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Abstract: Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering
them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly
formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature
and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and
repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow
under physiological conditions, a disruption in this balanced differentiation process, for example in
case of a differentiation block, could have devastating consequences during ageing and in pathological
conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that
epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major
contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms
orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for
studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus
provide new therapeutic targets to induce myelin repair in the long run.
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1. Introduction

Oligodendrocytes (OLs) are myelinating glial cells within the central nervous system (CNS) that
insulate neuronal axons to provide them with trophic, metabolic and functional support. OLs are
generated from oligodendrocyte precursor cells (OPCs) via a consecutive process of cell cycle exit,
maturation, and differentiation [1]. OPCs arise during early development, persist throughout a lifetime
and occupy around 5%–10% of the total number of cells in the brain [2,3]. In response to both intrinsic
molecular cues and extracellular signals, OPCs are able to withdraw from their proliferative stage and
differentiate into myelin-producing OLs [4]. Consequently, alterations in these extrinsic stimuli, such as
an increase in inhibitory ECM molecules (LINGO, glycosaminoglycans, fibronectin) or secreted factors
(BMP, FGF), hamper differentiation, possibly via an upstream effect on transcriptional and epigenetic
processes that regulate OL differentiation [5]. Indeed, current evidence indicates that epigenetic
mechanisms, comprising DNA methylation, histone modifications and microRNAs (miRNAs), play
an essential role in the regulation of OL lineage development. As such, epigenetic signatures translate
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extracellular signals into functional cellular changes and coordinate the transcriptional machinery that
is responsible for the differentiation process [6,7]. This review provides an overview of the current
understanding of the physiological process of OL lineage development and how the different epigenetic
mechanisms are involved in the regulation of this process (Figure 1). Furthermore, we discuss how
this epigenetic fingerprinting is altered during ageing and in neurological conditions.
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Figure 1. An overview of the transcriptional and epigenetic regulation of oligodendrocyte precursor cell
(OPC) proliferation and oligodendrocyte (OL) development. Transcription factors that exert a positive
or negative effect on these processes are depicted in green and red, respectively. Pro-proliferative
factors are visualized in yellow, whereas pro-differentiation factors are blue. * Methylation of the
promoter region.

2. OL Differentiation and the Transcriptional Network

OPCs arise from the ventricular zone during early development, proliferate and migrate their
way into the different developing areas of the brain, where they differentiate into myelin-forming
OLs [8]. Unlike most progenitor cells, OPCs persist throughout life as adult, self-renewing OPCs that
can differentiate into newly formed myelinating OLs to maintain myelin plasticity or in response to
damaging signals [9]. The differentiation of OPC into mature and myelin-producing OLs is a gradual
and well-defined process that can be divided into four successive stages: proliferative OPCs, pre-OLs,
differentiated OLs and myelinating OLs [10]. This process of OL differentiation, both during early
development and in adult stages, is controlled by the combination of OL-specific transcription factors,
extracellular signals, epigenetic modifications and signaling pathways. It is necessary to maintain
a homeostatic balance between these molecular cues to allow for proper differentiation.
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The regulatory network of transcription factors that controls OL lineage development has
been extensively studied over the past decades [9,11,12]. These transcription factors regulate OPC
proliferation, migration and differentiation and at the same time serve as stage-specific cell identity
markers of the OL lineage [11]. In general, a distinction can be made between positive regulators,
which boost and stimulate OL differentiation, and negative regulators, which function as inhibitory
transcription factors for myelin genes and keep OPCs in a proliferative and non-differentiated state.

The main transcription factors that regulate OL lineage progression belong to the helix-loop-helix
(HLH) family, such as the oligodendrocyte transcription factors (OLIG), hairy and enhancer-of-split
homologs (HES) and inhibitor or differentiation (ID) proteins. OLIG2 is considered as one of the major
and indispensable transcription factors during different stages of OL development. It is an essential
factor during OPC specification, enhances OPC migration during early development, but also functions
as a promoting factor of OL differentiation and regeneration in the adult life [13–15]. In contrast to
OLIG2, the closely related OLIG1 is not directly involved during early brain development, but rather
promotes OL differentiation and myelination after injury [16,17]. The achaete-scute homolog 1 (ASCL1
or MASH1) is another member of the HLH family that promotes early OPC specification and OL
development [18]. Although it was considered to be mainly involved in early oligodendrogenesis,
ASCL1 is also shown to be important during adult OL regeneration and remyelination [19]. In contrast,
HES proteins, such as HES1 and HES5, function as differentiation inhibitors either by recruiting other
repressor proteins to myelin gene promoters, or by inhibiting ASCL1 [12]. Similarly, the ID HLH
transcription factors ID2 and ID4 inhibit OPC differentiation by binding to other members of the HLH
family (OLIG1/2, ASCL1) and preventing their translocation from the cytoplasm to the nucleus [20,21].

