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Abstract 

Phosphodiesterases (PDEs) have been an interesting drug target for many diseases. Although a vast 

amount of mainly preclinical studies demonstrate beneficial effects of PDE inhibitors for CNS diseases, 

no drugs are available for CNS indications yet. In this review, the rationale of PDE4 inhibitors for 

different CNS diseases is discussed: memory impairments, striatal disorders, multiple sclerosis, and 

acquired brain injury. However, clinical development has been problematic due to mechanism-based 

side effects of these drugs in humans. Our increased understanding of factors influencing the 

conformational state of the PDE4 enzyme, and how to influence binding affinity of PDE4 subtype 

inhibitors, holds great promise for the successful development of novel selective PDE4 inhibitors with 

higher efficacy and less side effects. 
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Highlights 

There is a vast amount of preclinical studies showing positive effects of PDE inhibitors in CNS disease 

models. However, there are no clinically approved PDE inhibitors for CNS indications. For PDE4, approval 

has been hampered mainly because of side effects. 

PDE4 inhibition appears to be effective for many CNS indications, as it shows beneficial effects on 

memory in old healthy volunteers and schizophrenia patients. 

PDE4 inhibition can lead to improved neuronal plasticity and promote anti-neuroinflammatory effects. 

These effects underlie restorative effects in models of memory impairment, schizophrenia, ADHD, 

multiple sclerosis, and acquired brain injury. 

Understanding the factors influencing the conformational state of the PDE4 enzyme, and how to 

influence binding affinity of PDE4 subtype inhibitors, holds great promise for the successful 

development of novel selective PDE4 inhibitors with a desirable therapeutical window. 

 

 

 

Outstanding questions 

How can we dissociate the positive clinical and adverse effects of PDE4 inhibitors? 

Do we need isoform-selective PDE4 inhibitors to treat different CNS diseases? 

The highly conserved catalytic domain of the four PDE4 isotypes makes it difficult to develop highly 

selective inhibitors. Will the current structural biology approach be successful in finding selective 

ligands?  

How can we target specific pathways underlying different CNS diseases with PDE4 inhibitors?  

How can we translate knowledge about the compartmentalization of PDE4 isoforms into drug 

discovery?  

Which other therapeutic strategies can be used, beyond direct PDE4 inhibition, to increase cAMP? 

Could specific PDE4 inhibition also be effective in modulating neuroinflammatory diseases such as 

Alzheimer’s disease? 
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PDE inhibitors: basic properties and current status 

Phosphodiesterases (PDEs) are known for about 50 years and have attracted much attention in 

various research fields [1]. Based on their regulation of intracellular cAMP and cGMP levels, PDEs 

have a pivotal role in cellular functions. Not surprisingly, there has been a great interest in how 

PDEs can regulate cell function and whether their activity can be modulated to treat diseases. 

One of the first studies reporting the role of PDEs in the regulation of intracellular cAMP signaling 

in the kidney was published in 1968 [2]. Some years later, a paper described the effects of 

xanthine derivatives as inhibitors of PDE enzyme activity in fat cells [3]. In 1972, the first evidence 

was found for two different types of PDE in amoebas. Since then many more subtypes have been 

described and currently we distinguish 11 different mammalian PDE families (PDE1 to PDE11) [1, 

4]. 

These different families are categorized based on features such as, mechanisms of regulation, 

subcellular distributions, and enzymatic and kinetic properties. In addition, each of these families 

contains multiple subtypes/genes (e.g., PDE1A, PDE4B), which can encode several transcript 

variants (e.g., PDE4D1-PDE4D9). Currently, this adds up to more than 100 different PDE types, 

sometimes referred to as the PDE superfamily. The PDEs can be found in many different cell types 

throughout the body and exert their functions by regulating the cyclic nucleotides cGMP and 

cAMP. Of note, PDE families differ in their ability to bind and degrade substrate, which can be 

cAMP-selective, cGMP-selective, or both [for a recent overview see 1]. 

