
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Descriptive Complexity of Deterministic Polylogarithmic Time

Peer-reviewed author version

Ferrarotti, Flavio; González, Senén; Turull Torres, José María; VAN DEN

BUSSCHE, Jan & VIRTEMA, Jonni (2019) Descriptive Complexity of Deterministic

Polylogarithmic Time. In: Iemhoff, Rosalie; Moortgat, Michael; de Queiroz, Ruy (Ed.).

Logic, Language, Information, and Computation, Springer Nature, p. 208 -222.

DOI: 10.1007/978-3-662-59533-6_13

Handle: http://hdl.handle.net/1942/30376

Descriptive Complexity of Deterministic
Polylogarithmic Time?

Flavio Ferrarotti1[0000−0003−2278−8233], Senén González1, José Maŕıa Turull
Torres2, Jan Van den Bussche3[0000−0003−0072−3252], and Jonni

Virtema3[0000−0002−1582−3718]

1 Software Competence Center Hagenberg, Hagenberg, Austria
{flavio.ferrarotti,senen.gonzalez}@scch.at

2 Universidad Nacional de La Matanza, Buenos Aires, Argentina
jturull@unlam.edu.ar

3 Hasselt University, Hasselt, Belgium
{jan.vandenbussche,jonni.virtema}@uhasselt.be

Abstract. We propose a logical characterization of problems solvable
in deterministic polylogarithmic time (PolylogTime). We introduce a
novel two-sorted logic that separates the elements of the input domain
from the bit positions needed to address these elements. In the course
of proving that our logic indeed captures PolylogTime on finite ordered
structures, we introduce a variant of random-access Turing machines
that can access the relations and functions of the structure directly. We
investigate whether an explicit predicate for the ordering of the domain
is needed in our logic. Finally, we present the open problem of finding an
exact characterization of order-invariant queries in PolylogTime.

1 Introduction

The research area known as Descriptive Complexity [7, 11, 15] relates computa-
tional complexity to logic. For a complexity class of interest, one tries to come up
with a natural logic such that a property of inputs can be expressed in the logic if
and only if the problem of checking the property belongs to the complexity class.
An exemplary result in this vein is that a family F of finite structures (over some
fixed finite vocabulary) is definable in existential second-order logic (ESO), if and
only if the membership problem for F belongs to NP [4]. We also say that ESO
captures NP. The complexity class P is captured, on ordered finite structures, by
a fixpoint logic: the extension of first-order logic with least-fixpoints [14, 22].

After these two seminal results, many more capturing results have been
developed, and the benefits of this enterprise have been well articulated by several

? The research reported in this paper results from the project Higher-Order Logics and
Structures supported by the Austrian Science Fund (FWF: [I2420-N31]) and the
Research Foundation Flanders (FWO:[G0G6516N]). It was further supported by
the Austrian Research Promotion Agency (FFG) through the COMET funding for
the Software Competence Center Hagenberg.

2 F. Ferrarotti et al.

authors in the references given earlier, and others [1]. We just mention here the
advantage of being able to specify properties of structures (data structures,
databases) in a logical, declarative manner; at the same time, we are guaranteed
that our computational power is well delineated.

The focus of the present paper is on computations taking deterministic
polylogarithmic time, i.e., time proportional to logk n for some arbitrary but
fixed k. Such computations are practically relevant and common on ordered
structures. Well known examples are binary search in an array or search in a
balanced search tree. Another natural example is the computation of f(x1, . . . , xr),
where x1, . . . , xr are numbers taken from the input structure and f is a function
computable in polynomial time when numbers are represented in binary.

Computations with sublinear time complexity can be formalized in terms
of Turing machines with random access to the input [15]. When a family F of
ordered finite structures over some fixed finite vocabulary is defined by some
deterministic polylogarithmic-time random-access Turing machine, we say that
F belongs to the complexity class PolylogTime. In this paper, we show how this
complexity class can be captured by a new logic which we call index logic.

Index logic is two-sorted; variables of the first sort range over the domain of
the input structure. Variables of the second sort range over an initial segment of
the natural numbers; this segment is bounded by the logarithm of the size of the
input structure. Thus, the elements of the second sort represent the bit positions
needed to address elements of the first sort. Index logic includes full fixpoint
logic on the second sort. Quantification over the first sort, however, is heavily
restricted. Specifically, a variable of the first sort can only be bound using an
address specified by a subformula that defines the positions of the bits of the
address that are set. This “indexing mechanism” lends index logic its name.

In the course of proving our capturing result, we consider a new variant
of random-access Turing machines. In the standard variant, the entire input
structure is presented as one binary string. In our new variant, the different
relations and functions of the structure can be accessed directly. We will show
that both variants are equivalent, in the sense that they lead to the same notion
of PolylogTime. We note that, in descriptive complexity, it is common practice
to work only with relational structures, as functions can be identified with their
graphs. In a sublinear-time setting, however, this does not work. Indeed, let f be
a function and denote its graph by f̃ . If we want to know the value of f(x), we
cannot spend the linear time needed to find a y such that f̃(x, y) holds. Thus, in
this work, we allow structures containing functions as well as relations.