Another family of transcriptional regulators are HMG-domain transcription factors, that are
classified as the sex determining region Y-box (SOX) family, of which SOX10 is a well-established
regulator involved in terminal OL differentiation and myelination, through its direct binding to the
promoter region of myelin genes to enhance their [22,23]. Interestingly, SOX10 is expressed in all
stages of the OL lineage and can thus serve as a general marker for OPCs/OLs [24]. In contrast, SOX5
and SOX6 inhibit OL differentiation by competing with SOX10 binding sites, thereby antagonizing
its function [25]. SOX2 on the other hand, maintains OPCs in a proliferative and undifferentiated
stage, but is indispensable for OPC expansion and OL regeneration during CNS remyelination [26,27].
Transcription factor 4 (TCF4, also known as TCFL2) is another important HMG-domain transcription
factor and is a downstream effector of the Wnt signaling pathway. Through its binding to β-catenin,
TCF4 acts as an inhibitor of myelin gene expression and impairs (re)myelination [28].

An additional class of OL-related transcription factors are zinc finger proteins (ZFP). Yin Yang 1
(YY1) stimulates OL differentiation by silencing inhibitor proteins, such as ID4 and TCF4 [29]. Other
ZFPs that enhance OL maturation and differentiation are ZFP191, ZFP488 and the Smad interacting
protein 1 (SIP1) [30–33]. Myelin regulatory factor (MYRF) was only recently discovered as a crucial
regulator of CNS myelination [34]. MYRF is exclusively expressed in post-mitotic cells of the OL
lineage, which signifies its essential role during terminal differentiation. The synergistic effect of MYRF
and SOX10 leads to myelin gene activation and drives CNS myelination [23,34].

All the transcriptional regulators influence OL differentiation mainly by controlling the expression
of genes that encode for the essential myelin-associated proteins, such as the myelin basic protein
(MBP), proteolipid protein (PLP) and myelin-associated glycoprotein (MAG) [35,36]. The transcription
factors either enhance or inhibit the expression of these myelin genes by directly binding to their
promoter region, which eventually results in a spatiotemporal expression of myelin genes during the
process of OL lineage development [37].

3. The Epigenetic Triumvirate in OL Development

OL lineage development and the regulation of the associated transcriptional program is highly
influenced by various epigenetic processes. Epigenetic mechanisms are defined as modifications
that affect gene expression without altering the DNA sequence itself and are heritable from mother
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to daughter cell [38,39]. Epigenetic control of gene expression is sustained via DNA methylation,
modifications at histone tails of chromatin, and miRNAs. The interplay between these different
modifications changes the physiological form of the DNA, thereby influencing the accessibility of
specific transcription factors to their target regions in the genome [39,40]. In the following part of this
review, we discuss how the different levels of epigenetic regulation influence OL differentiation and
CNS myelination.

3.1. DNA Methylation

DNA methylation, in particular CG methylation, is one of the most studied and long-lasting
epigenetic modifications. CG methylation involves the addition of a methyl-group (–CH3) to a cytosine
base followed by a guanine nucleotide, referred to as 5′cytosine–guanine–3′ dinucleotide (CpG) site.
Although various definitions exist, so-called ‘CpG islands’ cover regions of more than 300 bp with
a C/G-content of 50% at minimum and are mostly found within the promoters of protein coding genes [41].
Methylation of these CpG islands is generally associated with gene silencing due to the inability of
transcription factors to bind to the methylated promoter region or via an additional recruitment of
other repressor proteins [42,43]. DNA methylation is established by DNA methyltransferases (DNMTs)
that add a methyl-group to cytosine (5mC). There are two distinct forms of DNMTs, DNMT1 and
DNMT3a/b, which either maintain DNA methylation during replication or induce de novo methylation,
respectively [44,45]. Contrarily, DNA methylation can be removed via gradual degradation of 5mC by
the ten-eleven translocation (TET) enzymes [46,47], although DNMTs may serve the same purpose under
certain conditions [48,49]. Hydroxylation of 5mC into hydroxy-methylated cytosine (5hmC) is the first
step of the demethylation process. Interestingly, 5hmC patterns have shown to be abundantly present in
the CNS of mammals [47,50]. 5hmC was first identified as an intermediate epigenetic mark during active
DNA demethylation but has also been shown to represent a potentially independent and functionally
distinct epigenetic marker in the brain [51,52].