Next to differences in substrate selectivity, PDE gene families are expressed in an organ-specific 

manner [e.g. 5]. The distribution on PDEs in the body and brain has been essential for selecting 

new drug targets for PDE inhibitors for different diseases [6]. For example, the localization of 

PDE4 in inflammatory cells (keratinocytes, neutrophils, T cells) has led to the development of PDE 

inhibitors for clinical use in chronic obstructive pulmonary disease (COPD), atopic dermatitis and 

psoriasis [e.g. 7, 8]. Also, selective PDE inhibitors have been developed and approved for treating 

cardiovascular and intermittent claudication [e.g. 9, 10]. These applications indicate that PDE 

inhibitors have a clear clinical potential. Although there has been a great effort to develop PDE 

inhibitors for CNS disorders, there are no PDE drugs approved for clinical use in this field yet [e.g. 
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11]. Various reasons have been offered for the failures in the clinical development of selective 

PDE inhibitors in CNS diseases [see 12, 13]. 

The issues regarding clinical efficacy of PDE inhibitors in CNS diseases may also be related to a 

lack of knowledge regarding their precise role in intracellular signaling pathways. Although PDE 

inhibitors are generally known to degrade cGMP and cAMP, the actual effects of PDEs and 

inhibitors on overall cell physiology appear to be more complex [e.g. 1, 14-16]. For example, 

inhibition of PDE1 in striatal medium spiny neurons (MSNs) decreased the level of surface AMPA 

receptors that are regulated by allosteric activation of PDE2 [17]. This complex interactive 

regulation of cellular processes is related to the compartmentalization of the specific PDEs. In 

light of this complex regulation of intracellular signaling by PDEs, and the apparent unique profile 

and function of the different gene families and isoforms indicates that a good understanding of 

these processes is required in order to successfully develop selective drugs. 

The expression of different PDEs in the brain is relevant for selecting PDE targets for specific brain 

diseases. However, the expression of PDEs can be delineated at different levels. A first level is the 

expression pattern on the gene level in different brain structures. In an extensive study by Lakics 

et al [5] it was shown that the expression of PDE gene families in the brain and periphery was 

heterogeneous. These data may give a hint towards PDE subtypes that could make good targets 

for drugs to treat CNS diseases based on expression in disease-relevant brain structures. 

However, these data merely show a rather global expression level. There is only a relative limited 

number of studies using PDE-selective antibodies that investigated the subcellular localization in 

neurons and their role in signaling pathways [e.g. 18], and single cell RNA sequencing studies 

usually do not distinguish between transcripts encoding different PDE isoforms [e.g., 19]. This 

limits our understanding of the cellular functions of PDEs [e.g. 20], and how compartmentalized 

PDE signaling may lead to altered brain function. 

Although more research is needed to understand the complex regulation of cellular processes by 

PDEs, a vast amount of animal studies show beneficial effects of selective PDE inhibitors in 

preclinical models of CNS diseases. Table 1 provides a global overview of these studies listing 

different disease categories in relation with a PDE subtype [for a general overview see 1]. Here it 
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can be seen that there is support for PDE1 inhibitors for Alzheimer’s disease and schizophrenia 

[21-24]. PDE2 inhibitors were shown to be active in animal models for memory dysfunction [23] 

and some studies hinted at an antidepressant effect [25]. For PDE3 inhibition there strong 

evidence that it could have beneficial effects in stroke [26, 27], and to a less extent in animal 

models for memory dysfunction [11, 28]. PDE4 inhibitors have been shown to be effective in 

different disease areas such as stroke [26, 29], animal models of Alzheimer’s disease [11, 30], 

models of schizophrenia [21, 31], multiple sclerosis   [32, 33], and different developmental 

disorders [34-37]. Some studies showed antidepressant effects after PDE4 inhibition [30, 38]. 

