
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Subsequence versus substring constraints in sequence pattern languages

Peer-reviewed author version

ENGELS, Steven; TAN, Tony & VAN DEN BUSSCHE, Jan (2021) Subsequence

versus substring constraints in sequence pattern languages. In: ACTA

INFORMATICA, 58, p. 35-56.

DOI: 10.1007/s00236-019-00347-5

Handle: http://hdl.handle.net/1942/30404

Acta Informatica manuscript No.
(will be inserted by the editor)

Subsequence versus substring constraints in sequence
pattern languages

Steven Engels · Tony Tan · Jan Van den
Bussche

Received: date / Accepted: date

Abstract A family of logics for expressing patterns in sequences is investi-
gated. The logics are all fragments of first-order logic, but they are variable-
free. Instead, they can use substring and subsequence constraints as basic
propositions. Propositions expressing constraints on the beginning or the end
of the sequence are also available. Also wildcards can be used, which is im-
portant when the alphabet is not fixed, as is typical in database applications.
The maximal logic with all four features of substring, subsequence, begin–end
constraints, and wildcards, turns out to be equivalent to the family of star-free
regular languages of dot-depth at most one. We investigate the lattice formed
by taking all possible combinations of the above four features, and show it
to be strict. For instance, we formally confirm what might intuitively be ex-
pected, namely, that boolean combinations of substring constraints are not
sufficient to express subsequence constraints, and vice versa. We show an ex-
pressiveness hierarchy results from allowing multiple wildcards. We also inves-
tigate what happens with regular expressions when concatenation is replaced
by subsequencing. Finally, we study the expressiveness of our logic relative to
first-order logic.

Keywords pattern language · subsequence · substring · automata · infinite
alphabet

The first author acknowledges the generous financial support from Taiwan Ministry of Sci-
ence and Technology under grant no. 107-2221-E-002-026-MY2.

S. Engels
Hasselt University
E-mail: steven.engels@uhasselt.be

T. Tan
National Taiwan University
E-mail: tonytan@csie.ntu.edu.tw

J. Van den Bussche
Hasselt University
E-mail: jan.vandenbussche@uhasselt.be

2 Steven Engels et al.

1 Introduction

A lot of data that we want to manage, query, mine, using modern database
systems, is sequential in nature. Sample application areas are text [11], se-
quence mining [5], bioinformatics [24,6], time series [7], and of course, XML.
For querying as well as mining, we want declarative languages, logics, in which
we can formally express conditions on sequences. In query applications, these
sequences would come straight from a database, and the conditions are meant
as query conditions on the sequences that we want to retrieve; in mining,
these sequences can be mined from a database, and the conditions are meant
as constraints on the desired mining output (mining under constraints).

A classical family of conditions on sequences is the family of regular lan-
guages.1 This family can be expressed using three classical and equivalent
logics: finite automata (insofar this counts as a logic); regular expressions; and
monadic second-order logic (Büchi’s sequential calculus [1,23]). We can limit
the sequential calculus to first-order, so that we get the relational calculus
familiar from database theory but restricted to work on sequential structures
only. When we do that, we can express exactly the star-free regular languages,
which are defined by the star-free regular expressions: regular expressions ex-
tended with complementation, but limited by throwing out Kleene star.

Regular expressions or calculus formulas are natural and powerful for-
malisms, but not very user-friendly [9]. Indeed, users of information systems
much prefer logics akin to the search expressions familiar from boolean in-
formation retrieval [3], in which one specifies keywords and combines those
using and, or, and not. Note that keywords are nothing but constraints that
certain patterns, namely substrings, must occur in the sequence. But apart
from substring, also subsequence patterns are very important in many appli-
cations (consult the references given in the first paragraph). A substring is a
consecutive part of a sequence, whereas the letters of a subsequence do not
need to occur consecutively. So, every substring is a subsequence, but not vice
versa. For example, aba is a subsequence of cacbcca, but not a substring. In
this paper, we will use comma , to indicate that a pattern should occur as a
subsequence rather than as a substring. In contrast, we will use dots to indi-
cate a substring pattern. Thus in the previous example we would say that the
sequence cacbcca satisfies the pattern a , b , a but not the pattern a . b . a.

The goal of this paper is to fill a small but worthwhile gap in the litera-
ture, namely to clarify the differences in expressive power of substring versus
subsequence constraints in sequence pattern languages, and also to investi-
gate their combination. Our points of departure are the two basic logics P{.}
and P{,} consisting of boolean combinations of substring patterns and subse-
quence patterns, respectively. They have incomparable expressiveness, as we
will show. The logic P{.} is “locally testable” [12], and indeed, if we addition-
ally allow the begin-marker ^ and the end-marker $ in patterns, the extended

1 If we identify a condition with the set of sequences (words) that satisfy it, a condition
is indeed a formal language.

Subsequence versus substring constraints in sequence pattern languages 3

logic P{.,^$} equals, by definition, the family of locally testable languages. On
the other hand, the logic P{,} equals, by definition, the family of piecewise
testable languages [15,19].

Of course we can also add the feature ^, $ to P{,}, which will result in a
logic P{,,^$} incomparable with P{.,^$}. In the end we can combine all three
features in one logic P{.,,,^$}, where we can have mixed substring–subsequence
patterns like a . b , b . c , c , a.2 We will show that P{.,,,^$} equals the family
of star-free regular languages of dot-depth at most one [4,2,22,15].

In our work, we also take into account the case when the alphabet, over
which the sequences are defined, is not fixed. In the theory of formal languages,
the alphabet is usually assumed to be fixed, but in database applications that is
not always a reasonable assumption. Think of the one-letter wildcard ?. If the
alphabet is fixed, such a wildcard can always be eliminated using disjunction,
e.g., if the alphabet is {a, b, c}, then c?a can be rewritten as caa∨cba∨cca. But
such a rewriting is infeasible if the alphabet equals the set of data elements
from some database instance, which may be large and constantly changing.
In this spirit, we include the wildcard ? as an additional feature that can
be added to all the logics we consider. Notably, all of our positive results, to
the effect that one logic is at least as powerful than another, will be shown
to hold uniformly over unknown alphabets; all of our negative results, to the
effect that a certain condition cannot be expressed in some logic, will be shown
to hold already for the fixed two-letter alphabet {a, b}.3 The only exception
is, of course, where we show that the logics with ? are more powerful than
those without. In fact, we extend this result to the case of arbitrary number of
wildcards, namely, we show that more wildcards means more expressiveness.
This result is achieved via pebble automata over infinite alphabet, a well known
model of computation over infinite alphabets [13,20,21].4

We also investigate what happens with the classical formalism of regular
expressions when we replace the standard concatenation operator . by the
comma operator , which allows arbitrary letters to be inserted in between
two concatenated words. The semantics of Kleene star is similarly adapted.
The resulting logic of, as we call them, comma-regular expressions, denoted
by disjRE

,
, turns out to be rather weak. Specifically, disjRE

,
is equivalent

to the positive, even the positive–disjunctive, fragment of P{,,^$}. In particu-
lar, adding intersection to disjRE

,
does not give anything more. But we will

show that RE
,
, obtained by adding complementation to disjRE

,
, immediately

gives all (and only) the star-free regular languages. Finally, we study the ex-
pressiveness of our logic relative to the standard first-order logic over finite
strings.

2 Note that mixing , and . is the same as allowing “globbing” wildcards ∗ in substring
patterns, familiar from the Unix shell where the previous pattern would be written as ab ∗
bc ∗ c ∗ a.

3 Over the one-letter alphabet, all logics we consider collapse to the family of finite or
cofinite languages.

4 We note that, motivated in part by database applications, formal language theory has
now been revisited to accommodate an unknown (or infinite) alphabet [18].

4 Steven Engels et al.

Organisation. In Section 2 we define our pattern logic based on the operations
subsequence and substring and show that more operators means more expres-
siveness. In Section 3 we extend our pattern logic with the wildcard operators.
Then in Section 4 we study what we call comma-regular expressions, namely,
the regular expressions in which we replace the concatenation operator with
the comma operator. In Section 5 we compare the expressiveness of our pattern
logic with first-order logic. We conclude in Section 6.