At first glance, one might think that a simpler approach to ours, for the
characterization of PolylogTime, could be to adapt the construction used by
Immerman and Vardi [14, 22] to capture P. For instance, by querying binary
representations of the indices with Immerman’s BIT predicate, where BIT(x, i)
holds iff the i-th bit of x in binary is 1, or avoiding our new variant of random-
access Turing machine. In fact, that was our initial approach to the problem.
This results, however, in a long and cumbersome characterization proof, mostly
due to the need to express arithmetic operations within the logic to access the

Descriptive Complexity of Deterministic Polylogarithmic Time 3

relevant parts of the input, since in PolylogTime we cannot read it in whole.
A challenge, in this sense, was to develop a logic which enables the expression
of PolylogTime problems in a relatively clean and natural way. For this, the
indexing mechanism in our logic is a key contribution. The alternative of using
fixed point operations and BIT to address values of the first sort leads to a logic
which is rather awkward to define and to use.

We also devote attention to gaining a detailed understanding of the expressivity
of index logic. Specifically, we observe that order comparisons between quantified
variables of the first sort can be expressed in terms of their addresses. For
constants of the first sort that are directly given by the structure, however, we
show that this is not possible. In other words, index logic without an explicit order
predicate on the first sort would no longer capture PolylogTime for structures
with constants.

Related work. Many natural fixed point computations, such as transitive closure,
converge after a polylogarithmic number of steps. This motivated the study
in [10] of a fragment of fixed point logic with counting (FPC) that only allows
polylogarithmically many iterations of the fixed point operators (polylog-FPC).
They noted that on ordered structures polylog-FPC captures NC, i.e., the class
of problems solvable in parallel polylogarithmic time. This holds even in the
absence of counting, which on ordered structures can be simulated using fixed
point operators. Moreover, an old result in [13] directly implies that polylog-
FPC is strictly weaker than FPC with regards to expressive power.

It is well known that the (nondeterministic) logarithmic time hierarchy cor-
responds exactly to the set of first-order definable Boolean queries (see [15],
Theorem 5.30). The relationship between uniform families of circuits within
NC1 and nondeterministic random-access logarithmic time machines was studied
in [19]. However, the study of descriptive complexity of classes of problems decid-
able by deterministic formal models of computation in polylogarithmic time, i.e.,
the topic of this paper, has been overlooked by previous works.

On the other hand, nondeterministic polylogarithmic time complexity classes,
defined in terms of alternating random-access Turing machines and related families
of circuits, have received some attention [18, 5]. Recently, a theorem analogous
to Fagin’s famous theorem [4], was proven for nondeterministic polylogarithmic
time [5]. For this task, a restricted second-order logic for finite structures, where
second-order quantification ranges over relations of size at most polylogarithmic in
the size of the structure, and where first-order universal quantification is bounded
to those relations, was exploited. This latter work, is closely related to the work
on constant depth quasipolynomial size AND/OR circuits and the corresponding
restricted second-order logic in [18]. Both logics capture the full alternating
polylogarithmic time hierarchy, but the additional restriction in the first-order
univesal quantification in the second-order logic defined in [5], enables a one-
to-one correspondence between the levels of the polylogarithmic time hierarchy
and the prenex fragments of the logic, in the style of a result of Stockmeyer [21]
regarding the polynomial-time hierarchy. Unlike the classical results of Fagin and

4 F. Ferrarotti et al.

Stockmeyer [4, 21], the results on the descriptive complexity of nondeterministic
polylogarithmic time classes only hold over ordered structures.

2 Preliminaries

We allow structures containing functions as well as relations and constants. Unless
otherwise stated, we work with finite ordered structures of finite vocabularies. A
finite structure A of vocabulary σ = {Rr1

1 , . . . , R
rp
p , c1, . . . cq, f

k1
1 , . . . , fks

s }, where

each Rri
i is an ri-ary relation symbol, each ci is a constant symbol, and each fki

i

is a ki-ary function symbol, consists of a finite domain A and interpretations for
all relation, constant and function symbols in σ. An interpretation of a symbol
Rri

i is a relation RA
i ⊆ Ari , of a symbol ci is a value cAi ∈ A, and of a symbol fki

i

is a function fAi : Aki → A. Every finite ordered structure has a corresponding
isomorphic structure whose domain is an initial segment of the natural numbers.
Thus, we assume as usual that A = {0, 1, . . . , n− 1}, where n is the cardinality
|A| of A.

In this paper, log n always refers to the binary logarithm of n, i.e., log2 n. We
write logk n as a shorthand for (dlog ne)k.

3 Deterministic polylogarithmic time

The sequential access that Turing machines have to their tapes makes it impossible
to do nontrivial computations in sub-linear time. Therefore, logarithmic time
complexity classes are usually studied using models of computation that have
random access4 to their input, i.e., that can access every input address directly.
As this also applies to the polylogarithmic complexity classes studied in this
paper, we adopt a Turing machine model that has a random access read-only
input, similar to the logarithmic-time Turing machine in [19].