Interestingly, studies in humans have shown positive effects of PDE4 inhibition on cognition in 

healthy old subjects [39] and schizophrenic patients [40]. For PDE5 there is some preclinical 

evidence for a role in cognition models [23] and in stroke [23, 26]. Human studies showed 

memory enhancing effects [41] and no effects on cognition [42]. 

For PDE7 inhibitors some effects on cognition have been found, but most promising data have 

been shown in models of multiple sclerosis [33]. Some preclinical studies showed some promising 

effects of PDE9 inhibitors in cognition models [11, 43], but failed to improve cognitive 

performance in schizophrenia [44]. PDE10 inhibitors have been developed for treating 

corticostriatal disorders including schizophrenia [45-47], but clinical studies in schizophrenia 

have been disappointing (see clinicaltrials.gov). For PDE11 only a few studies show relevance for 

improved social memory [48]. 

This overview strongly supports the notion that PDE inhibition is beneficial for treating different 

CNS diseases. PDE4 seems to be an attractive molecular target for several reasons. Firstly, PDE4 

is strongly expressed in brain regions and neurons/cells related to these different disorders [e.g. 

5, 49]. Secondly, preclinical data with PDE4 inhibitors show positive effects in many different 

disease areas (see Table 1). Thirdly, beneficial effects of PDE4 inhibition can be linked to signaling 

pathways underlying neuroplasticity and inflammation [49, 50]. Fourthly, some clinical studies 

showed positive effects on memory in healthy subjects and in schizophrenic patients [39, 40]. 

Therefore, this review aims to highlight the potential of PDE4 inhibitors in different CNS diseases.  
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PDE4 and memory 

There is strong evidence for a role of PDE4 in memory formation, largely based on the seminal 

work of Eric Kandel on the molecular mechanisms of memory [50]. In this framework, cAMP is an 

essential second messenger that leads to activation of protein kinase A (PKA) and subsequently 

the phosphorylation of cAMP response element binding protein (CREB → pCREB; see Figure 1). 

PKA activation also leads to insertion of AMPA receptors into the membrane [51]. pCREB is 

responsible for the transcription of neuronal plasticity genes including AMPA receptors and brain 

derived neurotrophic factor (BDNF)  [29, 52]. Linked to this, cAMP has been found to play a 

pivotal role in the induction and maintenance of long-term potentiation (LTP) [50]. Since PDE4 is 

located in hippocampal neurons and shows specificity towards cAMP, inhibition of PDE4 can 

elevate cAMP levels and improve LTP [53]. Consequently, PDE4 is important for hippocampal 

functions via: 1) presynaptically enhancing glutamate (and also acetylcholine) synthesis and 

release; 2) postsynaptically by stimulating the neurotransmitter(s) receptor signaling. In line with 

these notions, the non-selective PDE4 inhibitor rolipram was shown to improve memory in 

rodents in 1982. This finding has been replicated in many other animal models and with more 

(subtype) selective PDE4 inhibitors [54]. 

Although PDE4 inhibition appears to be a very straightforward scientific rationale, and different 

drug discovery programs were aimed to develop a PDE4 inhibitor to treat memory disorders [11]. 

One of the main issues with developing PDE4 inhibitors are the adverse side effects, mainly 

emesis. This has been related to the expression of PDE4D in regions related to the emetic 

response [55]. Recently, PDE4 subtype-selective inhibitors have been developed to maximize the 

therapeutic window and minimize adverse effects. These data suggest that PDE4D may be more 

relevant for cognition enhancement [e.g. 56]. On the other hand, recent studies show that a non-

selective PDE4 inhibitor (roflumilast) has beneficial effects on memory in humans without having 

clear adverse side effects [39, 40]. Understanding this beneficial effect of roflumilast may open 

new avenues in developing PDE4 inhibitors to improve memory performance. 