One of the first studies that linked DNA methylation to OL development showed that neonatal rats
treated with the DNMT-inhibitor 5-azacytidine (5-aza), displayed disrupted gliogenesis, concomitant
with hypomyelination of the 11-day-old optic nerve. Postnatal inhibition of DNA methylation resulted
in a reduced number of oligodendrocytes, whilst the number of astrocytes was less affected, indicating
a higher vulnerability of OPCs to changes in DNA methylation [53]. Likewise, ablation of the Dnmt1
gene in embryonic progenitor cells led to OPC growth arrest and resulted in severe hypomyelination.
Moreover, this loss of Dnmt1 seemed to alter splicing events, such as exon skipping and intron
retention, in genes related to myelination, lipid metabolism and the cell cycle, indicating a crucial
role of DNA methylation in relation to alternative splicing during neonatal OL development [54].
Although DNMT1 seemed to be an important regulator during developmental myelination, it seems
to play a less prominent role during remyelination of the adult CNS [55]. After lysolecithin-induced
demyelination of adult murine spinal cord white matter, higher levels of DNA methylation in
differentiating OLs are accompanied by an increased expression of DNMT3a. Transgenic mice that
lack Dnmt3a showed impaired OL differentiation and a reduced ability to remyelinate affected axons
after injury [55]. Together, these studies suggest that maintenance of DNA methylation is important to
ensure proper gliogenesis during developmental myelination, whilst de novo methylation is needed
for the differentiation of adult OPCs into remyelinating OLs. On the opposite side of the methylation
spectrum, TET enzymes also strongly influence OL differentiation [56]. Even though the three TET
enzymes show different subcellular localization and unique expression patterns, they all seem to be
equally important during OL development. Interestingly, knock-down of the Tet mRNA levels was
associated with increased expression of HLH inhibitory transcription factors, such as ID2 and HES5,
leading to suppression of myelin gene expression [56]. It however remains unclear whether TET
enzymes directly inhibit the expression of these genes or whether the observed transcriptional change
is mediated in an indirect manner. In general, epigenome-wide studies of stage-specific cells are still
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needed to unravel how and which exact CpG sites or islands change in their methylation status during
OL lineage progression.

In relation to the transcriptional regulatory network of OL development, it has been shown that
DNA methylation can regulate the temporal expression of these transcription factors. In a study of
Huang et al., PRMT5 was identified as a pro-differentiation factor that binds to CpG-rich islands
within the ID2 and ID4 genes. Subsequent DNA methylation of these regions led to silencing of the
transcriptional inhibitors and resulted in OL differentiation [57]. In a similar fashion, SIRT2 was shown
to translocate to the nucleus, inducing DNA methylation in the platelet-derived growth factor receptor
α (PDGFRα) promoter region and initiating glial differentiation [58]. Interestingly, both PRMT5 and
SIRT2 are classified as histone-modification enzymes, yet they are also known to induce epigenetic
changes at the level of DNA methylation, thereby emphasizing the intricate relationship between
different epigenetic mechanisms.

3.2. Histone Modifications

Histone modifications encompass a wide range of post-translational changes on histone tails,
such as histone (de)acetylation, methylation, ubiquitination, and phosphorylation. These modifications
can act separately or together to orchestrate chromatin dynamics and structure. Depending on the
obtained histone code, DNA accessibility for polymerases and transcription factors can be either
promoted or hampered [59].

The most prevalent type of histone modifications is (de)acetylation of the lysine (K) residues.
Acetylation is established by histone acetyltransferases (HATs), whilst removal of the acetyl groups is
maintained by histone deacetylases (HDACs). Histone acetylation neutralizes the positive charge of the
lysine residues, resulting in a weaker interaction between the histone proteins and the DNA, eventually
leading to an ‘open’ chromatin structure. Consequently, HDACs function to make the chromatin
more compact, thereby preventing transcriptional processes from occurring [59,60]. Whereas not that
many studies have directly assessed the role of HATs in OL development, HDACs have been shown
to be heavily involved in different aspects of this process. In general, pharmacological inhibition of
HDACs is associated with a decrease in OL maturation and differentiation, suggesting a crucial role of
HDACs during OL development [61–64]. Treatment of OL in vitro cultures with the HDAC inhibitor
trichostatin A (TSA), prevented the suppression of inhibitory transcription factors, such as ID2 and
SOX11, in rats [63], and ID4, SOX2, and TCF4 in humans [64]. These data indicate that HDAC-mediated
repression of genes that keep OPCs in a proliferative and undifferentiated state is necessary for the
early onset of OL lineage progression. Indeed, it has been shown that HDAC functionality is restricted
to a specific temporal window, as HDAC inhibitors seem to only suppress myelination during the
early phase of OPC differentiation, but not after onset of myelination [62]. These observations are in
line with recent findings, which show that HDACs are predominantly expressed in early OPC stages,
compared to other stages of OL differentiation [65].