Our concept of a random-access Turing machine is that of a multi-tape Turing
machine which consists of: (1) a finite set of states, (2) a read-only random access
input-tape, (3) a sequential access address-tape, and (4) one or more (but a fixed
number of) sequential access work-tapes. All tapes are divided into cells, each
equipped with a tape head which scans the cells, and are “semi-infinite” in the
sense that they have no rightmost cell, but have a left-most cell. The tape heads
of the sequential access address-tape and work-tapes can move left or right. When
a head is in the leftmost cell, it is not allowed to move left. The address-tape
alphabet only contains symbols 0, 1 and t (for blank). The position of the
input-tape head is determined by the number i stored in binary in between the
left-most cell and the first blank cell of the address-tape (if the left-most cell is
blank, then i is considered to be 0) as follows: If i is strictly smaller than the

4 The term random access refers to the manner how random-access memory (RAM)
is read and written. In contrast to sequential memory, the time it takes to read or
write using RAM is almost independent of the physical location of the data in the
memory. We want to emphasise that there is nothing random in random access.

Descriptive Complexity of Deterministic Polylogarithmic Time 5

length n of the input string, then the input-tape head is in the (i + 1)-th cell.
Otherwise, if i ≥ n, then the input-tape head is in the (n+ 1)-th cell scanning
the special end-marker symbol /.

Formally, a random-access Turing machine M with k work-tapes is a five-
tuple (Q,Σ, δ, q0, F). Here Q is a finite set of states ; q0 ∈ Q is the initial state. Σ
is a finite set of symbols (the alphabet of M). For simplicity, we fix Σ = {0, 1,t}.
F ⊆ Q is the set of accepting final states. The transition function of M is of the
form δ : Q× (Σ ∪ {/})×Σk+1 → Q× (Σ ×{←,→,−})k+1. We assume that the
tape head directions ← for “left”, → for “right” and − for “stay”, are not in
Q ∪Σ.

A configuration of M on a fixed input w0 is a k + 2 tuple (q, i, w1, . . . , wk),
where q is the current state of M , i ∈ Σ∗#Σ∗ represents the current contents
of the index-tape cells, and each wj ∈ Σ∗#Σ∗ represents the current contents
of the j-th work-tape cells. We do not include the contents of the input-tape
cells in the configuration since they cannot be changed. Further, the position of
the input-tape head is uniquely determined by the contents of the index-tape
cells. The symbol # (which we assume is not in Σ) marks the position of the
tape head. By convention, the head scans the symbol immediately at the right of
#. All symbols in the infinite tapes not appearing in their corresponding strings
i, w0, . . . , wk are assumed to be the special symbol blank t.

At the beginning of a computation, all work-tapes are blank except the
input-tape, that contains the input string, and the index-tape that contains
a 0 (meaning that the input-tape head scans the first cell of the input-tape).
Thus, the initial configuration of M is (q0,#0,#, . . . ,#). A computation is a
sequence of configurations which starts with the initial configuration and ends in
a configuration in which no more steps can be performed, and such that each
step from a configuration to the next obeys the transition function. An input
string is accepted if an accepting configuration, i.e., a configuration in which the
current state belongs to F , is reached.

Example 1. Following a simple strategy, a random-access Turing machine M can
figure out the length n of its input as well as dlog ne in polylogarithmic time.
In its initial step, M checks whether the input-tape head scans the end-marker
/. If it does, then the input string is the empty string and its work is done.
Otherwise, M writes 1 in the first cell of its address tape and keeps writing 0’s
in its subsequent cells right up until the input-tape head scans /. At this point
the resulting binary string in the index-tape is of length dlog ne. Next, M moves
its address-tape head back to the first cell (i.e., to the only cell containing a 1
at this point). From here on, M repeatedly moves the index head one step to
the right. Each time it checks whether the index-tape head scans a blank t or
a 0. If t then M is done. If 0, it writes a 1 and tests whether the input-tape
head jumps to the cell with /; if so, it rewrites a 0, otherwise, it leaves the 1. The
binary number left on the index-tape at the end of this process is n− 1. Adding
one in binary is now an easy task. ut

The formal language accepted by a machine M , denoted L(M), is the set
of strings accepted by M . We say that L(M) ∈ DTIME[f(n)] if M makes at

6 F. Ferrarotti et al.

most O(f(n)) steps before accepting or rejecting an input string of length n. We
define the class of all formal languages decidable by (deterministic) random-access
Turing machines in polylogarithmic time as follows:

PolylogTime =
⋃
k∈N

DTIME[logk n]

It follows from Example 1 that a PolylogTime random-access Turing machine
can check any numerical property that is polynomial time in the size of its input
in binary. For instance, it can check whether the length of its input is even, by
simply looking at the least-significant bit.