 

PDE4 and corticostriatal functions 
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The striatum mostly contains neurons with similar morphology, referred to as medium spiny 

neurons (MSNs). MSNs receive glutamatergic projections from the cortex, but their plasticity is 

dependent on dopaminergic signaling [57]. They are the only projection neurons of the striatum, 

integrating all input to this brain region [e.g. 13]. The vast majority of information arriving at 

striatal MSNs is for a large part conveyed onto cyclic nucleotide pathways, with a major role for 

cAMP (see Figure 2). The signal compartmentalization is achieved through the generation of 

cyclic nucleotide compartments by PDEs with a prominent role for PDE4 [4, 13, 58]. In analogy to 

the hippocampal functions, PDE4 is important for corticostriatal functions by two mechanisms of 

action: 1) presynaptically enhancing dopamine synthesis, release, and metabolism, as well as 

dopamine D1 receptor signaling, and 2) postsynaptically stimulating/inhibiting dopamine 

receptor signaling. Both functions independently constitute rationales for how PDE4 can regulate 

corticostriatal functions.  

Regarding presynaptic effects, PDE4 is expressed at dopaminergic terminals in neurons of the 

substantia nigra pars compacta (SNc), where its inhibition leads to enhanced dopamine release 

[59]. By increasing the levels of dopamine at corticostriatal synapses, PDE4 inhibitors could have 

therapeutic potential for disorders characterized by corticostriatal hypodopaminergia, including 

attention deficit hyperactivity disorder (ADHD) and Parkinson’s disease. Additionally, it has been 

described that PDE4B is localized at DARPP-32-expressing neurons in the mouse frontal cortex 

[31]. Here, rolipram enhanced dopamine D1 receptor-induced phosphorylation of DARPP-32. 

This presynaptic regulation of dopamine release and enhancement of dopamine receptor 

signaling provides an interesting scientific rationale for PDE4 as a molecular target for novel 

therapeutics of disorders that involve corticostriatal hypodopaminergia (See Figure 3). 

The second main rationale for PDE4 in corticostriatal functions is linked to its regulation of 

postsynaptic dopamine receptor signaling in MSNs of both the direct and indirect pathway, as 

shown in striatal slices and in vivo [31]. Downstream of cAMP, the PDE4 inhibitor rolipram 

increased the phosphorylation of DARPP-32 and enhanced adenosine A2a receptor-mediated 

phosphorylation of DARPP-32 (representative of indirect pathway activation). Conversely, 

rolipram did not affect dopamine D1 receptor-mediated phosphorylation of DARPP-32 

(representative of direct pathway activation). These findings suggest that PDE4 is exclusively 
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expressed in indirect pathway MSNs. Immunohistochemical analysis of striatal slices revealed 

that PDE4B expression can be found in both pathways but with a higher expression in MSNs of 

the indirect pathway [31]. Due to a main indirect pathway activation, PDE4 inhibitors are 

considered as a symptomatic treatment for hyperkinetic movement disorders (e.g., Huntington’s 

disease). This is further supported by data in Huntington’s disease mouse models that show 

increased expression of PDE4B in striatum and cortex [60]. This increase in PDE4 activity appears 

to be driven by mutant Huntingtin sequestering DISC1, a protein that would normally bind to and 

inhibit PDE4B.  

Activation of the inhibitory indirect pathway by PDE4 inhibitors also mimics the action of 

dopamine D2 receptor antagonists, known for their antipsychotic potential. As a result, PDE4 

inhibitors are investigated as a treatment for positive symptoms in schizophrenia. Additionally, 

PDE4 inhibition has proven to benefit cognitive function in clinical studies and preclinical models 

of schizophrenia [13]. The involvement of PDE4 in schizophrenia is further supported by 

interaction of PDE4B with DISC1, as a chromosomal translocation of this gene increases 

susceptibility for schizophrenia by disrupting binding of DISC1 to PDE4B [31]. Recent studies in 

humans did indeed support the notion that PDE4 inhibition could have beneficial effects in 

schizophrenia [40].  