2 Pattern logics

For convenience, we assume a countable infinite set U, the elements of which
are called letters/symbols. An alphabet is defined as a finite subset of U. The
set of finite sequences over an alphabet Σ is denoted by Σ∗.

2.1 Patterns

Let Σ be an alphabet. We define the set of basic patterns over Σ recursively
as follows:

1. ∅ is a basic pattern.
2. Every letter a ∈ Σ is a basic pattern.
3. For any subset Z ⊆ Σ, the expression ? \ Z is a basic pattern.
4. If α and β are basic patterns, so are α . β and α , β.

A pattern is either a basic pattern, or is of one of the three forms ^β, β $,
or ^β $ with β a basic pattern. We call ^ and $ the begin and end marker,
respectively, and we assume that they do not belong to U.

The language generated by a basic pattern β over Σ, denoted by LΣ(β), is
inductively defined as follows:

1. LΣ(∅) := ∅.
2. LΣ(a) := {a}.
3. LΣ(? \ Z) := Σ \ Z.
4. (a) LΣ(α.β) := LΣ(α).LΣ(β), with . the classical concatenation operator

on sequences, extended to sets of sequences in the standard way.
(b) LΣ(α , β) := LΣ(α) , LΣ(β), with , the operator on sets of sequences

defined as follows:
S , T = S .Σ∗ . T.

The set of sequences that match pattern α over Σ, denoted by MΣ(α), is
defined as follows. For any basic pattern β, we let:

MΣ(β) := Σ∗ . LΣ(β) .Σ∗

MΣ(^β) := LΣ(β) .Σ∗

MΣ(β $) := Σ∗ . LΣ(β)

MΣ(^β $) := LΣ(β)

Subsequence versus substring constraints in sequence pattern languages 5

When the alphabet Σ is clear from the context, we will omit Σ and simply
write basic patterns, patterns, L(α) and M(β).

A pattern is also called a {., ,, ?, ^$}-pattern. For any subset f of the set
of features {., ,, ?, ^$}, we can consider the patterns that only use features
from f ; such patterns are called f -patterns. If such a pattern is basic, it is also
called a basic f -pattern. To be interesting, f should contain at least the dot
or the comma, thus:

Definition 1 A feature set is a subset of {., ,, ?, ^$} containing at least the
dot or the comma.

It is rather apparent that ^ and $ are orthogonal in their semantics. So,
we group them as one feature to avoid the pedantic case of a set of features
that includes one, but not the other.

Example 1 Take Σ = {a, b, c}.

– a . b , (? \ {b}) . c , c , a is a basic pattern over Σ;
– a . b . c is a basic {.}-pattern over Σ; and
– a , b , c $ is a {,, ^$}-pattern over Σ.

We will use the following terminologies and notations. We write ? to ab-
breviate ?\∅. The length of a pattern α, denoted by |α|, is defined inductively
as follows.

– |∅| = 0.
– |? \ Z| = |a| = 1, for any set Z and any letter a.
– |β . γ| = |β , γ| = |β|+ |γ|.
– |^β $ | = |^β| = |β $ | = |β|, for any basic pattern β.

That is, the length of a pattern is the number of letters occurring in it. Note
that the length of a sequence that matches a pattern α must be at least |α|.

For a {., ,}-pattern β, the basic sequence of β is the sequence obtained
from β with the dot and comma signs omitted. For example, if β is a . b , c ,a,
then its basic sequence is abca. Obviously, the basic sequence of β matches β.

For an integer n ≥ 1, for a letter a, we write an to denote the pattern
a a, where a appears n number of times.

2.2 Logics

A formula is simply a boolean expression built from patterns over some al-
phabet Σ. If a formula ϕ is built from patterns over Σ, then we say that ϕ is
over Σ.

A formula is also called a {., ,, ?, ^$}-formula. For any feature set f , we
can consider the formulas that only use f -patterns; such formulas are called
f -formulas. The logic consisting of all f -formulas is denoted by Pf .

Example 2 An example of a formula is ¬(a . b) ∧ ^b , c $.

6 Steven Engels et al.

The set of sequences over Σ that are matched by a formula ϕ over Σ,
denoted by MΣ(ϕ), is defined in the obvious manner:

– For a pattern α, we have already defined MΣ(α) in the previous subsection;
– MΣ(ϕ ∨ ψ) := MΣ(ϕ) ∪MΣ(ψ);
– MΣ(ϕ ∧ ψ) := MΣ(ϕ) ∩MΣ(ψ);
– MΣ(¬ϕ) := Σ∗ \MΣ(ϕ).

Conjunction is definable in terms of disjunction and negation, but later we
will also consider logics without negation. As before, when the alphabet Σ is
clear from the context, we will omit Σ and simply write formulas and M(β).

Remark 1 Note that a formula is not defined over a fixed alphabet Σ and
neither is the logic Pf . Obviously, if a formula is over an alphabet Σ, then it
is also a formula over any alphabet Σ′ ⊇ Σ. In fact, it is valid to say that a
formula is over Σ0, where Σ0 is the set of symbols that appear in the patterns
in the formula.

For this reason, we will say that an alphabet Σ is appropriate for a formula,
if Σ contains all the symbols that appear in it. Of course, the set MΣ(ϕ)
depends on the alphabet Σ. Note that the notion of “appropriate alphabet”
is similar to the one in mathematical logic, where it is not uncommon to state
that a vocabulary is appropriate for a first-order formula.

2.3 Regular expressions

From the elementary theory of computation, let us recall, for any alphabet
Σ, the syntax of the regular expressions over Σ. The primitive expressions
are ∅, ε, a for any a ∈ Σ, and ? \ Z for any Z ⊆ Σ. The primitive ? \ Z is
nonstandard in regular expressions but is included here in order to be able to
work with unknown alphabets. The operators are union e1 ∪ e2, intersection
e1 ∩ e2, complementation ec, concatenation e1 . e2, and Kleene star e∗. The
language over Σ generated by an expression e is denoted by LΣ(e) and defined
in the well-known way. In particular, as for patterns, we define LΣ(? \ Z) as
Σ \ Z. Note that LΣ(∅c) equals Σ∗.

In standard presentations of the regular expressions, intersection and com-
plementation are not included, but they are included here so as to be able to
define the family of star-free regular expressions simply as those expressions
that do not use Kleene star. We denote this family by RE0. A well-known
subfamily of RE0 is that of the star-free regular expressions of dot-depth at
most one, denoted by RE1

0. Informally, these are the expressions that do not
use nested applications of the . operator. This, however, is defined under the
liberal interpretation of . as an associative operator that can take any num-
ber of arguments. For example, a . (b . c) does not really count as a nested
application, as we can view it simply as the concatenation (a . b . c) of three
arguments.

Formally, the dot-depth hierarchy of expressions within RE0 is defined
inductively as follows (for a recent review see [16]).

Subsequence versus substring constraints in sequence pattern languages 7

– An RE0 expression is said to be of dot-depth 0 if it does not use the
concatenation operator. Thus, the expression is a boolean combination
(union, intersection, complementation) of primitive expressions.

– Let k be a natural number. An RE0 expression is said to be of dot-depth at
most k + 1 if it is a boolean combination of concatenations of expressions
of dot-depth at most k. Here, by a concatenation of expressions e1, . . . , en,
we mean the expression (e1 . · · · . en).

Naturally, a language over Σ is said to be of dot-depth at most k if it
can be generated by an expression over Σ of dot-depth at most k. Often, the
notion of dot-depth is directly defined for languages, without going through
expressions, but the notions are the same.

Similar to Section 2.2, given an expression α ∈ RE0, we can say that an
alphabet Σ is appropriate for α, if Σ contains all the symbols appearing in α.

Example 3 The expression

e = (∅c . a . b . ∅c)c ∩ (bc . ∅c . c)

belongs to RE1
0, i.e., has dot-depth one. Note that for every Σ ⊇ {a, b, c},

LΣ(e) equals MΣ(ϕ) for the formula

ϕ = ¬(a . b) ∧ ^? \ {b} , c $.

The above example suggests a connection between dot-depth at most one
and the logic of the previous section. We will establish this connection formally
in the next section.