When we want to give a finite structure as an input to a random-access
Turing machine, we encode it as a string, adhering to the usual conventions in
descriptive complexity theory [15]. Let σ={Rr1

1 , . . . , R
rp
p , c1, . . . , cq, f

k1
1 , . . . , fks

s }
be a vocabulary, and let A with A={0, 1, . . ., n−1} be an ordered structure of
vocabulary σ. Each relation RA

i ⊆ Ari of A is encoded as a binary string bin(RA
i)

of length nri , where 1 in a given position indicates that the corresponding tuple is
in RA

i . Likewise, each constant number cAj is encoded as a binary string bin(cAj)
of length dlog ne.

We can also encode the functions in a structure. We view k-ary functions as
consisting of dlog ne k-ary relations, where the i-th relation indicates whether
the i-th bit is 1. Thus, each function fAi is encoded as a binary string bin(fAi) of
length dlog nenki .

The encoding of the whole structure bin(A) is the concatenation of the binary
strings encoding its relations, constants and functions. The length n̂ = |bin(A)|
of this string is nr1 + · · ·+ nrp + qdlog ne+ dlog nenk1 + · · ·+ dlog nenks , where
n = |A| denotes the size of the input structure A. Note that log n̂ ∈ O(dlog ne),
so DTIME[logk n̂] = DTIME[logk n].

4 Direct-access Turing machines

In this section, we propose a new model of random-access Turing machines.
In the standard model reviewed above, the entire input structure is assumed
to be encoded as one binary string. In our new variant, the different relations
and functions of the structure can be accessed directly. We then show that
both variants are equivalent, in the sense that they lead to the same notion of
PolylogTime. The direct-access model will then be useful to give a transparent
proof of our capturing result.

Let our vocabulary σ = {Rr1
1 , . . . , R

rp
p , c1, . . . cq, f

k1
1 , . . . , fks

s }. A direct-access
Turing machine that takes σ-structures A as input, is a multitape Turing machine
with r1 + · · ·+ rp + k1 + · · ·+ ks distinguished work-tapes, called address-tapes,
s distinguished read-only (function) value-tapes, q + 1 distinguished read-only
constant-tapes, and one or more ordinary work-tapes.

Let us define a transition function δl for each tape l separately. These transition
functions take as an input the current state of the machine, the bit read by each
of the heads of the machine, and, for each relation Ri ∈ σ, the answer (0 or 1) to

Descriptive Complexity of Deterministic Polylogarithmic Time 7

the query (n1, . . . , nri) ∈ RA
i . Here, nj denotes the number written in binary in

the jth distinguished tape of Ri.
Thus, with m the total number of tapes, the state transition function has the

form
δQ : Q×Σm × {0, 1}p → Q.

If l corresponds to an address-tape or an ordinary work-tape, we get the form

δl : Q×Σm × {0, 1}p → Σ × {←,→,−}.

If l corresponds to one of the read-only tapes, we have

δl : Q×Σm × {0, 1}p → {←,→,−}.

Finally we update the contents of the function value-tapes. If l is the func-
tion value-tape for a function fi, then the content of the tape l is updated to
fi(n1, . . . nki) written in binary. Here, nj denotes the number written in binary
in the jth distinguished address-tape of fi after the execution of the above
transition functions. If one of the nj is too large, the tape l is updated to contain
only blanks. Note that the head of the tape remains in place; it was moved by δl
already.

In the initial configuration, read-only constant-tapes for the constant symbols
c1, . . . , cq hold the values in binary of their values in A. One additional constant-
tape (there are q+ 1 of them) holds the size n of the domain of A in binary. Each
address-tape, each value-tape, and each ordinary work-tape holds only blanks.

Theorem 2. A class of finite ordered structures C of some fixed vocabulary σ
is decidable by a random-access Turing machine working in PolylogTime with
respect to n̂, where n̂ is the size of the binary encoding of the input structure, iff
C is decidable by a direct-access Turing machine in PolylogTime with respect to
n, where n is the size of the domain of the input structure.

The proof (omitted) is based on computing precise locations in which bits can
be found, and, for the other direction, on a binary search technique to compute
n from n̂.

5 Index logic

In this section we introduce index logic, a new logic which over ordered finite
structures captures PolylogTime. Our definition of index logic is inspired by the
second-order logic in [18], where relation variables are restricted to valuations on
the sub-domain {0, . . . , dlog ne−1} (n being the size of the interpreting structure),
as well as by the well known counting logics as defined in [9].

Given a vocabulary σ, for every ordered σ-structure A, we define a corre-
sponding set of natural numbers Num(A) = {0, . . . , dlog ne − 1} where n = |A|.
Note that Num(A) ⊆ A, since we assume that A is an initial segment of the
natural numbers. This simplifies the definitions, but it is otherwise unnecessary.