Although not extensively investigated, PDE4 might prove a therapeutic target in different 

diseases related to other disturbed corticostriatal functions (see Figure 3). Addiction and 

obsessive compulsive disorder (OCD) are some examples where PDE inhibition could be effective. 

Using behavioral sensitization, conditioned place preference and drug self-administration as 

behavioral models, various studies have shown that local or systemic administration of PDE4 

inhibitors reduces drug intake and/or drug seeking for psychostimulants, alcohol, and opioids in 

rats or mice [61]. In OCD patients, activation of the indirect pathway may result in similar 

behavioral inhibition. 

 

PDE4 and multiple sclerosis 



 
 

9 
 

As mentioned in the Introduction, PDE4 inhibitors are being used to treat inflammatory diseases 

such as COPD and psoriasis. The fact that neuroinflammation is a hallmark of multiple sclerosis 

(MS) provides a good rationale to explore the therapeutic potential of selective PDE inhibitors 

[62]. The cellular pathogenesis of MS is driven by perivenular infiltration of auto-reactive 

lymphocytes that creates a pro-inflammatory microenvironment triggering phagocyte-induced 

CNS damage.  

cAMP has three important functions in inflammation, it 1) it decreases endothelial junctional 

permeability at the level of the BBB and diminishes trans-endothelial transport of inflammatory 

mediators [26], 2) drives the development of regulatory T cells to maintain immunological 

homeostasis [63], and 3) differentiates phagocytes into an anti-inflammatory, repair-inducing 

phenotype [64]. The role of PDE4 has been studied for all three mechanisms. First, PDE4 (and 

PDE7) inhibitors reduced the cerebrovascular endothelial permeability in experimental 

autoimmune encephalomyelitis (EAE), a neuroinflammatory animal model for MS [62]. Second, 

inhibition of PDE4 decreased T cell proliferation and reduced the secretion of pro-inflammatory 

cytokines (TNF-α and IL-17) while increasing the release of anti-inflammatory cytokines (IL-10) in 

EAE mice [62]. Interestingly, upon anti-CD3/CD28 stimulation of primary human CD4+ naive or 

memory T cells, the enzymatic activities of PDE4A and PDE4D alone were upregulated, although 

mRNA levels of PDE4A, PDE4B and PDE4D were increased [65]. Furthermore, knockdown of all 

PDE4 subtypes in these activated human CD4+ T cells with siRNA reduced their proliferation rate 

and inhibited the secretion of IFN-γ yielding a primary role for PDE4D [62]. Based on these 

findings, cAMP-specific PDE inhibition in T cells can lower the inflammatory cytokine production 

by acting directly on Th1 and Th17 cells or by regulating the immune response through activation 

of Treg cells.  

A third role of cAMP to control the inflammatory process in MS involves modulating phagocyte 

function in the CNS. CNS infiltrating and resident phagocytes contribute to the inflammatory 

response by producing pro-inflammatory cytokines and chemokines while effectuating 

demyelination [66]. Increasing cAMP skews phagocytes rather towards an anti-inflammatory 

phenotype characterized by high levels of arginase 1 (Arg1), thereby hampering phagocytosis 
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[67]. In line with this, inhibition of PDE4 has been found to shift the inflammatory response in 

different models towards an anti-inflammatory response [e.g., 68].  

Although promising results were obtained in preclinical studies, no definitive positive clinical 

proof of concept data with PDE4 inhibitors in MS patients are available yet. Results from a recent 

clinical trial with the non-selective PDE4 inhibitor ibudilast look more promising. This drug did 

not reduced focal inflammatory activity in relapsing MS but attenuated MS-related brain atrophy 

[69, 70]. These findings indicate that PDE4 inhibition may not be relevant for relapsing MS, but 

may be a suitable treatment of progressive MS phenotypes. For future research, identification of 

the key PDE4 genes and isoforms involved in specific disease phases and processes may lead to 

the development of more effective and better tolerated PDE4 isoform-selective inhibitors for the 

treatment of MS. 