Interestingly, HDACs can also regulate and promote OL development in a (partly) histone-independent
manner, as interaction of HDACs with other transcriptional regulators can result in repressive complexes
that counteract the expression of OPC differentiation inhibitors. For instance, studies conducted on murine
OPCs have shown that the pro-differentiation factor YY1 is recruited via HDAC1 to the promoter region
of Id2, Id4 and Hes5, where it can block the expression of these genes [66]. Protein deacetylation of
OLIG1 by HDACs prevents its physical interaction with the inhibitory ID2 protein, stimulates its nuclear
transportation and promotes OPC differentiation [67]. Furthermore, HDAC1/2 interact with TCF4 and
antagonize its binding to β-catenin, thereby preventing its downstream function as an inhibitor of myelin
gene expression [28].

Another type of histone modification that has been associated with OL development is histone
methylation. Histone methylation can occur either on lysine or arginine side chains and is associated
with both activation and repression of transcription, depending on the site of methylation [60]. During
OL differentiation, the activity of the Histone H3 Lysine 9 (H3K9) methylation enzyme increases. This is
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accompanied by an increase of the associated repressive H3K9me3 mark at genes that regulate neuronal
lineage development [68]. Furthermore, the catalytic subunit (EZH2) of the polycomb repressive
complex (PRC) that is responsible for trimethylation of histone 3 (H3K27me3), promotes OPC cell
fate choice from progenitor cells and stimulates OPC proliferation [69,70]. A decrease in histone
H4R5 methylation via pharmacological inhibition or genetic ablation of PRMT5 results in poor OL
differentiation and hypomyelination [71]. Likewise, deletion of PRMT1 leads to severe hypomyelination
due to impaired OL maturation and disturbed myelin gene expression in OLIG2-positive cells [72].

Next to the abovementioned histone-modifying enzymes, ATP-dependent chromatin remodeling
complexes have also been recently shown to influence and orchestrate OPC differentiation. These
complexes make use of ATP as an energy source to reposition nucleosomes, thereby altering histone
accessibility and gene transcription [73]. The helicase component of the SWI/SNF-related chromatin
remodeling complex brahma-related 1 (Brg1, also known as Smarca4) is highly expressed in OPCs
and is an essential factor during OPC specification and at the onset of OL differentiation. BRG1
interacts with the Olig2 promoter in order to regulate its expression during early development [74].
As a positive feedback loop, BRG1 is consequently recruited by OLIG2 to enhance the expression
of OL-associated genes [75]. One of these targets of BRG1 and OLIG2 is Cdh7, an ATP-dependent
chromatin remodeler of the chromodomain helicase DNA-binding (CHD) family. CHD7 is highly
expressed in differentiating OLs, and functions synergistically with SOX10 to enhance myelin-associated
gene expression. Furthermore, CHD7 promotes the expression of other positive transcription factors
during OL maturations, such as Myrf and Olig1 [76]. Interestingly, deletion of either ATP-dependent
remodeler (BRG1 or CHD7) resulted in a dysmyelinating phenotype in mice, suggesting that even
though they have different targets and influence OL development at distinct stages, both BRG1 and
CHD7 are indispensable factors during OL development and myelination [75,76].

3.3. MicroRNAs

Small non-coding RNAs (ncRNAs) are powerful endogenous regulators of gene expression.
Many ncRNAs have been comprehensively described, such as Piwi-interacting RNAs (piRNAs), small
interfering RNAs (siRNAs) and miRNAs, with these latter being the most widespread and abundant
ncRNAs [77]. MiRNAs are small ncRNA molecules with an average length of 21–25 nucleotides and
are most often transcribed from non-coding and coding protein introns [78]. By means of base-pair
complementarity, a mature miRNA binds the seed-sequence at the 3′ untranslated region (3′UTR) of
the target mRNA and subsequently negatively regulates its translation by repressing or degrading
the mRNA [79–81]. Nevertheless, base-pair complementarity between miRNA and target RNA can
sometimes be incomplete so that a single miRNA can target multiple 3′ UTR sequencing, leading to
a cumulative reduction of gene expression that may orchestrate a common molecular pathway such as
cell proliferation, development and differentiation [82].