8 F. Ferrarotti et al.

Index logic is a two-sorted logic. Individual variables of the first sort v range
over the domain A of A, while individual variables of the second sort n range
over Num(A). We denote variables of sort v with x, y, z, . . ., possibly with a
subindex such as x0, x1, x2, . . . , and variables of type n with x, y, z, also possibly
with a subindex. Relation variables, denoted with uppercase letters X,Y, Z, . . .,
are always of sort n, and thus range over relations defined on Num(A).

Definition 3. Let σ be a vocabulary, we inductively define terms and formulae
of index logic as follows:

– Each individual variable of sort v and each constant symbol in σ is a term
of sort v.

– Each individual variable of sort n is a term of sort n.
– If t1, . . . , tk are terms of sort v and f is a k-ary function symbol in σ, then
f(t1, . . . , tk) is a term of sort v.

– If t1, t2 are terms of a same sort, then t1 = t2 and t1 ≤ t2 are (atomic)
formulae.

– If t1, . . . , tk are terms of sort v and R is a k-ary relation symbol in σ, then
R(t1, . . . , tk) is an (atomic) formula.

– If t1, . . . , tk are terms of sort n and X is a k-ary relation variable, then
X(t1, . . . , tk) is an (atomic) formula.

– If t is a term of sort v, ϕ is a formula and x is an individual variable of sort
n, then t = index{x : ϕ(x)} is an (atomic) formula.

– If t̄ is tuple of terms of sort n, x̄ is tuples of variables also of sort n, X is a
relation variable, the lengths of t̄ and x̄ are the same and coincide with the
arity of X, and ϕ is a formula, then [IFPx̄,Xϕ]t̄ is an (atomic) formula.

– If ϕ,ψ are formulae, then ϕ ∧ ψ, ϕ ∨ ψ, and ¬ψ are formulae.
– If x is a variable of type n and ϕ is a formula, then ∃x(ϕ) and ∀x(ϕ) are

formulae.
– If x = index{x : α(x)} is an atomic formula such that x does not appear free

in α(x), and ϕ is a formula, then ∃x(x = index{x : α(x)} ∧ ϕ) is a formula.

The concept of a valuation is the standard for a two-sorted logic. Thus, a
valuation over a structure A is any total function val from the set of all variables
of index logic to values satisfying the following constraints:

– If x is a variable of type v, then val(x) ∈ A.
– If x is a variable of type n, then val(x) ∈ Num(A).
– If X is a relation variable with arity r, then val(X) ⊆ (Num(A))r.

Valuations extend to terms and tuples of terms in the usual way. Further, we
say that a valuation val is v-equivalent to a valuation val ′ if val(v′) = val ′(v′)
for all variables v′ other than v.

Fixed points are defined in the standard way (see [2] and [17] among others).
Given an operator F : P(B) → P(B), a set S ⊆ B is a fixed point of F if
F (S) = S. A set S ⊆ B is a least fixed point of F if it is a fixed point and for
every other fixed point S′ of F we have S ⊆ S′. We denote the least fixed point

Descriptive Complexity of Deterministic Polylogarithmic Time 9

of F as lfp(F). The inflationary fixed point of F , denoted by ifp(F), is the union
of all sets Si where S0 = ∅ and Si+1 = Si ∪ F (Si).

Let ϕ(X, x̄) be a formula of vocabulary σ, where X is a relation variable of arity
k and x is a k-tuple of variables of type n. Let A be a σ-structure. The formula
ϕ(X, x̄) gives rise to an operator FA

ϕ,x̄,X : P((Num(A))k) → P((Num(A))k)
defined as follows:
FA
ϕ,x̄,X(S) := {ā ∈ (Num(A))k | A, val |= ϕ(X, x̄) for some valuation val with

val(X) = S and val(x̄) = ā}.

Definition 4. The formulae of IFPplog are interpreted as follows:

– A, val |= t1 = t2 iff val(t1) = val(t2).
– A, val |= t1 ≤ t2 iff val(t1) ≤ val(t2).
– A, val |= R(t1, . . . , tk) iff (val(t1), . . . , val(tk)) ∈ RA.
– A, val |= X(t1, . . . , tk) iff (val(t1), . . . , val(tk)) ∈ val(X).
– A, val |= t = index{x : ϕ(x)} iff val(t) in binary is bmbm−1 · · · b0, where
m = dlog |A|e − 1 and bj = 1 iff A, val ′ |= ϕ(x) for val′ x-equivalent to val
and val ′(x) = j.

– A, val |= [IFPx̄,Xϕ]t̄ iff val(t̄) ∈ ifp(FA
ϕ,x̄,X).

– A, val |= ¬ϕ iff A, val 6|= ϕ.
– A, val |= ϕ ∧ ψ iff A, val |= ϕ and A, val |= ψ.
– A, val |= ϕ ∨ ψ iff A, val |= ϕ or A, val |= ψ.
– A, val |= ∃x(ϕ) iff there is a val ′ x-equivalent to val such that A, val ′ |= ϕ.
– A, val |= ∀x(ϕ) iff for all val ′ x-equivalent to val , it holds that A, val ′ |= ϕ.
– A, val |= ∃x(x = index{x : α(x)} ∧ ϕ) iff there is a val ′ x-equivalent to val

such that A, val ′ |= x = index{x : α(x)} and A, val ′ |= ϕ.