 

PDE4 in acquired brain damage 

Acute brain trauma (non-traumatic, such as stroke, and traumatic, such as accidents) causes 

ruptured microvessels which lead to secondary pathophysiological processes, including 

inflammation, cellular stress and activation of apoptotic cascades. These in turn can result in a 

myriad of subacute and chronic effects at the molecular, cellular, subcellular, and brain function 

level as depicted in Figure 4. Certain changes occur quite rapidly, whereas others may last for 

many months after the lesion [71]. The blood-brain barrier (BBB) plays a central role in the 

pathophysiology of acquired brain injury (ABI). The sustained increase in BBB permeability and 

the subsequent leakage of inflammatory cells and humoral factors can lead to long-lasting 

impairments in BBB integrity [72] 

The role of cAMP and PDE4 during this post-injury increase in permeability of the endothelial 

cells of the BBB is well documented [73]. Some studies showed an upregulation of the PDE4 

enzyme after ABI [74, 75]. Much less is known about their role in cytoskeletal (CSK) function and 

their effects on cell adhesion molecules (CAMs). As the CSK and CAMs are important for BBB 

function, there is a need to bridge this gap in our understanding. Initial findings indicating that 

PDE4 can mediate CAMs in peripheral cells may inform further mechanistic studies in endothelial 
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cells of the BBB and potentially in neurons (see Figure 4). Another effect of ABI is an upregulation 

of PDE expression that compromises the effects of cAMP in cell functioning as shown in different 

ABI models [26, 76] 

Together, these findings support the notion that PDE4 inhibitors can restore brain function at 

early and later ABI disease stages by a dual mechanism (see Figure 4; [77, 78]) involving their 

anti-inflammatory effects following modulation of different inflammation pathways [49]. In line 

with the previous section on inflammation, an increase in cAMP levels by PDE4 inhibition could 

lead to a shift towards an anti-inflammatory state in various cells [68]. More specifically, PDE4B, 

but not PDE4D, seems to have a critical role in the LPS-induced inflammatory response [79, 80], 

indicating that this PDE4 subtype has a critical role in microglia activation. This could be 

interesting for early as well as later stages of ABI. A second mechanism for restoration of brain 

function after ABI is enhancement of neuroplasticity following modulation of the 

(cAMP/PKA/CREB) plasticity pathway [50]. This may be most relevant at later stages of ABI. 

With respect to effects of PDE4 inhibitors on neuronal plasticity, including increased BDNF levels 

[29] and AMPA receptor upregulaton [81], various studies suggest that enhanced neuronal 

plasticity contributes to the positive effects of different PDE4 inhibitors in different ABI models 

on different cognitive functions. Interestingly, this has been shown for PDE4B inhibitors [e.g. 82] 

as well as for PDE4D inhibitors [e.g., 83]. The relative contribution of anti-inflammatory effects 

and enhanced neuroplasticity to the effects of PDE4 inhibitors on cognition is not fully 

understood. However, there is substantial evidence that microglia function is directly related to 

neuroplasticity, and that these may go hand in hand during different phases of brain damage 

[84]. 

In conclusion, PDE4 inhibitors may consist of a novel class of drugs for the treatment of residual 

symptoms in ABI attenuating the pathophysiological consequences by their anti-inflammatory 

effects and their positive effects on neuroplasticity. Several animal studies have shown promising 

effects of PDE4 inhibitors on the functional outcome after ABI (see Figure 4). The finding that 

PDE4 inhibition was still effective when treatment started 3 months after the induction of brain 
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trauma appears promising for clinical applications [85]. Clinical studies are indicated to 

demonstrate the potential of PDE4 inhibitors after stroke and brain trauma.  