During OL development, a coordinated interplay between multiple miRNAs determines OPC cell
fate by downregulating intrinsic and extrinsic transcription factor expression [83,84]. The importance
of miRNA-mediated gene repression in OPC differentiation is highlighted in animals lacking the
DICER1 enzyme, which is an essential enzyme responsible for processing pre-microRNA (pre-miRNA)
thereby forming mature miRNA. DICER1 mutant mice display a lack of mature miRNAs which
is featured by a disrupted CNS myelination pattern due to the lack of differentiated OPCs [85,86].
MicroRNAome studies revealed a 10–100-fold induction of miR-219, miR-338 and miR-138 during OL
differentiation [85,86]. Since direct targets of miR-219 include genes essential for maintaining OPC
proliferation (e.g., Sox6, Hes5 and Pdgfrα), its increase stimulates OPCs to exit from the proliferative
cycle and enter differentiation [85]. By suppressing Hes5 and Sox6, miR-219 indirectly elevates
the expression of monocarboxylate transporters, leading to increased OL numbers and enhanced
protein levels of MBP and CNP, which subsequently attenuates cuprizone-induced demyelination [87].
MiR-219 is additionally important for metabolic regulation of lipid formation and maintenance during
OL maturation, rendering miR-219 essential in both early and late stages of OL differentiation [86].
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MiR-219 cooperates synergistically with miRNA-138, which is essential for reaching the immature
phase of OL differentiation, to regulate CNS myelination. Boosting the expression of solely these
two miRNAs is sufficient to induce OL differentiation in vitro [88,89]. Furthermore, differentiation of
human endometrial-derived stromal cells towards OLs is stimulated when miR-338 is overexpressed,
emphasizing the importance of this miRNA in the regulation of OPC differentiation [90,91].

In contrast to the induction of several miRNAs, miR-9 is downregulated during OL
differentiation [92,93]. In line with this, depleting miR-9 in OPCs stimulates OL differentiation,
presumably through an increase in peripheral myelin protein 22 (PMP22) and serum response factor (srf)
transcripts [92,94]. During OL differentiation, a comparable expression pattern of the developmentally
regulated miR-125a-3p is observed. Oligodendroglial differentiation and maturation is impaired upon
miR-125a-3p overexpression, which can be attributed to a decreased expression of genes involved in the
differentiation process (e.g., GTPase RhoA, Neuregulin and p38) [95–98]. On the contrary, antago-miR
treatment that inhibits miR-125-3p expression and subsequently stimulates OL differentiation, indicates
the importance of miR-125a-3p suppression during oligodendroglial maturation [95].

Many other miRNAs have been described to be either positively or negatively involved in OL
differentiation processes. In vivo studies have shown an increased generation of myelin proteins upon
miR-146a overexpression in primary OPCs following demyelinating injuries, thereby highlighting the
positive relationship between miR-146a and OL differentiation [99,100]. Similarly, miR-23 promotes CNS
myelination via the suppression of lamin B1, which is a negative regulator of OL differentiation [101].
On the other hand, many miRNAs inhibit OL differentiation and therefore need to be downregulated
during the transition of OPCs to OLs. The translation of essential proteins of the CNS myelin, such as
myelin-associated oligodendrocyte basic protein (MOBP), claudin11/O4 and MBP, is suppressed by
miR-214 [102,103], miR-205 [102] and miR-715 [97], respectively. Moreover, miR-145 has been shown to
pair to its seeding sequence located in the 3′UTR of the gene coding for Myrf and consequently inhibits
OPC differentiation [103,104]. Therefore, downregulating miR-214, miR-205, miR-715 and miR-145 is
sufficient for the differentiation of OPCs into mature OLs. In contrast to regulating OL differentiation,
at least one miRNA cluster, miR-17-92, has been shown to be involved in OPC expansion by targeting,
among others, PTEN, and therefore regulating OL numbers both in vitro and in vivo [89,105]. Taken
together, miRNAs have been shown to be critically involved in different steps of the process of OL
development. Data have demonstrated that miRNA expression is dynamically and precisely regulated
to control cellular differentiation, which offers new avenues for further therapeutic target identification
for myelin-related pathologies.

4. Implications in Ageing and CNS Myelin Disorders

Current knowledge about the strong involvement of epigenetic mechanisms in OL development
has led to new perspectives on OL- and myelin-related pathologies. Over the past years, a considerable
amount of research has been conducted with regard to aberrant epigenetic regulation and its impact
on OL regeneration and myelin repair. Hence, in this part of the review, we focus on what is known
about epigenetic malfunctioning during OL regeneration and remyelination, both in the context of
ageing and myelin-related pathologies.