It immediately follows from the famous result by Gurevich and Shelah re-
garding the equivalence between inflationary and least fixed points [12], that an
equivalent index logic can be obtained if we (1) replace [IFPx̄,Xϕ]t̄ by [LFPx̄,Xϕ]t̄
in the formation rule for the fixed point in Definition 3, adding the restriction
that every occurrence of X in ϕ is positive5, and (2) fix the interpretation
A, val |= [LFPx̄,Xϕ]t̄ iff val(t̄) ∈ lfp(FA

ϕ,x̄,X).
Moreover, the convenient tool of simultaneous fixed points, which allows one

to iterate several formulae at once, can still be used here since it does not increase
the expressive power of the logic. Following the syntax and semantics proposed by
Ebbinghaus and Flum [2], a version of index logic with simultaneous inflationary
fixed point can be obtained by replacing the clause corresponding to IFP in
Definition 3 by the following:

– If t̄ is tuple of terms of sort n, and for m ≥ 0 and 0 ≤ i ≤ m, we have
that x̄i is a tuple of variables of sort n, Xi is a relation variable whose arity
coincides with the length of x̄i, the lengths of t̄ and x̄0 are the same, and ϕi

is a formula, then [S-IFPx̄0,X0,...,x̄m,Xmϕ0, . . . , ϕm]t̄ is an atomic formula.

5 This ensures that FA
ϕ,x̄,X is monotonous and thus that the least fixed point lfp(FA

ϕ,x̄,X)
is guaranteed to exists

10 F. Ferrarotti et al.

The interpretation is that A, val |= [S-IFPx̄0,X0,...,x̄m,Xm
ϕ0, . . . , ϕm]t̄ iff val(t̄)

belongs to the first (here X0) component of the simultaneous inflationary fixed
point.

Thus, we can use index logic with the operators IFP, LFP, S-IFP or S-LFP
interchangeably.

The following result confirms that our logic serves our purpose.

Theorem 5. Over ordered structures, index logic captures PolylogTime.

The proof of the theorem can be found in the full arXiv version of this article
[6]; instead we give two worked-out examples illustrating the power of index logic.

5.1 Finding the binary representation of a constant

Assume a constant symbol c of sort v. In this example, we show a formula βc(x)
such that the sentence c = index{x : βc} is valid over the class of all finite ordered
structures. In other words, βc defines the binary representation of the number c.

Informally, βc works by iterating through the bit positions y from the most
significant to the least significant. These bits are accumulated in a relation
variable Z. For each y we set the corresponding bit, on the condition that the
resulting number does not exceed c. The set bits are collected in a relation
variable Y .

In the formal description of βc below, we use the following abbreviations.
We use M to denote the most significant bit position. Thus, formally, z = M
abbreviates ∀z′ z′ ≤ z. Furthermore, for a unary relation variable Z, we use
z = minZ with the obvious meaning. We also use abbreviations such as z = z′−1
with the obvious meaning.

Now βc is a simultaneous fixpoint [S-IFPy,Y,z,Z ϕY , ϕZ](x) where

ϕZ := (Z = ∅ ∧ z = M) ∨ (Z 6= ∅ ∧ z = minZ − 1)

ϕY := Z 6= ∅ ∧ y = minZ ∧ ∃x(x = index{z : Y (z) ∨ z = y} ∧ c ≥ x).

5.2 Binary search in an array of key values

In order to develop insight in how index logic works, we develop in detail an
example showing how binary search in an array of key values can be expressed in
the logic.

We represent the data structure as an ordered structure A over the vocabulary
consisting of a unary function K, a constant symbol N , a constant symbol T ,
and a binary relation ≺. The domain of A is an initial segment of the natural
numbers. The constant l := NA indicates the length of the array; the domain
elements 0, 1, . . . , l − 1 represent the cells of the array. The remaining domain
elements represent key values. Each array cell holds a key value; the assignment
of key values to array cells is given by the function KA.

The simplicity of the above abstraction gives rise to two peculiarities, which,
however, pose no problems. First, the array cells belong to the range of the

Descriptive Complexity of Deterministic Polylogarithmic Time 11

function K. Thus, array cells are allowed to play a double role as key values.
Second, the function K is total, so it is also defined on the domain elements that
are not array cells. We will simply ignore K on that part of the domain.

We still need to discuss ≺ and T . We assume ≺A to be a total order, used
to compare key values. So ≺A can be different from the built-in order <A. For
the binary search procedure to work, the array needs to be sorted, i.e., A must
satisfy ∀x∀y(x < y → (K(x) � K(y))). Finally, the constant t := TA is the test
value. Specifically, we are going to exhibit an index logic formula that expresses
that t is a key value stored in the array. In other words, we want to express the
condition

∃x(x < N ∧K(x) = T). (γ)

Note that, we express here condition (γ) by a first-order formula that is not an
index formula. So, our aim is to show that γ is still expressible, over all sorted
arrays, by an index formula.

