ZrO_{2}/Zr^{4+} surface coating/doping of $LiNi_{0.5}Mn_{1.5}O_{4-\delta}$ for lithium ion battery positive electrodes

¹ UHasselt, Institute for Materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, 3590 Diepenbeek, Belgium

UHASSELT

Introduction

High energy and power density lithium ion batteries are extensively being studied for their potential applications in portable electronics and hybrid/full electric vehicles as well as for their ability to store solar, wind and other renewable energies with high efficiency [1]. LiNi_{0.5}Mn_{1.5}O_{4- δ} (LNMO) is a high voltage lithium ion battery cathode material with potential for high power applications requiring good rate capability, such as hybrid/full electric vehicles [2].

The cyclic stability of LNMO remains an issue since all cathode materials containing Mn are challenged with a capacity fade problem due to Mn leaching into commercial electrolytes, during cycling or storage [1, 3]. One of the mechanisms causing Mn leaching is by hydrofluoric acid corrosion. HF forms by hydrolysis of LiPF₆ salt in electrolyte in presence of traces of water [3]. One way to prevent the Mn loss is to modify the surface of the cathode particles by coating or doping the surface with a chemically stable material. Zr^{4+}/ZrO_2 is a good canditate to be used as a surface modification material since Zr-O has a high bond-dissociation energy (766.1±10.6 kJ/mol [4]). Zr-O presence at the surface can make the particle more stable against leaching compared to Mn-O (362±25 kJ/mol) or Ni-O (366±30 kJ/mol) presence at the surface. Purpose of this study is therefore to coat or dope the LNMO particle surfaces with ZrO_2 shell or Zr^{4+} cation, respectively, to obtain batteries having better cycle life and rate performance than the LNMO without any surface modification.

Experimental [5,6]

powder			
Calcination at 900°C, 10h, DA, 5°C/min heating rate	\longrightarrow	LINI _{0.5} M (LNI DOM	IN _{1.5} Ο _{4-δ} MO) /der
		pow	

Results

Optimization of the ZrO₂ loading on LNMO powder

55°C cycling

Sample	LNMO (g)	Zirconium butoxide (mL)	NH ₃ (25wt.%) (mL)	Annealing
1	0.2	20	0.5	HT-XRD
2	0.4	5	0.2	500°C, 4h
3	0.4	5	0.2	500°C, 10h
4	0.4	5	0.1	500°C, 4h
5	0.4	5	0.1	500°C, 10h

100