2.4 Relative expressiveness

One can think of a sequence pattern logic P in general to be any formal system
that associates to any alphabet Σ a set of formulas over Σ, and to each formula
ϕ over Σ a set ModΣ(ϕ) of sequences over Σ that “satisfy” ϕ. In this sense, all
logics Pf introduced above are sequence pattern logics (with ModΣ(ϕ) given
by MΣ(ϕ)), and RE0 and RE1

0 are as well (with expressions playing the role
of formulas and ModΣ(e) given by LΣ(e)).

When a formula ϕ belongs to the set of formulas associated to alphabet
Σ, we say that Σ is appropriate for ϕ. For the following definition of uni-
form expressiveness, it is important to note that a formula may have many
appropriate alphabets.

We can now give very general notions of relative expressiveness of sequence
pattern logics.

Definition 2 Let P1 and P2 be two sequence pattern logics and let Σ be an
alphabet.

– Let ϕ1 be a P1-formula and ϕ2 be a P2-formula, both over Σ. We say that
ϕ1 is expressible by ϕ2 over Σ, if ModΣ(ϕ1) = ModΣ(ϕ2).

8 Steven Engels et al.

– We say that P2 is more expressive than P1 over Σ, if every P1-formula ϕ1

over Σ is expressible over Σ by some P2-formula ϕ2 over Σ.
– Let ϕ1 be a P1-formula and ϕ2 be a P2-formula. We say that ϕ1 is uniformly

expressible by ϕ2, if there is an alphabet Σ0 such that
1. every alphabet Σ containing Σ0 that is appropriate for ϕ1 is also ap-

propriate for ϕ2; and
2. over every such alphabet Σ, ϕ1 is expressible by ϕ2.

– We say that P2 is uniformly more expressive than P1, if every P1-formula
ϕ1 is uniformly expressible by some P2-formula.

We say that P2 is strictly more expressive than P1 (over a fixed alphabet
or uniformly), if P2 is more expressive than P1 but not vice versa. If P1 is
more expressive than P2 and vice versa, we call P1 and P2 equally expressive.

Note that our definition of uniform expressibility allows some leeway in the
form of a minimum alphabet Σ0 that may be assumed by ϕ2. For example,
the formula ¬∅ is uniformly expressible by the regular expression a∪ac, where
a is any letter. So here we would use Σ0 = {a}. While we think it is only
reasonable to allow this leeway, in our results, we will actually not need it.

Note also that a positive result, to the effect that one logic is more expres-
sive than another, is stronger if proved uniformly, whereas a negative result is
stronger if proved for a fixed alphabet.

Example 4 As noted in the Introduction, it is easy to see that for any feature
set f , the logic Pf∪{?} and Pf are equally expressive over any fixed alphabet.
But this is not true uniformly: as we will see later wildcards do add expres-
siveness when the alphabet is not fixed.

Our first result establishes an equivalence between the full logic and the
star-free expressions of dot-depth at most one.

Proposition 1 P{.,,,?,^$} and RE1
0 are equally expressive uniformly.

Proof Every basic pattern β can be very simply translated into an RE1
0-

expression eβ such that LΣ(β) = LΣ(eβ) for every alphabet Σ appropriate
for β, as shown in the following table.

β eβ
a a

? \ Z ? \ Z
α . β eα . eβ
α , β eα . ∅c . eβ

We do not obtain nested dots since both . and , are translated in terms
of concatenation; concatenation is associative, and moreover in RE0 we use
concatenation as a multi-argument operator. For example, if β is (a . b , c) . a,
then eβ is (a . b . ∅c . c . a).

It is then obvious from the definition of MΣ(α) that every pattern α can
be translated into an RE1

0-expression gα such that MΣ(α) = LΣ(gα). Finally,

Subsequence versus substring constraints in sequence pattern languages 9

the boolean connectives ∨, ∧ and ¬ are translated into union, intersection and
complementation, respectively.

For the other direction, we begin by defining the notion of an extended
primitive regular expression. These are either the primitive expressions we
already had (∅, ε, a, or ? \ Z), or are of the form ∅c, εc, or len≥2. Here, len≥2

is an abbreviation for ? . ? . ∅c, where ? itself abbreviates ? \ ∅. Recall that
LΣ(∅c) = Σ∗, so LΣ(len≥2) is the set of all strings over Σ of length at least
two. Note that LΣ(εc) is the set of all nonempty strings over Σ.

We now claim that every RE0 expression e of dot-depth 0 can be equiva-
lently written as a union of extended primitive expressions. To prove this claim,
we may assume that e is in disjunctive normal form, so we may actually focus
on the case where e is an intersection of primitive regular expressions and
their complements. If e is a single primitive regular expression, the claim is
trivial. If e is the complement of a primitive regular expression, we can reason
as follows:

– ∅c is itself an extended primitive expression.
– ac is equivalent to ε ∪ (? \ {a}) ∪ len≥2.
– εc is itself an extended primitive expression.
– (? \ Z)c is equivalent to ε ∪

⋃
a∈Z a ∪ len≥2.

Since intersection distributes over union, the claim now follows because the
intersection of two extended primitive expressions can again be written as an
extended primitive expression. We verify the latter statement as follows.

– The intersection of ∅ with any other extended primitive expression is ∅.
– The intersection of ε with ∅c is ε; otherwise, for g of the form a, ? \ Z, εc

or len≥2, we have ε ∩ g = ∅.
– The intersection of a with ∅c or εc is a; the intersection of a with ? \ Z is
a if a /∈ Z and ∅ otherwise; a ∩ b = ∅ for letters a 6= b; and a ∩ len≥2 = ∅.

– The intersection of ?\Z with ∅c and εc is ?\Z; with len≥2, the intersection
is ∅; and (? \ Z1) ∩ (? \ Z2) = ? \ (Z1 ∪ Z2).

– The intersection of ∅c with any regular expression g is again g.
– Finally, εc ∩ len≥2 = len≥2.

By the claim, and since concatenation distributes over union, a concate-
nation of RE0-expressions of dot-depth zero can then be written as a union
of concatenations of extended primitive expressions. We next argue that any
such concatenation of extended primitive expressions can be expressed by a
pattern. Indeed, if we have just ε by itself, this can be expressed as ^ $. Oth-
erwise ε can be ignored. Now in the concatenation we perform the following
modifications, in order:

1. Each occurrence of ∅c is replaced by a comma.
2. Each occurrence of εc is replaced by ?,.
3. Each occurrence of len≥2 is replaced by ? . ?,.
4. Repeatedly replace any two consecutive commas, or comma and dot, or

dot and comma, by a single comma.

10 Steven Engels et al.

If the resulting expression begins with a comma, this comma is deleted, and
the same is done with a trailing comma. If, on the other hand, there was no
comma at the beginning, a ^ marker is placed there; if there was no comma at
the end, a $ marker is placed there. We thus obtain the desired pattern. We
conclude that any RE1

0-expression can be written as a boolean combination of
unions of patterns, i.e., a boolean combination of patterns, i.e., a formula, and
we are done. ut

Remark 2 As mentioned in the introduction, over every fixed alphabet P{.,^$}
and P{,} express exactly the locally testable languages and the piecewise
testable languages, respectively. Indeed the standard definitions of locally
and piecewise testable languages [15] essentially amount to stating that the
languages are expressible by a {., ^$}- and {,}-formulas, respectively. Note
also that P{.,,,^$} also captures the notion of locally threshold testable lan-
guages [17]. All these show yet another connection between our logic and a
known family of star-free regular languages.

On the other hand, note that here is no standard uniform notion of lo-
cally testable. Our result shows that the logic P{.,^$,?} and P{,,?} are natural
candidates for the uniform notion of locally and piecewise testable languages,
respectively.

We next explore the lattice of the different logics Pf , leaving wildcards out
for the time being. So, the six possibilities for f are {.}; {., ,}; {., ^$}; {,};
{,, ^$}; and {., ,, ^$}. We establish that each feature strictly adds expressive-
ness, and that incomparable sets of features yield incomparable expressive-
ness.5

Theorem 1 Let f and g be feature sets without ?.

1. If f is included in g, then Pg is uniformly more expressive than Pf .
2. If f is not included in g, then Pg is not more expressive than Pf already

over the fixed two-letter alphabet {a, b}.