4.1. Ageing

It is generally known that regenerative processes become less efficient with increasing age. A classic
example is age-related deficits in remyelination, a process which is entirely dependent on OL regeneration
to restore the myelin sheath [106–108]. The age-associated decrease in remyelination efficiency is attributed
to a reduced level of OPC recruitment. Moreover, recruited OPCs show an impaired ability to differentiate
into remyelinating OLs [107]. The relationship between ageing and epigenetic alterations has already
been proposed before [109–111] and provides an incentive to link age-associated remyelination failure to
changes in the epigenome of aged OPCs or OLs.
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Up to now, only one study has connected changes in methylation in OPCs/OLs to cellular ageing [112].
Rat OPCs from the spinal cord showed an age-dependent decrease in methylation levels. Interestingly,
no changes regarding TET activity or expression were observed. The global hypomethylation in aged
OPCs rather correlated with a reduced expression and activity of DNMTs, and in particular DNMT1 [112].
Regarding histone modifications, mature OLs from the corpus callosum of older animals show increased
levels of histone acetylation and a decreased rate of histone methylation, compared to younger mice.
These histone changes were correlated with re-expression of inhibitory HLH-transcription factors, such as
HES5 and ID4 [113]. As mentioned before, HDAC recruitment to these promoter regions is crucial
for OPC differentiation and myelin formation. OPCs in demyelinated regions of older mice, however,
fail in the recruitment of HDACs, resulting in the accumulation of transcriptional inhibitors and poor
remyelination [114].

In a study conducted by Pusic et al., aged rats were exposed to a youthful environment in
a Marlau-style enrichment cage to assess the effect on remyelination capacity [115,116]. Environmental
enrichment promoted remyelination in aged rats, to a level comparable to younger animals. Interestingly,
they found that serum-derived exosomes from both young and environmentally enriched stimulated
rats displayed increased levels of miR-219, which is known to inhibit the expression of inhibitory
myelin gene regulators and therefore promotes OL differentiation [115]. Exosomal delivery of such
miRNAs could therefore be regarded as a potential therapeutic strategy to boost remyelination both in
young and aged individuals.

4.2. Multiple Sclerosis

Multiple sclerosis (MS) is a multi-faceted immune-driven demyelinating disease of the CNS. MS is
characterized by inflammation-induced demyelination during the early stages, which eventually results
in gradual neurological disability as the disease progresses [117,118]. The concordance rate of identical
twins to develop MS averages between 6%–30%, suggesting that the disease is only partially driven by
genetic polymorphisms, but is largely attributed to environmental stimuli [119]. An increasing body of
evidence suggests a role of epigenetically regulated mechanisms in the pathophysiology of MS. Numerous
links have been made between environmental risk factors for MS and epigenetic changes [120–122].
Yet, most studies concerning epigenetics in MS are focused on the early, inflammatory stage of the
disease [123–125]. Another important aspect of the disease is the subsequent endogenous repair process
underlying remyelination of axons in order to cope with inflammatory damage. In the chronic stages of
MS, however, these repair processes are hampered due to a differentiation block in OPCs [126,127]. New
regenerative therapies, such as Opicinimab (anti-LINGO), are currently tested for their potential to boost
remyelination in lesions that still contain undifferentiated OPCs [128]. Interestingly, even though the
influence of epigenetics in progressive MS pathology is not clear yet, emerging data suggest an existing
role in OL differentiation and maturation.

Analysis of MS postmortem samples revealed increased levels of MBP citrullination, a post-translational
modification which renders the MBP protein less stable, leads to the degradation of myelin and can eventually
result in the development of an auto-immune response against myelin [129,130]. MBP citrullination is
carried out by the peptidyl arginine deiminase type-2 (PAD2) enzyme. Interestingly, the promoter region of
the PAD2 gene is hypomethylated in normal appearing white matter (NAWM) of MS patients, compared to
control samples [130]. This implies that PAD2 hypomethylation leads to a higher expression of the enzyme,
which finally results in the destabilization and degradation of the myelin sheath in MS white matter.
PAD2 hypomethylation is, surprisingly, not brain-specific but can also be observed in peripheral blood
mononuclear cells (PBMCs) of MS patients [131]. In a similar fashion, cell-free DNA (cfDNA) in peripheral
blood samples of MS patients with an active disease course showed hypomethylated patterns of the MOG
gene, which is associated with OL cell death and demyelinating events in the brain [132]. The correlation of
methylation patterns between the brain and blood has gained interest over the past years for its potential
application as a biomarker for neurodegenerative diseases [133–135], and could therefore also be used to
monitor disease progression in MS.
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An epigenome-wide DNA methylation study (EWAS) was conducted on MS NAWM postmortem
samples. Genes responsible for OL survival (BCL2L2, NDRG1) and myelination (MBP, SOX8) were
hypermethylated and decreased in expression in MS-affected tissue, compared to controls [136]. While
representing a valuable study, it is important to note that no distinction has been made between regular
cytosine methylation and 5-hydroxymethylation (5hmC). Considering the functional consequences of
5hmC, but also to prevent underrepresentation of methylated cytosine values, 5hmC analysis should
be taken along in CNS EWAS studies.