We recall the procedure for binary search [16] in the following form, using
integer variables L, R and I:

L := 0
R := N − 1
while L 6= R do

I := b(L+R)/2c
if K(I) � T then R := I − 1 else L := I

od
if K(L) = T return ‘found’ else return ‘not found’

We are going to express the above procedure as a simultaneous fixpoint, using
binary relation variables L and R and a unary relation variable Z. We collect
the iteration numbers in Z, thus counting until the logarithm of the size of the
structure. Relation variables L and R are used to store the values, in binary
representation, of the integer variables L and R during all iterations. Specifically,
for each i ∈ Num(A), the value of the term index{x : L(i, x)} will be the value
of the integer variable L before the i-th iteration of the while loop (and similarly
for R).

In the formal expression of γ below, we use the formula βc from Section 5.1,
with N − 1 playing the role of c. We also assume the following formulas:

– A formula avg that expresses, for unary relation variables X and Y and
a numeric variable x, that the bit x is set in the binary representation of
bx+ yc/2, where x and y are the numbers represented in binary by X and Y .

– A formula minusone(X, y), expressing that the bit y is set in the binary
representation of x− 1, where x is the number represented in binary by X.

These formulas surely exist because index logic includes full fixpoint logic on the
numeric sort; fixpoint logic captures PTIME on the numeric sort; and computing
the average, or subtracting one, are PTIME operations on binary numbers.

We are going to apply the formula avg where X and Y are given by L(z, .)
and R(z, .). So, formally, below, we use avg ′(z, x) for the formula obtained from

12 F. Ferrarotti et al.

formula avg by replacing each subformula of the form X(u) by L(z, u), and Y (u)
by R(z, u).

Furthermore, we are going to apply formula minusone where X is given by
avg ′. So, formally, minusone ′ will denote the formula obtained from minusone
by replacing each subformula of the form X(u) by avg ′(z, u).

A last abbreviation we will use is test , which will denote the formula ∃e(e =
index{x : avg ′} ∧K(e) � T).

Now γ is expressed by ∃x(x = index{l : ψ(l)} ∧K(x) = T), where

ψ(l) := ∃s∀s′(s′ ≤ s ∧ [S-IFPz,x,L,z,x,R,z,Z ϕL, ϕR, ϕZ](s, l))

ϕZ := (Z = ∅ ∧ z = 0) ∨ (Z 6= ∅ ∧ z = maxZ + 1)

ϕL := Z 6= ∅ ∧ z = maxZ + 1 ∧
∃z′(z′ = maxZ ∧ (test → L(z′, x)) ∧ (¬test → avg ′(z′, x)))

ϕR := (Z = ∅ ∧ z = 0 ∧ βN−1(x)) ∨ (Z 6= ∅ ∧ z = maxZ + 1 ∧
∃z′(z′ = maxZ ∧ (test → minusone ′(z′, x)) ∧ (¬test → R(z′, x))))

6 Definability in Deterministic PolylogTime

We observe here that very simple properties of structures are nondefinable in
index logic. Moreover, we provide an answer to a fundamental question on the
primitivity of the built-in order predicate (on terms of sort v) in our logic. Indeed,
we are working with ordered structures, and variables of sort v can only be
introduced by binding them to an index term. Index terms are based on sets of
bit positions which can be compared as binary numbers. Hence, it is plausible to
suggest that the built-in order predicate can be removed from our logic without
losing expressive power. We prove, however, that this does not work in the
presence of constant or function symbols in the vocabulary.

Proposition 6. Assume that the vocabulary includes a unary relation symbol
P . Checking emptiness (or non-emptiness) of PA in a given structure A is not
computable in PolylogTime.

Proof. We will show that emptiness is not computable in PolylogTime. For a
contradiction, assume that it is. Consider first-order structures over the vocabulary
{P}, where P is a unary relation symbol. Let M be some Turing machine that
decides in PolylogTime, given a {P}-structure A, whether PA is empty. Let f
be a polylogarithmic function that bounds the running time of M . Let n be a
natural number such that f(n) < n.

Let A∅ be the {P}-structure with domain {0, . . . , n− 1}, where PA = ∅. The
encoding of A∅ to the Turing machine M is the sequence s := 0 . . . 0︸ ︷︷ ︸

n times

. Note that

the running time of M with input s is strictly less than n. This means that there
must exist an index i of s that was not read in the computation M(s). Define

s′ := 0 . . . 0︸ ︷︷ ︸
i times

1 0 . . . 0︸ ︷︷ ︸
n− i− 1 times

.

Descriptive Complexity of Deterministic Polylogarithmic Time 13

Clearly the output of the computations M(s) and M(s′) are identical, which is a
contradiction since s′ is an encoding of a {P}-structure where the interpretation
of P is a singleton. ut

The technique of the above proof can be adapted to prove a plethora of undefin-
ability results, e.g., it can be shown that k-regularity of directed graphs cannot
be decided in PolylogTime, for any fixed k.