Proof The first statement is clear, because if f is included in g, then the logic
Pf is simply syntactically contained in the logic Pg. We establish the second
statement. For each feature we exhibit a condition on sequences over {a, b}
that is expressible in the minimal logic having the feature, but not in the
maximal logic not having the feature.

For the feature . we use the formula (actually, pattern) a.b.a. So, we show
that “the sequence has a substring aba” is not expressible by a {,, ^$}-formula
over {a, b}. Thereto, consider any such formula ϕ. Let m be the maximal
length of a pattern from ϕ, and consider the two sequences s1 = a(ba)m+1 and
s2 = a(bba)m+1. Clearly, s1 has a substring aba but s2 does not. Nevertheless,
s1 and s2 are indistinguishable by ϕ. Indeed, we will verify that s1 and s2
satisfy exactly the same {,, ^$}-patterns over {a, b} of length ≤ m.

5 By the connections given in the previous section, this theorem includes as a special case
the long-known fact that the family of locally testable languages is strictly included in the
family of star-free regular languages.

Subsequence versus substring constraints in sequence pattern languages 11

Specifically, we claim that, for i = 1, 2, the sequence si matches a {,, ^$}-
pattern of length ≤ m if and only if that pattern satisfies the following prop-
erties:

1. if it begins with a begin-marker, it must begin with ^a;
2. if it ends with an end-marker, it must end with a $;
3. if it has both ^a and a $, then it must contain at least one comma.

This claim is readily verified as follows.

Only if. The first two properties hold because si starts and ends with a. The
third property holds because, without at least one comma, a {,, ^$}-pattern
that has both ^a and a $ must be ^a $ which is not matched by si.

If. Consider a {,, ^$}-pattern of length ≤ m satisfying the three properties.
For clarity, assume first the case when the pattern has both ^a and a $.
Hence, it must be of the form: ^a , c1 , . . . , cn , a $, where 0 ≤ n ≤ m− 2.
Since each ci is either a or b, both s1 and s2 match the pattern.
For the other cases, i.e., when either ^a, or a $, or comma is missing, the
reasoning is similar.

For the feature , we use the pattern a , b , a. So, we show that “the se-
quence has a subsequence aba” is not expressible by a {., ^$}-formula over
{a, b}. Thereto, consider any such formula ϕ. Let m be the maximal length of
a pattern from ϕ, and consider the two sequences s1 = bm+1abm+1abm+1 and
s2 = bm+1abm+1. Clearly, s1 has a subsequence aba but s2 does not. Neverthe-
less, in the same manner as above, we claim that s1 and s2 are indistinguish-
able by ϕ, by showing for i = 1, 2, the sequence si matches a {., ^$}-pattern
over {a, b} of length ≤ m if and only if that pattern satisfies the following
properties:

1. It must contain at most one a.
2. It does not contain both ^ and $.
3. If it contains ^ or $, it must not contain any a.

This claim is readily verified as follows

Only if. The first property holds because the pattern has length ≤ m, and in
s1, the two a’s are strictly more than m letters away from each other. In s2,
there is even only one a. The second property holds because the pattern,
having length ≤ m, cannot match the entire si which is strictly longer than
m. The third property holds because the only a in si is strictly more than
m letters away from both the beginning and the end.

If. Consider a {., ^$}-pattern of length ≤ m satisfying the three properties.
We consider two cases. If the pattern has no a, then it must be of the form:
^bn, or bn $, or bn, where n ≤ m. Obviously, both s1 and s2 match such
pattern. If the pattern has an a, then a appears only one time and the
pattern is of the form: bn .a . bk, where n+k ≤ m. Obviously, both s1 and
s2 match such pattern.

12 Steven Engels et al.

,^$?

.,^$?

. ,

.^$., ,^$

.,^$

.? ,?

.^$? .,?

Fig. 1 Expressiveness lattice of the feature sets. Each arrow gives strictly more expressive-
ness. Feature sets that are incomparable in the lattice have incomparable expressiveness. The
dotted arrows are used to highlight the correspondence between the lattice of feature sets
with wildcard and the lattice of feature sets without wildcards, as given by Proposition 2.

For the feature ^$ we use the pattern ^a. Take any {., ,}-formula ϕ. Let
ϕ a boolean combination of patterns β1, . . . , βn. Let w1, . . . , wn be the basic
sequences of β1, . . . , βn, respectively, and let s0 = w1 · · ·wn. Then consider
the sequences s1 = as0 and s2 = bs0. Clearly, s1 begins with a but s2 does
not. Nevertheless, s1 and s2 both match all the patterns from ϕ, so they are
indistinguishable by ϕ. ut

3 Wildcards

In this section, we extend our exploration of the lattice of possible feature sets
by including wildcards. The final picture will be as shown in Figure 1.

First, we confirm that the sublattice formed by the feature sets that do
contain wildcard is isomorphic to the sublattice formed by the feature sets
that do not:

Proposition 2 Let f and g be feature sets containing ?. Then the state-
ments (1) and (2) from Theorem 1 also hold for f and g.

Proof Let f ′ = f \{?} and g′ = g \{?}. If f is not a subset of g, we know from
Theorem 1 that Pg′ is not more expressive than Pf ′

over the fixed alphabet
{a, b}. Over any fixed alphabet, however, Pf and Pf ′

, and Pg and Pg′ , are
equally expressive. Hence Pg is not more expressive than Pf . ut

Subsequence versus substring constraints in sequence pattern languages 13

It remains to show that adding wildcards adds expressiveness. Of course,
this can only be shown in the uniform setting, as stated in the following the-
orem.

Theorem 2 The pattern ^? $ cannot be expressed uniformly by any {., ,, ^$}-
formula.

Proof We first claim that both the sequences c and cc do not match any
{., ,, ^$}-pattern α, when α does not use the letter c. Indeed, if |α| = 0, then
c and cc do not match α. If |α| 6= 0, then α contains a letter that is not c,
which means that to match α, a sequence must contains a letter that is not c.

Now, assume that ^? $ is uniformly expressed by {., ,, ^$}-formula ϕ. Let
Σ0 be such that for every Σ ⊇ Σ0, MΣ(ϕ) = MΣ(^? $). Let c be a letter
that is neither in Σ0 nor used in ϕ. By our claim above, either both c and
cc are in MΣ(ϕ), or both are not in MΣ(ϕ). However, c ∈ MΣ(^? $), but
cc /∈MΣ(^? $).

In fact, Theorem 2 can be generalized for formulas with arbitrary wildcards
? \ Z where Z 6= ∅. We will prove it in the sharpest sense possible:

Theorem 3 Let Z be some non-empty finite alphabet. The pattern ?\Z cannot
be expressed uniformly by any {., ,, ^$, ?}-formula that only uses wildcards of
the form ? \ Z ′ with Z not a subset of Z ′.

Example 5 This is indeed the sharpest result possible. As soon as Z ⊆ Z ′, we
can express ? \ Z as ? \ Z ′ ∨

∨
a∈Z′\Z a.

Proof (of Theorem 3) Assume, for the sake of contradiction, that ? \ Z is
uniformly expressible by some {., ,, ^$, ?}-formula ϕ where the wildcards are
of the form ? \ Z ′ with Z * Z ′. By definition, this means that there is Σ0

such that for every alphabet Σ ⊇ Σ0, MΣ(? \ Z) = MΣ(ϕ). Without loss of
generality, we can assume that Σ0 contains all the letters in ϕ.

In the following let Σ = Σ0 ∪ Z ∪ {c}, where c /∈ Σ0 ∪ Z. By definition,
ϕ is a boolean combination of patterns α1, . . . , αk. Let β1, . . . , βk be the basic
patterns of α1, . . . , αk, respectively. Recall that basic patterns are patterns
without ^ and $. For each i = 1, . . . , k, let β̂i be the basic pattern obtained by
replacing every occurrence of a wildcard ?\Z ′ with a letter a ∈ Z\Z ′. Note that

each β̂i is a {., ,}-pattern. Let wi be the sequence of letters as they occur in β̂i,

i.e., wi is the basic sequence of β̂i. Let A = {wi | wi uses only letters from Z}
and let s0 be the concatenation of the sequences in A (in arbitrary order). If
A = ∅, we set s0 to be ε.