Another study that analyzed postmortem brain tissue of MS patients showed higher levels of
histone acetylation in oligodendrocytes within chronic MS lesions, compared to non-neurological
controls. These changes are associated with elevated HAT transcript levels and higher expression
of inhibitory regulators (TCF7L2, ID2, SOX2). In contrast, OLs present in early MS lesions show
the presence of deacetylated histones [137]. Since histone acetylation impairs OL differentiation and
remyelination, these data could partially explain the poor remyelination capacity associated with
progressive MS patients.

MiRNA analysis of brain samples of progressive MS patients showed upregulated levels of
different miRNAs (miR-155, miR-338, miR-491), which target enzymes that are involved in the
production of neurosteroids [138]. Opposing results were obtained from another study, in which they
show that these miRNAs are downregulated in chronic, inactive MS lesions, compared to control white
matter samples [139]. The discrepancy between these studies could be attributed to differences in
the analyzed tissue, their control sample selection or the method of miRNA analysis, which makes it
difficult to directly compare them to each other. Interestingly, the most significant downregulated hit
from the latter study is miR-219, which, together with miR-338, is essential for OPC cell cycle exit and
differentiation into myelin-producing OLs [85,88,91]. The absence of these miRNAs could thus underlie
the differentiation block of OPCs in chronic demyelinated lesion of progressive MS patients. Moreover,
miR-219 expression is also decreased in the cerebrospinal fluid (CSF) of MS patients, rendering it
a possible biomarker for MS diagnosis [140].

It is however noteworthy that most of the abovementioned studies have been conducted on
bulk tissue, leading to a possible noise introduced by the cellular heterogeneity. Since the observed
epigenetic changes could be strongly influenced by cellular variation or cell numbers, cell type-specific
validation is recommended to circumvent such bias [141,142].

4.3. Other Diseases with Myelopathy

Even though MS is regarded as the most common myelopathy of the CNS, many other neurological
diseases are characterized by oligodendroglial injury and myelin disruption. Here, we briefly
discuss how epigenetic changes impact OL regeneration and remyelination in relation to these other
demyelinating diseases.

Ischemic stroke, caused by a cerebral artery occlusion, is an important cause of death worldwide
and the majority of survivors often struggle from severe neurological disabilities throughout the
lifespan. Molecularly, ischemic stroke can be characterized by a disrupted architecture of neuronal
synapses, neuronal loss and loss of glial cells, including oligodendrocytes, leading to prominent
white matter demyelination [143]. During stroke recovery, endogenous repair processes are initiated
and include axonal growth, synaptic plasticity, angiogenesis, neurogenesis, and oligodendrogenesis.
Interestingly, during early brain recovery following ischemic stroke, HDAC1 and HDAC2 levels were
shown to be increased in white matter OPCs at the peri-infarct region [144,145]. Mature OLs showed
a retained increase of HDAC2 following stroke, while HDAC1 levels were decreased, indicating that
individual HDACs family members play distinct roles during recovery after stroke [144]. In line,
pan-HDAC inhibitors have repeatedly shown to protect OLs from ischemia-induced cell death and
subsequently increase oligodendrogenesis [146–148]. However, contradictory results have been
observed for the pan HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) as its treatment
suppressed OPC survival, leading to detrimental effects for the myelinating brain during stroke
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recovery [149]. Interestingly, not only HDAC modifications have shown their importance during
oligodendrogenesis following stroke, but also miRNAs have been widely investigated for their
therapeutic and diagnostic properties [150]. In ischemic white matter regions, miR-9 and miR-200b
levels were decreased, concomitant with an increased differentiation state of OL lineage cells [94,151].
However, the majority of the investigated miRNAs showed an increased expression pattern following
stroke. For example, rodent models for ischemic stroke showed a high presence of miR-146a, miR-138,
miR-338, miR-423-5p, miR-200b, miR-298, miR-205, miR-107 and miR-145 [99,152–154], all of which
have a negative impact on OPC proliferation, which is actually necessary in the early phase after stroke
injury to replenish the pool of lost OPCs. Interestingly, circulating miRNA levels have been measured
in stroke patients to provide new therapeutic and minimally invasive diagnostic insights. Measuring
miR-146a levels, for example, can segregate the acute phase from the subacute phase during ischemic
stroke, thereby highlighting the usefulness of miRNAs for future stroke research [155].

