 5) may become more difficult.

References

1. Abiteboul, S., Beeri, C.: On the power of languages for the manipulation of complex
objects. The VLDB Journal 4(4), 727–794 (1995)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

3. Abiteboul, S., Vianu, V.: Computing with first-order logic. J. Comput. Syst. Sci.
50(2), 309–335 (1995)

4. Afrati, F., Ullman, J.: Optimizing multiway joins in a map-reduce environment.
IEEE Transactions on Knowledge and Data Engineering 23(9), 1282–1298 (2011)

5. Aho, A., Ullman, J.: Universality of data retrieval languages. In: Conference
Record, 6th ACM Symposium on Principles of Programming Languages. pp. 110–
120 (1979)

6. Arenas, M., Diaz, G.: The exact complexity of the first-order logic definability
problem. ACM Trans. Database Syst. 41(2), 13:1–13:14 (2016)

7. Armbrust, M., Xin, R., et al.: Spark SQL: Relational data processing in Spark.
In: Proceedings 2015 International Conference on Management of Data. pp. 1383–
1394. ACM (2015)

8. Bancilhon, F.: On the completeness of query languages for relational data bases. In:
Proceedings 7th Symposium on Mathematical Foundations of Computer Science.
Lecture Notes in Computer Science, vol. 64, pp. 112–123. Springer-Verlag (1978)

9. Beeri, C., Milo, T., Ta-Shma, P.: Towards a language for the fully generic queries.
In: Cluet, S., Hull, R. (eds.) Database Programming Languages. pp. 239–259. Lec-
ture Notes in Computer Science, Springer (1997)

10. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Annals of Pure
and Applied Logic 100, 141–187 (1999)

12 D. Surinx, J. Van den Bussche, J. Virtema

11. Botoeva, E., Calvanese, D., Cogres, B., Xiao, G.: Expressivity and complexity
of MongoDB queries. In: Kimelfeld, B., Amsterdamer, Y. (eds.) Proceedings 21st
International Conference on Database Theory. LIPIcs, vol. 98, pp. 9:1–9:23. Schloss
Dagstuhl–Leibniz Center for Informatics (2018)

12. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Trans. Database Syst. 33(4),
28:1–28:47 (2008)

13. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995)

14. Van den Bussche, J., Van Gucht, D., Vansummeren, S.: Well-definedness and
semantic type checking for the nested relational calculus. Theor. Comput. Sci.
371(3), 183–199 (2007)

15. Chandra, A.: Programming primitives for database languages. In: Conference
Record, 8th ACM Symposium on Principles of Programming Languages. pp. 50–62
(1981)

16. Chandra, A., Harel, D.: Computable queries for relational data bases. J. Comput.
Syst. Sci. 21(2), 156–178 (1980)

17. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.
Prentice Hall (2009)

18. Grädel, E., Grohe, M.: Is polynomial time choiceless? In: Beklemishev, L., Blass, A.,
Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation
II, pp. 193–209. Springer (2015)

19. Hull, R., Su, J.: Algebraic and calculus query languages for recursively typed com-
plex objects. J. Comput. Syst. Sci. 47(1), 121–156 (1993)

20. Hull, R., Yap, C.: The format model, a theory of database organization. J. ACM
31(3), 518–537 (1984)

21. Kuper, G., Vardi, M.: The logical data model. ACM Trans. Database Syst. 18(3),
379–413 (1993)

22. Madelaine, F.: Mémoire d’habilitation à diriger des recherches, Université Blaise
Pascal, Clermond-Ferrand (2012), https://tel.archives-ouvertes.fr/tel-01096078

23. Paredaens, J.: On the expressive power of the relational algebra. Inf. Process. Lett.
7(2), 107–111 (1978)

24. Ta-Shma, P.: Genericity in Database Query Languages. Ph.D. thesis, Hebrew Uni-
versity (1997)

25. Tarski, A.: What are logical notions? History and Philosophy of Logic 7, 143–154
(1986), edited by J. Corcoran

26. Zaharia, M., et al.: Spark: Cluster computing with working sets. In: Proceedings
2nd USENIX Workshop on Hot Topics in Cloud Computing (2010)