Let m the maximal length of the patterns in ϕ and let a ∈ Z. Then define
two sequences s1 = amcs0ca

m and s2 = ams0a
m.

Claim For each i = 1, . . . , k, s1 matches αi if and only if s2 matches αi.

The claim immediately implies that either s1, s2 ∈MΣ(ϕ) or s1, s2 /∈MΣ(ϕ),
which contradicts the assumption that MΣ(ϕ) = MΣ(? \Z), since s1 matches
? \ Z, but s2 does not.

14 Steven Engels et al.

We now prove the claim. Suppose s1 matches αi. We first consider the
case when αi neither begins with ^ nor ends with $. Let αi be of the form:
a1 ~1 a2 ~2 · · · ~n−1 an where each ~j ∈ {., ,} and each aj is either a letter
from Σ0 or a wildcard ? \ Z ′, where Z ′ * Z.

If some aj is a letter that is not in Z, then s1 cannot match αi, since s1
contains only letters from Z∪{c} and c /∈ Σ0. So, each aj is either a letter from
Z or a wildcard ? \Z ′. Thus, the basic sequence wi also matches αi. Since wi
is contained inside s0, and hence, also in s2, it follows that s2 matches αi too.
The proof for the converse direction that s2 matches αi implies s1 matches α1

is similar.
If αi begins with ^, then αi requires that the first l letters matches certain

pattern for some l ≤ m. Since s1 and s2 have the same first m letters, such
pattern is matched by s1 if and only if it is matched by s2. The proof is similar
when αi ends with $.

3.1 Patterns with Multiple Wildcards

In the semantics defined so far, different wildcard occurrences in a pattern can
be independently substituted by letters. In this section we define a pattern logic
equipped with multiple wildcards, where each wildcard can occur multiple
times in a pattern/formula, but different occurrences of the same wildcard
need to be substituted by the same letter. Note that the pattern logic in this
new setting captures any property expressible by the pattern logic defined
previously: When we want independent substitution as before, we simply use
different wildcards and each wildcard can only occur once. In the following we
write ?1, ?2, ?3, . . . to denote the wildcards.

Example 6 The pattern ?1 . ?2 is matched by all strings of length at least
two. In contrast, the pattern ?1 . ?1 is matched by all strings containing two
consecutive occurrences of some same letter.

Formally, basic patterns with multiple wildcards over the alphabet Σ are
defined recursively as follows.

1. ∅ is a basic pattern.
2. Every letter a ∈ Σ is a basic pattern.
3. For every finite subset Z (Σ, and every wildcard ?i, the expression ?i \Z

is a basic pattern.
As before, for succinctness, ?i \ ∅ is abbreviated as ?i.

4. If α and β are basic patterns, then so are α . β and α , β.

A pattern over the alphabet Σ is again of one of the four forms β, ^β, β $, or
^β $ where β is a basic pattern over Σ.

Next we present how a basic pattern β with multiple wildcards defines a
language LΣ(β) over Σ. Renaming the wildcards, if necessary, we may assume
that the wildcards in β are ?1, . . . , ?k. An interpretation of wildcards in β is a
function ξ : {?1, . . . , ?k} → Σ. The basic pattern β defines a language LξΣ(β)
with respect to a wildcard interpretation ξ as follows.

Subsequence versus substring constraints in sequence pattern languages 15

1. LξΣ(∅) := ∅.
2. For each a ∈ Σ, LξΣ(a) := {a}.
3. For each ?i \ Z, LξΣ(?i \ Z) := {ξ(?i)} \ Z.

4. If β = α . γ, then LξΣ(β) := LξΣ(α) . LξΣ(γ).

5. If β = α , γ, then LξΣ(β) := LξΣ(α) .Σ∗ . LξΣ(γ).

The language LΣ(β) generated by β is now obtained by taking the union over
all possible wildcard interpretations:

LΣ(β) :=
⋃

ξ:{?1,...,?k}→Σ

LξΣ(β).

Finally, as before, we use the markers ^ and $ to indicate whether a pattern
should hold at the start and end of a string, respectively. That is, the patterns
β, ^β, β $ and ^β $ define the following matching languages.

MΣ(β) := Σ∗ . LΣ(β) .Σ∗

MΣ(^β) := LΣ(β) .Σ∗

MΣ(β $) := Σ∗ . LΣ(β)

MΣ(^β $) := LΣ(β)

As before, formulas over Σ are boolean combinations of patterns (over Σ),
and they define languages over Σ where the boolean operators are interpreted
in the same way as in Subsection 2.2. As usual, we will omit Σ when it is clear
from the context.

Remark 3 Note that we define the semantics by iterating the interpretation
ξ “inside” the language LΣ(β). So, if we have a formula β1 ∧ β2, for some
patterns β1 and β2 using the same set of wildcards, its language is defined as
the intersection MΣ(β1) ∩MΣ(β2), where the interpretations ξ are iterated
independently in MΣ(β1) and MΣ(β2).

Example 7 Consider the pattern β := ^?1 . ?1 $. For an alphabet Σ, the lan-
guage MΣ(β) is {aa | a ∈ Σ}.

Another example is β := ?1 , ?1. Then, MΣ(β) consists of all the word
w ∈ Σ∗ in which some letter occurs at least twice in w. On the other hand,
MΣ(¬β) consists of all the words in Σ∗ in which there is no letter that occurs
more than once.

Yet, another example is β := ¬(^?1 $ ∨ ^?1 . ?2 $). Then, MΣ(β) consists
of all the words in Σ∗ of length at least 3.

In the following we will show that more wildcards will yield more expressive
power. We use the following notation. For every integer k ≥ 1, let fk be the
set of features {., ,, ^$, ?1, . . . , ?k}. We are going to prove the following.

Theorem 4 For every integer k ≥ 1, Pfk+1 is strictly more expressive than
Pfk uniformly.

16 Steven Engels et al.

Note that Pf1 is already strictly more expressive than the logic without
wildcard, as implied by Theorem 3. Before presenting the formal proof of
Theorem 4, we first present a brief sketch. We will need the following notation.
For a formula ϕ, let U(ϕ) denote the following language:

U(ϕ) :=
⋃

Σ is appropriate for ϕ

MΣ(ϕ)

Note that since we assume that every alphabet Σ is contained in the infinite
set U, the language U(ϕ) is a language over the infinite alphabet U.

To separate Pfk+1 from Pfk , we use the following pattern:

ψk+1 := ^ a . ?1 , ?1 . ?2 , ?2 . ?3 , ?3 . . . ?k , ?k . ?k+1 , ?k+1 . b $

Intuitively, for every alphabet Σ, the language MΣ(ψk+1) contains words of
the form:

ac1 w1 c1c2 w2 c2c3 w3 · · · wk ckck+1 wk+1 ck+1b, (1)

where a, b, c1, . . . , ck+1 ∈ Σ and w1, . . . , wk+1 ∈ Σ∗.
We will show that ψk+1 cannot be expressed with any formula in Pfk .

The proof is via the notion of weak pebble automata, a well known model of
computation for languages over infinite alphabets. (We will review its defini-
tion shortly.) The connection between the pattern logic Pfk and weak pebble
automata is established in the following lemma.

Lemma 1 For every integer k ≥ 1, and for every formula ϕ in Pfk , there
exists a weak (k+ 1) pebble automaton Aϕ such that the language accepted by
Aϕ is U(ϕ).

We note that the language U(ψk+1) is a language that has been denoted
by R+

k+2 by Tan [21]. Tan has proved that R+
k+2 cannot be recognized by any

weak (k + 1) pebble automaton [21, Lemma 4.3].6 Thus, proving Lemma 1
implies that ψk+1 is not uniformly expressible by any Pfk formula, and hence,
establishes Theorem 4.

In the rest of this section we will present the formal treatment. In Sub-
section 3.2 we will review the definition of weak PA. Then, in Subsection 3.3,
we will formally prove Lemma 1. Finally, we will present the formal proof of
Theorem 4 in Subsection 3.4.

6 The definition of R+
k+2 considered in [21] contains all words of the form (1) where each

ci does not appear in wi. However, this is merely a more restricted version of the language
U(ψk+1). The proof in [21, Lemma 4.3] still trivially holds even if we drop the requirement
that each ci does not appear in wi.