 

Miscellaneous diseases 

There are other CNS indications for which PDE4 may be relevant. There are some 

neurodevelopment diseases where PDE4 inhibition has positive effects, such as fragile X [34], 

Rubinstein-Taybi syndrome [35], juvenile Batten disease [36], and Rett syndrome [37]. In these 

studies, applying genetic animal models, PDE4 inhibitors improved brain-related parameters that 

were typical for each disease. Also, PDE4 inhibition restored cognitive functions in these different 

disease models. These studies suggested that the effects could be related to restoring cAMP 

functions in development and could also be linked to the increased neuroplasticity after PDE4 

inhibition. There is also good support for the notion that PDE4B (but not PDE4D) could be relevant 

for the treatment of depression [56]. These various studies show a pleiotropic effect of PDE4 

inhibitors. It can be speculated that this may be related to the central role of cAMP in different 

critical cell functions and that PDE4 inhibitors can regulate these disturbed processes in different 

disease states. 

 

Strategies towards safer and more selective PDE4 inhibition 

As mentioned earlier, clinical development of PDE4 inhibitors has been hampered by severe 

adverse side effects including nausea, emesis and diarrhea. Selective inhibition of PDE4 subtypes 

(e.g. PDE4B) or isoforms (e.g. PDE4D1) could provide a more promising strategy to obtain a larger 

window between adverse and therapeutic effects. Although this may be quite a challenge since 

all PDE4 genes show large homology, especially PDE4B and PDE4D, and produce highly similar 

catalytic domains. Nevertheless, the PDE4 subtypes exhibit subtle differences in protein 

structure, which enabled the development of PDE4 subtype-specific inhibitors (see Figure 5; [86, 

87]). Although subtype-specific inhibition is possible through interactions with non-conserved 

residues, adverse side effects may still arise. Notably, expression and gene deletion studies 
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implicate that PDE4D is the main mediator of emetic effects [88], suggesting that inhibition of 

other PDE4 subtypes provides safer pharmacological profiles. Although his may be interesting for 

indications where PDE4B appears to be relevant, this poses a challenge for the generation of 

procognitive effects which appears to be related to PDE4D [56].  

In addition to protein sequence differences among PDE4 subtypes that can confer inhibitor 

selectivity, PDE4 naturally exhibits different conformations showing distinct affinities for its 

prototypic inhibitor rolipram; the high-affinity rolipram binding site (HARBS) and low-affinity 

rolipram binding site (LARBS) [89]. Although the exact nature of HARBS and LARBS is unknown, 

prior studies indicated that specific cellular functions are regulated by either HARBS or LARBS 

conformers [90]. As HARBS occupancy correlates with emetic responses [91], it is hypothesized 

that inhibition of LARBS could reduce emetic effects [92]. HARBS depends on interactions with 

the UCR2 domain, and dimerized (i.e. long) isoforms stabilize the enzyme in the HARBS 

conformation [93]. However, neither dimerization nor the presence of UCR1 are requirements 

for HARBS, suggesting that also short isoforms, which do not dimerize, can exhibit HARBS [89]. 

Post-translational modifications (e.g., PKA phosphorylation) and interactions with partner 

proteins (e.g., XAP2), which have divergent effects on enzyme activity, can all increase rolipram 

sensitivity [e.g. 94]. Similarly, the affinity of the UCR2-interacting PDE4D inhibitor BPN14770 is 

increased in PDE4D constructs with mutations mimicking PKA phosphorylation [52]. It is 

proposed that PKA phosphorylation disrupts the UCR1-UCR2 module and that in dimers the UCR2 

of one molecule can be ‘trans-capped’ onto the catalytic domain of the other providing additional 

UCR2-inhibitor interactions [95, 96]. This implies that PKA activation ‘liberates’ the UCR module 

to facilitate both cAMP hydrolysis and inhibitor binding, reflected by enzyme activation and 

increased inhibitor affinity respectively. Interestingly, the PDE4D-selective and UCR2-interacting 

inhibitors PMNPQ and RS25344 [95] and those from the GEBR family shows similar affinities 

towards short and long PDE4D forms [97, 98], suggesting that UCR2-inhibitor interactions may 

also occur in monomeric PDE4. Additionally, interactions of the C-terminal with UCR2 and 