X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder caused by a mutation in the ABCD1
gene and characterized by progressive demyelination of the CNS [156]. An important aspect of
this disease is the absence of remyelination capacities, even after successful hematopoietic stem cell
transplantation [157]. X-ALD patients endure progressive impairment of cognition, vision, hearing
and motoric function, eventually leading to total disability [158]. An EWAS, conducted on white
matter samples of the prefrontal cortex of X-ALD patients, revealed differential DNA methylation
in genes involved in OL differentiation. Myelin genes, such as MBP, PLP1, MOG and CNP were
hypermethylated in X-ALD patients compared to age-matched controls. Furthermore, transcriptional
inhibitors (ID4 and SOX2) displayed an increased expression in these patients, suggesting a disturbed
HDAC activity [157]. In line with this, treatment with SAHA prevented OL cell loss both in vitro and
in vivo by counteracting the very long chain fatty acid (VLCFA) derangement associated with X-ALD
pathology [159]. Another type of leukodystrophy, adult-onset autosomal dominant leukodystrophy
(ADLD) is characterized by duplication of the gene that codes for lamin B1 (LMNB1), which leads
to overexpression of LMNB1 and causes severe myelin loss [160]. Interestingly, miR-23 has been
identified as a negative regulator of lamin B by targeting its transcript levels and could therefore be
considered as a therapeutic strategy for ADLD [161].

Schizophrenia has also been associated with OL dysfunction. Interestingly, the CpG island within
the promoter region of SOX10 is hypermethylated in brains of patients with schizophrenia, which is
directly associated with a decreased expression of SOX10 and other OL-related genes [162].

5. Therapeutic Perspectives: From Pharmaceuticals to (epi) Gene Therapy to IPSCs

It is clear that epigenetic modifications strongly influence OL development and functional
remyelination in a wide variety of diseases. Targeting these epigenetic alterations could therefore
be considered as a new therapeutic strategy to overcome remyelination failure. Most attempts to
pharmacologically manipulate epigenetic modulations are based on the use of inhibitors of epigenetic
enzymes, such as 5-aza, TSA and valproic acid (VPA) [163,164]. However, such pan-epigenetic
inhibitors are non-specific due to their pleiotropic impact at a genome-wide level. Furthermore, these
compounds are known to have low chemical stability and are cytotoxic at higher doses, which limits
their potency to be used in a cellular microenvironment [165,166]. Recent improvements in the field
of epigenetic editing have disclosed the use of DNA-binding proteins, such as zinc-finger proteins
(ZFPs), transcription activator-like effectors (TALEs) and type II clustered regularly interspaced short
palindromic repeat (CRISPR)/Cas9, as new synthetic epigenomic engineering tools [167–170]. These
DNA-binding proteins are linked to epigenetic modifiers and serve to guide them to a specific region
in the genome, thereby altering the epigenome at specific loci. Even though many advances have been
made regarding these new epigenetic editing techniques, their applicability in the clinic may require,
next to ethical considerations, additional research as their safety and efficacy remain to be disclosed.
In particular, the off-target effects and undesired genomic binding of these DNA-binding proteins are
still considered as one of the major hurdles for their therapeutic application [171].
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Autologous cell-based therapies have emerged as a promising technique to restore OL dysfunction.
Mature and fully differentiated OLs derived from induced pluripotent stem cells (iPSCs) have shown
to successfully remyelinate axons in rodents [172]. Interestingly, human iPSC-derived OPCs show the
same epigenetic signature during their differentiation process into mature OLs as seen in normal OL
development [173]. Furthermore, generation of oligodendrocytes from progressive MS patient-derived
iPSCs results in functional and myelinating cells, in contrast to the resident non-myelinating OPCs in
the CNS [174]. Since the epigenetic signature of OPCs/OLs can be disturbed in a pathological context,
reprogramming patient-derived iPSCs into OLs and repopulating lesion sites with these cells could be
considered as a promising remyelinating strategy.

6. Concluding Remarks

In this review, we have discussed how different epigenetic modifications influence OL development
and lineage progression and how this is dysregulated in demyelinating conditions. Epigenetic mechanisms
function as a precise gateway control system that governs the transcriptional machinery in a spatiotemporal
manner. In CNS demyelinating diseases, these epigenetic mechanisms are found to be altered, concomitant
with increased levels of transcriptional inhibitors and resulting in a differentiation block of OPCs. Targeting
these epigenetic processes, either by pan-inhibitors or via CRISPR/Cas9-mediated epigenetic editing, could
therefore be a potential strategy to boost OL differentiation and (re)myelination. Taken together, epigenetic
research has earned its place within the universe of OL development and further studies will contribute to
the complete understanding of CNS myelin disorders.
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