Subsequence versus substring constraints in sequence pattern languages 17

3.2 Review of weak pebble automata

Recall that we assume an infinite alphabet U. We reserve two special symbols
/ and ., which we assume do not belong to U. They will be used as the start
and end markers of the input strings of our automata.

Definition 3 [13,20] A weak k-pebble automaton (in short, k-PA) over U is a
system A = 〈Q, q0, F, µ〉 whose components are defined as follows.

– Q is a finite set of states; q0 ∈ Q is the initial state; and F ⊆ Q is the set
of final states.

– µ ⊆ C × D is a finite set of transitions, where C is the set of elements of
the form (i, σ, q) or (i, V, q), where
– 1 ≤ i ≤ k;
– σ ∈ U ∪ {/, .};
– V ⊆ {1, . . . , i− 1};
– q ∈ Q;

and D is the set of elements of the form (q, act), where q ∈ Q and act is
either stay, right, place-pebble or lift-pebble.

Elements of µ will be written as α→ β, where α ∈ C and β ∈ D.

We assume that the input to A is always of the form /w., where w ∈ U∗.
For a word w = d1 · · · dn ∈ U∗, with each dj ∈ U, a configuration of A

on w is a triple [i, q, θ], where i ∈ {1, . . . , k}, q ∈ Q, and θ : {1, . . . , i} →
{0, 1, . . . , n, n+ 1}. The number i denotes the active pebble and q the current
state. The function θ defines the position of the pebbles and is called the pebble
assignment. When θ assigns 0 or n+ 1 to a pebble, it means that the pebble
is currently placed on the start symbol / or on the end symbol ., respectively.
We assume that the head pebble never moves beyond the end symbol .. That
is, it never moves right once it reads ..

The initial configuration is γ0 = [1, q0, θ0], where θ0(1) = 0 is the initial
pebble assignment. A configuration [i, q, θ] with q ∈ F is called an accepting
configuration.

A transition (i, σ, p)→ β applies to a configuration [j, q, θ] (on w), if i = j,
p = q and dθ(i) = σ. A transition (i, V, p) → β applies to a configuration
[j, q, θ], if i = j, p = q, V = {l < i : dθ(l) = dθ(i)} and there is no transition
of the form (i, σ, p) that applies to it. Note that in a configuration [i, q, θ],
pebble i is in control, serving as the head pebble.

Next, we define the transition relation `A,w on configurations as follows:
[i, q, θ] `A,w [i′, q′, θ′], if there is a transition α→ (p, act) ∈ µ that applies to
[i, q, θ] on w such that q′ = p, θ′(j) = θ(j), for all j ≤ i, and

- if act = right, then θ(i) < n+ 1, i′ = i and θ′(i) = θ(i) + 1;
- if act = lift-pebble, then i > 1 and i′ = i− 1;
- if act = place-pebble, then i < k, i′ = i+ 1, and θ′(i+ 1) = θ′(i) = θ(i).

As usual, we denote the reflexive transitive closure of `A,w by `∗A,w. When
the automaton A is clear from the context, we will omit the subscript A.

18 Steven Engels et al.

We finally say that w is accepted byA, if there is an accepting configuration
[i, q, θ] such that [1, q0, θ0] `∗A,w [i, q, θ]. The language L(A) consists of all the
words accepted by A.

Remark 4 There are a few points worth stating here.

– In this paper we only consider non-deterministic weak PA, which is suffi-
cient for our purpose. Moreover, it has already been shown [20,21] that for
every integer k ≥ 1, deterministic, non-deterministic and alternating weak
k-PA are equivalent in expressive power.

– We note that there are two version of PA: strong PA and weak PA [13,21].
In strong PA, when a new pebble is placed, it is placed at the beginning
of the input word, whereas in weak PA, at the same position of the head
pebble. They are not equivalent in expressive power. As the name indicates,
strong PA is more expressive than weak PA. Moreover, in the original
definition of PA, the automaton can detect whether some pebbles occupy
the same position. In weak PA, such capability does not add any expressive
power, hence, omitted in Definition 3 above.

– Finally, in [20,21], the pebbles are numbered starting from k and going
down to 1. That is, it starts with pebble k and when pebble j is the head
pebble, it places pebble j−1. The order is reversed in this paper, where we
start from pebble 1 and go up to pebble k. The purpose is only to present
a neater proof, where we can match each wildcard ?i with pebble i.

3.3 Proof of Lemma 1.

We begin by noting the following lemma which can be proven by induction.

Lemma 2 Let Σ ⊆ Σ′, let ϕ be a Pfk -formula over Σ, and let s ∈ Σ∗. Then
s ∈MΣ(ϕ) if and only if s ∈MΣ′(ϕ).

Proof For any basic pattern β and any assignment ξ : {?1, . . . , ?k} → Σ, we

can prove by induction on β that s ∈ LξΣ(β) iff s ∈ LξΣ′(β). Note also that if

s ∈ LξΣ′(β) for some ξ : {?1, . . . , ?k} → Σ′, then the range of ξ must lie in Σ,
because s ∈ Σ∗. It follows that s ∈ LΣ(β) iff s ∈ LΣ′(β). Proceeding similarly
by induction on ϕ, we can now show the statement of the lemma. ut

In the following, let ϕ be a formula in Pfk . By the above lemma, and
since weak k-PA languages are closed under the boolean operators [21], it is
sufficient to prove Lemma 1 where ϕ is a single pattern of the form: ^β $, ^β,
β $ and β, where β is a basic pattern.

Let Σ be the set of symbols that appear in ϕ. We will first consider the
case when ϕ is of the form:

^ c1 ~1
c2 ~2

· · · cm ~m
cm+1 $

where each ci is either a symbol a ∈ Σ or ?j \Z and each ~i is either . or ,. By
renaming the wildcards, if necessary, we may assume that the first appearance
of ?i is to the left of the first appearance of ?i+1.

Subsequence versus substring constraints in sequence pattern languages 19

The automaton Aϕ is non-deterministic and intuitively, it is defined as
follows. The set of states is {q0, q1, . . . , qm+2, qm+3, p}, where q0 is the initial
state and qm+3 is the only final state. The state p is the “sink” state, from
which the automaton can never get out from. The purpose of each state qi
is to verify whether the pattern starting from ci, i.e., ci ~i

· · · ~m
cm+1 $, is

satisfied.

– If ci is a symbol from Σ, then it can only enter state qi+1 by reading ci.
– If ci is ?j \ Z and ?j has not appeared before, then it places a new pebble

here, moves right and enters state qi+1. Moreover, if it reads any of the
symbol from Z, it enters the “sink” state p.
Due to the assumption that the first appearance of ?j is before the first
appearance of ?j+1, the head pebble can only be pebble j. After it places
new pebble, the head pebble becomes pebble j + 1. Furthermore, this also
implies that the interpretation of each ?j is simulated by the symbol in the
position where pebble j is placed.

– If ci is ?j \ Z and ?j has appeared before, then it verifies that the head
pebble reads the same symbol as pebble j, moves right and enters state
qi+1. If it reads any of the symbol from Z, it enters the “sink” state p.

– If ~i is the comma operator ,, the head can move right for an arbitrary
number of times.

We now present the formal definition of the transitions in Aϕ. In the fol-
lowing for each i ∈ {1, . . . ,m+ 1}, we define the index li:

li := max({j | ?j appears in c1, . . . , ci−1} ∪ {0}).

That is, li is the maximal index of the wildcards ?j ’s that has already appeared
in c1, . . . , ci−1. If none of the wildcard appear in c1, . . . , ci−1, then li = 0.

First, it contains the following two transitions:

(1, /, q0)→ (q1, right) and (lm+2 + 1, ., qm+2)→ (qm+3, right)

For each i ∈ {1, . . . ,m+ 1}, it contains the following transitions.

– If ci ∈ Σ, then µ contains the transition (li + 1, ci, qi)→ (qi+1, right).
– If ci ∈ ?j \ Z and j ≤ li (i.e., ?j has already appeared before), then µ

contains the transitions:
– (li + 1, V, qi)→ (qi+1, right), for every V 3 j.
– (li + 1, σ, qi)→ (p, right), for every σ ∈ Z.