PMNPQ have been observed which may provide additional effects on the binding affinity of 

UCR2-interacting inhibitors [95]. On the other hand, subtype-specific residues in the C-terminus 

enable selective inhibition of PDE4B (e.g. A-33 [99] and a tetrahydrothiophene inhibitor [100]). 
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These findings indicate that HARBS and LARBS cannot be fully attributed to differences between 

long and short isoforms but are rather resulting from complex interplay of dimerization, protein-

protein interactions and post-translational modifications generating multiple conformations with 

different affinities [for a recent review on these interactions see 1]. Accordingly, inhibitors may 

preferentially bind isoforms bound to a partner protein or those that are post-translationally 

modified. PDE4 can be post-translationally modified in many ways [101] and, mainly through 

common UCR2 and C-terminus domains, can bind multiple partner proteins [102]. These effects 

can even be isoform-specific via unique N-terminal domains (e.g., inhibition of PDE4D7 upon PKA 

phosphorylation [103] and preferential binding of β-arrestin to PDE4D5 [104]). Thus, although 

the regulation of the conformational state of PDE4 is complex, it can yield distinct inhibitor 

affinities, thereby offering the opportunity to target PDE4 isoforms or conformations specifically. 

Alternatively, PDE4 activity can be modulated using protein-protein interaction disruptors or 

compounds that act allosterically [105, 106]. 

Taken together, many factors influence the conformational state of PDE4 and thus inhibitor 

affinity. Prior studies already showed that different modes of inhibition (i.e. solely through 

interactions with the catalytic domain or additional binding with UCR2) produce different cellular 

effects [e.g. 107]. Therefore, future studies should indicate what PDE4 subtypes or isoforms, in 

what configuration, are involved in processes leading to adverse side effects. Subsequently, 

inhibitors showing low affinity to these isoforms or configurations would produce safer 

pharmacological profiles. Vice versa, elucidating what isoforms, in what configuration, are 

involved in the processes leading to therapeutic activity will facilitate the development of more 

efficacious PDE4 inhibitors.  

  

Concluding remarks and future perspectives 

The current overview provides a strong case for PDE4 as a potential target for different CNS 

diseases. Although the adverse effects of PDE4 inhibitors are a major issue, there are alternative 

ways emerging to increase the therapeutic window for PDE4 inhibitors (see Outstanding 

Questions). A first approach may be linked to the properties of roflumilast. This is a non-selective 
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PDE4 inhibitor that has been shown to improve memory without any clear adverse side effects 

[39, 40]. Even for COPD, where 3-5 times higher doses are required, adverse effects are modest 

[7]. Further studies that look into the binding properties of roflumilast at the PDE4 enzyme may 

reveal some interesting characteristics and opportunities to improve the therapeutic window of 

PDE4 inhibitors. A second approach is to design PDE4 subtype- or isoform-selective inhibitors 

that have a more favorable therapeutic window. Linked to this, a better understanding of how 

the conformational state of PDE4 subtypes and isoforms is affected by different modulators, e.g. 

protein-protein interaction and phosphorylation, could further improve the clinical potential of 

these drugs. 

Inhibition of PDE4 restores compromised cAMP functioning and reverses functional deficits in 

animal models of CNS disorders. It seems that neuroplasticity and anti-inflammatory effects are 

the key properties by which the effects of PDE4 inhibitors are mediated. These effects could also 

work synergistically (e.g., brain injury). Based on the effects of PDE4 inhibitors in animal models 

and humans on brain functions, and our current knowledge of the molecular biology of PDE4 

subtypes, we believe that it is feasible to find more efficacious and safe PDE4 inhibitors for the 

treatment of CNS diseases.  
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