We can develop this technique further to show that the order predicate on
terms of sort v is a primitive in the logic. The proof of the following lemma is
quite a bit more complicated and can be found in the full arXiv version [6] of
this article.

Lemma 7. Let P and Q be unary relation symbols. There does not exist an
index logic formula ϕ such that for all {P,Q}-structures A such that PA and
QA are disjoint singleton sets {l} and {m}, respectively, it holds that

A, val |= ϕ if and only if l < m.

Theorem 8. Let c and d be constant symbols in a vocabulary σ. There does not
exist an index logic formula ϕ that does not use the order predicate ≤ on terms
of sort v and that is equivalent with the formula c ≤ d.

The proof, by contradiction, shows that a formula ϕ as stated in the theorem
would contradict the above lemma. We give the translation in the full arXiv
version [6] of this article.

We conclude this section by affirming that, on purely relational vocabularies,
the order predicate on sort v is redundant. The intuition for this result was given
in the beginning of this section and we omit the formal proof.

Theorem 9. Let σ be a vocabulary without constant or function symbols. For
every sentence ϕ of index logic of vocabulary σ there exists an equivalent sentence
ϕ′ that does not use the order predicate on terms of sort v.

7 Discussion

An interesting open question concerns order-invariant queries. Indeed, while index
logic is defined to work on ordered structures, it is natural to try to understand
which queries about ordered structures that are actually invariant of the order,
are computable in PolylogTime. Results of the kind given by Proposition 6
already suggest that very little may be possible. Then again, any polynomial-time
numerical property of the size of the domain is clearly computable. We would
love to have a logical characterization of the order-invariant queries computable
in PolylogTime.

Another natural direction is to get rid of Turing machines altogether and work
with a RAM model working directly on structures, as proposed by Grandjean
and Olive [8]. Plausibly by restricting their model to numbers bounded in value

14 F. Ferrarotti et al.

by a polynomial in n (the size of the structure), we would get an equivalent
PolylogTime complexity notion.

In this vein, we would like to note that extending index logic with numeric
variables that can hold values up to a polynomial in n, with arbitrary polynomial-
time functions on these, would be useful syntactic sugar that would, however,
not increase the expressive power.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, second edn. (1999)
3. Fagin, R.: Contributions to Model Theory of Finite Structures. Ph.D. thesis, U. C.

Berkeley (1973)
4. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.

In: Karp, R. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7, pp.
43–73 (1974)

5. Ferrarotti, F., González, S., Schewe, K.D., Turull Torres, J.M.: The polylog-time
hierarchy captured by restricted second-order logic. In: Post-Proceedings of the
20th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (To appear). IEEE Computer Society (2019)

6. Ferrarotti F., González S., Turull Torres J.M., Van den Bussche J., Virtema J.: De-
scriptive Complexity of Deterministic Polylogarithmic Time. CoRR abs/1903.03413
(2019)

7. Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y.,
Weinstein, S.: Finite Model Theory and Its Applications. Springer (2007)

8. Grandjean, E., Olive, F.: Graph properties checkable in linear time in the number
of vertices. J. Comput. Syst. Sci. 68, 546–597 (2004)

9. Grohe, M.: Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory. Lecture Notes in Logic, Cambridge University Press (2017).

10. Grohe, M., Pakusa, W.: Descriptive complexity of linear equation systems and
applications to propositional proof complexity. In: Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017. pp. 1–12. IEEE
Computer Society (2017).

11. Gurevich, Y.: Toward logic tailored for computational complexity. In: Richter,
M., et al. (eds.) Computation and Proof Theory, Lecture Notes in Mathematics,
vol. 1104, pp. 175–216. Springer-Verlag (1984)

12. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Ann. Pure Appl.
Logic 32, 265–280 (1986).

13. Immerman, N.: Number of Quantifiers is Better Than Number of Tape Cells. J.
Comput. Syst. Sci. 22(3): 384-406 (1981)

14. Immerman, N.: Relational queries computable in polynomial time. Information and
Control 68, 86–104 (1986)

15. Immerman, N.: Descriptive Complexity. Springer (1999)
16. Knuth, D.: Sorting and Searching, The Art of Computer Programming, vol. 3.

Addison-Wesley, second edn. (1998)
17. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
18. Mix Barrington, D.A.: Quasipolynomial size circuit classes. In: Proceedings of the

Seventh Annual Structure in Complexity Theory Conference, Boston, Massachusetts,
USA, June 22-25, 1992. pp. 86–93. IEEE Computer Society (1992).

Descriptive Complexity of Deterministic Polylogarithmic Time 15

19. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. Syst. Sci. 41(3), 274–306 (1990)

20. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, Inc.,
New York, NY, USA, 3 edn. (2003)

21. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22
(1976)

22. Vardi, M.: The complexity of relational query languages. In: Proceedings 14th ACM
Symposium on the Theory of Computing. pp. 137–146 (1982)