– If ci ∈ ?j \ Z and j > li (i.e., ?j has not already appeared before), then µ
contains the transitions:
– (li + 1, V, qi)→ (qi+1, place-pebble), for every V .
– (li + 1, σ, qi)→ (p, right), for every σ ∈ Z.

– If ~i is the comma operator ,, then µ contains the transitions:
– (li + 1, V, qi+1)→ (qi+1, right), for every V .
– (li + 1, σ, qi+1)→ (qi+1, right), for every σ ∈ Σ.

20 Steven Engels et al.

For the cases when the pattern ϕ is without the start and end markers ^ or
$, the automaton Aϕ can be defined similarly. Without ^, the head can move
right for an arbitrary number of times before entering q1, and without $, the
head can move right for an arbitrary number of times before entering qm+3.

3.4 Proof of Theorem 4

Suppose there is a formula ϕ ∈ Pfk such that for every finite alphabet Σ
appropriate for both ϕ and ψk+1, MΣ(ϕ) = MΣ(ψk+1). This implies U(ϕ) =
U(ψk+1). By Lemma 1, the language U(ψk+1) is accepted by a weak (k+1)-PA,
which contradicts a known result [21, Lemma 4.3].

4 Comma-regular expressions

The theme of this paper is to compare substring constraints to subsequence
constraints. Classical regular expressions are based on the concatenation op-
erator and thus slanted more towards substring constraints (although subse-
quence constraints are certainly expressible). It is therefore natural to ask what
happens with regular expressions when we replace the concatenation operator
by the comma operator that we used in Section 2.1 to define the semantics of
subsequence patterns: S , T = S .Σ∗ . T .

Thus, define the comma-regular expressions, denoted by RE
,
, just like the

regular expressions as recalled in Section 2.3, except that we replace e1 . e2 by
e1 , e2. Moreover, we leave out Kleene star.

Leaving out Kleene star is explained as follows. In the “world of comma”,
we would want to modify the semantics of Kleene star so as to be based not on
concatenation but on the comma operator. Classical Kleene star is the closure
of a set under concatenation. Accordingly, for any set S of sequences, let us
now redefine S+ to be the smallest superset of S that is closed under the
comma operator in the sense that if s ∈ S+ and t ∈ S+ then {s} , {t} ⊂ S+.
However, it turns out that this is already definable:

Proposition 3 The modified S+ equals S ∪ (S , S).

Proof Clearly, (S∪ (S ,S)) ⊆ S+. Conversely, also S+ ⊆ (S∪ (S ,S)). Indeed,
we verify that S∪(S,S) is closed under the comma operator. Let w ∈ {u},{v},
where u, v ∈ S ∪ (S , S). This means that w has a prefix and a suffix from S.
Thus, w ∈ (S , S) as desired. ut

So, we continue without Kleene star. In particular, RE
,

falls within the
star-free regular languages.

Let us first look at the fragment of RE
,

without ε, and without the in-
tersection and the complementation operators. We denote this fragment by
disjRE

,
. Indeed, intersection and complementation are neither present in the

Subsequence versus substring constraints in sequence pattern languages 21

classical regular expressions, although there, over any fixed alphabet, they are
definable using the other operators.7

We next show that intersection is actually definable in disjRE
,
. By the

positive fragment of a logic Pf , denoted by posPf , we mean all f -formulas
that do not use negation (only conjunction and disjunction). In the disjunctive
fragment, denoted by disjPf , we only use disjunction. We have the following
characterization:

Theorem 5 The following four logics have equal expressiveness uniformly:

1. posP{,,^$,?};
2. disj RE

,
extended with intersection;

3. disj RE
,

;
4. disjP{,,^$,?}.
Proof We will show 1⇒ 2⇒ 3⇒ 4⇒ 1, where the implication i⇒ j means
that the logic in item j is uniformly more expressive than the logic in item i.

For the implication 1 ⇒ 2, basic patterns in posP{,,^$,?} can be literally
viewed as expressions in disjRE

,
. Also, disjunction and conjunction can be

translated to union and intersection. So we only need to show how a pattern α
in posP{,,^$,?} is uniformly expressible by an expression eα in disjRE

,
. This

is shown in the following table. Here, β stands for a basic pattern. As always,
? abbreviates ? \ ∅.

α eα
β β ∪ (? , β) ∪ (β , ?) ∪ (? , β , ?)
^β β ∪ (β , ?)
β $ β ∪ (? , β)
^β $ β

For the implication 2⇒ 3, let e be an expression from disjRE
,
. We claim

that e can be rewritten into a union of expressions of the form: (c1,c2,· · ·,cn),
where each ci is either a letter or a wildcard.

We begin by normalizing the expression e so that each wildcard is of the
form ? \Σ with Σ the alphabet of all letters actually used in e. Such normal-
isation is always possible using union, similar to Example 5.

The proof of the claim is by induction on e. The base case is either:

– e is a single expression of the form (a1 ,a2 , · · ·,ak), where each ai is either
a letter or a wildcard, or

– e is e1 ∩ e2, where e1 and e2 are of the form: (a1 , a2 , · · · , ak) and
(b1 , b2 , · · · , bl), respectively, and each ai and bj are either letters or
wildcards.

The first case is of course trivial. We prove the second case. If a1 6= b1 or
ak 6= bl, then e can be rewritten as ∅. So, suppose that a1 = b1 and ak = bl. We
define the expression e′ which is the union of all the expressions (c1,c2,· · ·,cm),
where m ≤ kl and there is a mapping ξ1 : {1, . . . , k} → {1, . . . ,m} and
ξ2 : {1, . . . , l} → {1, . . . ,m} such that the following holds.

7 Uniformly over all alphabets, or over an infinite alphabet, this is another matter [10].

22 Steven Engels et al.

– Both ξ1 and ξ2 are strictly increasing, i.e., whenever i < i′ and j < j′,
ξ1(i) < ξ1(i′) and ξ2(j) < ξ2(j′).

– ξ1(1) = ξ2(1) = 1.
– ξ1(k) = ξ2(l) = m.
– For each i ∈ {1, . . . , k}, ai = cξ1(i).
– For each i ∈ {1, . . . , l}, bi = cξ2(i).
– For each j ∈ {1, . . . ,m}, there is i such that j = ξ1(i) or j = ξ2(i).

Since e′ is the union of all expressions (c1 , · · · , cm) with the properties above,
it is rather obvious that e′ captures the intersection e1 ∩ e2.

The induction step is rather straightforward, since both comma and inter-
section distribute over union.

For the implication 3 ⇒ 4, since comma distributes over union, we can
rewrite a disjRE

,
expression as a union of expressions of the form (a1,· · ·,an),

where each ai is either a letter or a wildcard. To obtain the desired formula it
now suffices to replace union by disjunction, and to add ^ and $, respectively,
at the beginning and end of each expression (a1 , · · · , an).

The implication 4⇒ 1 is trivial. ut

We now know that disjRE
,

is a fairly weak logic as it is equivalent to
posP{,,^$} over any fixed alphabet. What if we move to RE

,
, i.e., add com-

plementation? Surprisingly we make a big jump in expressiveness, and get all
star-free regular languages.

Theorem 6 RE
,

is equally expressive as RE0 over every fixed alphabet.

Proof We rely on the characterisation of RE0 as the smallest family of lan-
guages containing all finite languages, closed under the boolean operations,
and closed under the operations L → LaΣ∗ and L → Σ∗aL, as presented
in [15, Theorem 7.11].

To illustrate how any fixed sequence can be described, consider the se-
quence abc. This sequence can be defined as a , b , c ∩ (?, ?, ?, ?)c.

To show closure under L→ LaΣ∗ it suffices to show closure under L→ La
as LaΣ∗ = La , ε. But this is readily verified by induction: (e1 ∪ e2) . a =
(e1 . a) ∪ (e2 . a); (e1 , e2) . a = e1 , (e2 . a); and ec . a = (ε , a) ∩ (e . a)c.
Closure under L→ Σ∗aL is symmetric. ut

5 Comparison with first-order logic

In this section we will present a detailed comparison between the pattern logic
and first-order logic. A non-empty word w = d1 · · · dn ∈ Σ∗ of length n can
be viewed as a mathematical structure with domain [n] = {1, . . . , n} and the
following relations.

– The order relation < to be interpreted in the standard way.
– An equivalence relation ∼, where i ∼ j if and only if di = dj .
– Each letter a ∈ Σ defines a unary relation where a(i) holds if and only if
di = a.

Subsequence versus substring constraints in sequence pattern languages 23

We will consider the first-order logic (FO) for finite non-empty strings, i.e.,
the class of first-order sentences with atomic predicates: x < y, x ∼ y and a(x),
for each letter a ∈ U, where x and y are first-order variables. We say that a
word w match a sentence ϕ ∈ FO, if ϕ holds in w viewed as a mathematical
structure. For more details, see, e.g., [23,13].

In this section we are going to compare the expressiveness of the pattern
logics with FO. Note that Definition 2 can be easily adapted to include FO, but
with the empty string ε excluded from ModΣ(ϕ). The notion of appropriate
alphabet for an FO sentence ϕ can be defined similarly: An alphabet Σ is
appropriate for ϕ, if it contains all the letters in ϕ.

Theorem 7 below states over a fixed alphabet, FO is more expressive than
P{.,,,?,^$}, unless the alphabet contains only one letter.

Theorem 7

– Over an alphabet Σ that contains only one letter, P{.,,,?,^$} and FO are
equally expressive over Σ.

– Over an alphabet Σ that contains at least two letters, FO is strictly more
expressive than P{.,,,?,^$}.

Proof It is a well known fact that FO and RE0 are equally expressive over
any alphabet [12]. It has been shown that the dot-depth hierarchy is infinite
for alphabets containing at least two letters, but collapses to level 1, i.e.,
RE1

0, when the alphabet contains only one letter [2]. Since we have shown in
Proposition 1 that P{.,,,?,^$} and RE1

0 are equally expressive uniformly, our
theorem follows immediately. ut

Similarly, we can show that FO is strictly more expressive uniformly than
Pfk , for any integer k ≥ 1, as stated below.

Theorem 8

1. For every integer k ≥ 1, FO is uniformly more expressive than Pfk .
2. There is an FO sentence ψ that is not uniformly expressible by any Pfk

formula, for any integer k ≥ 1.

Hence, FO is strictly more expressive than Pfk , for every integer k ≥ 1.

Proof For the first part, let ϕ be Pfk formula. It suffices to show when ϕ is a
pattern. We will first consider the case when ϕ is of the form:

^ c1 ~1
c2 ~2

· · · cm ~m
cm+1 $

where each ci is either a letter a or ?j \ Z and each ~i is either . or ,.
The FO sentence that expresses ϕ uniformly states as follows. There is

z1, . . . , zm+1 such that the following holds.

1. z1 is the minimum, i.e., for all x, either x = z1 or x > z1.
2. zm+1 is the maximum, i.e., for all x, either x = zm+1 or x < zm+1.
3. For each i ∈ {1, . . . ,m},

24 Steven Engels et al.

– if ~i = ,, then zi < zi+1;
– if ~i = ., then zi + 1 < zi+1 and for all y 6= zi, zi+1, either y < zi or
y > zi+1.

4. For each i ∈ {1, . . . ,m+ 1},
– if ci = a, then the label in position zi is a;
– if ci = ?j \ Z, then the label in position zi is not from Z.

5. For each i 6= i′ ∈ {1, . . . ,m+ 1}, if ci is ?j \ Z and ci′ is ?j \ Z ′, for some
Z,Z ′, then zi ∼ zi′ .

Condition (1) is dropped, if the pattern ϕ does not start with ^. Likewise,
condition (2) is dropped, if ϕ does not end with $.

Next, we show the second part. We use the same technique as in Section 3.1
by reducing it to a known result for pebble automata. Let # be a letter, and
consider the language L⊇ that consists of all words of the form: u#v, where
does not appear in either u or v and every letter that appears in v also
appears in u.

The language L⊇ can be expressed by an FO sentence ψ⊇ that states the
following. There exists a position x such that the following holds.

– The letter in position x is # and it does not appear elsewhere.
– For every position y > x, there is z < x such that x ∼ y.

Now, if ψ⊇ is expressible uniformly by a Pfk formula ϕ, by Lemma 1,
U(ϕ) = L⊇ is accepted by a weak (k + 1)-PA. This contradicts the fact that
L⊇ is not accepted by any weak pebble automata [14,8]. ut

6 Conclusions

Starting from the basic dichotomy between substring and subsequence con-
straints, our goal has been to understand the expressiveness of very simple,
user-friendly sequence pattern logics.

Moreover, we have extended our pattern logic with multiple wildcards and
have given a connection between our logic and weak pebble automata, a model
of computation over infinite alphabets. This connection allows us to establish
a strict hierarchy of expressiveness based on the number of wildcards.

Acknowledgements We would like to thank the anonymous referees for their careful and
helpful comments in improving our paper. We also thank Frank Neven for suggesting the
connection to locally testable languages, and Jean-Eric Pin for his encouragement and help
in proving Theorem 6.

References

1. J.R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathe-
matische Logic und Grundlagen der Mathematik, 6:66–92, 1960.

2. J.A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite.
Journal of Computer and System Sciences, 16, 1978.

Subsequence versus substring constraints in sequence pattern languages 25

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley,
1999.

4. R.S. Cohen and J.A. Brzozowski. Dot-depth of star-free events. Journal of Computer
and System Sciences, 5(1):1–16, 1971.

5. G. Dong and J. Pei. Sequence Data Mining. Springer, 2007.
6. J.M. Patel (editor). Special issue on querying biological sequences. IEEE Data Engi-

neering Bulletin, 27(3), 2004.
7. Ch. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching

in time-series databases. In Proceedings ACM SIGMOD International Conference on
Management of Data, pages 419–429, 1994.

8. D. Genkin, M. Kaminski, and L. Peterfreund. Closure Under Reversal of Languages over
Infinite Alphabets. In F. Fomin and V. Podolskii, editor, Computer Science Symposium
in Russia, Proceedings (CSR), volume 10846 of Lecture Notes in Computer Science,
pages 145–156. Springer, 2018.

9. H.V. Jagadish et al. Making database systems usable. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 13–24, 2007.

10. M. Kaminski and T. Tan. Regular expressions for languages over infinite alphabets.
Fundamenta Informaticae, 69:301–318, 2006.

11. A. Loeffen. Text databases: A survey of text models and systems. SIGMOD Record,
23(1):97–106, 1994.

12. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
13. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite

alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.
14. L. Peterfreund. Closure under reversal of languages over infinite alphabets: a case

study. Master thesis, Department of Computer Science, Technion – Israel Institute of
Technology (2015).

15. J.E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook
of Formal Languages, volume 1, chapter 10. Springer, 1997.

16. J.E. Pin. The Dot-Depth Hierarchy, 45 Years Later. The Role of Theory in Computer
Science 2017: 177–202.

17. T. Place, L. van Rooijen, M. Zeitoun: Separating Regular Languages by Locally Testable
and Locally Threshold Testable Languages. Logical Methods in Computer Science 10(3)
(2014).

18. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In
Z. Ésik, editor, Computer Science Logic, Proceedings (CSL), volume 4207 of Lecture
Notes in Computer Science, pages 41–57. Springer, 2006.

19. I. Simon. Piecewise testable events In H. Barkhage, editor, Automata Theory and
Formal Languages, Proceedings, volume 33 of Lecture Notes in Computer Science, pages
214–222. Springer, 1975.

20. T. Tan. On pebble automata for data languages with decidable emptiness problem.
Journal of Computer and System Sciences, 76(8):778–791, 2010.

21. T. Tan. Graph reachability and pebble automata over infinite alphabets. ACM Trans-
actions on Computational Logic, 14(3):article 19, 2013.

22. W. Thomas. A concatenation game and the dot-depth hierarchy. In Computation
Theory and Logic, volume 270 of Lecture Notes in Computer Science, pages 415–426.
Springer-Verlag, 1987.

23. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, chapter 7. Springer, 1997.

24. J.T.L. Wang, B.A. Shapiro, and D. Shasha, editors. Pattern Discovery in Biomolecular
Data. Oxford University Press, 1999.

