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Abstract

Some experimental designs, such as matched-pair or longitudinal studies,

yield mRNA sequencing (mRNA-Seq) counts that are correlated across sam-

ples. Most of the approaches for the analysis of correlated mRNA-Seq data

are restricted to a specific design and/or balanced data only (with the same

number of observations in each group).

We propose a model which is applicable to the analysis of correlated mRNA-

Seq data of different types: paired, clustered, longitudinal or others. Any

combination of explanatory variables as well as unbalanced data can be pro-

cessed within this framework. The model assumes that exon counts of a

particular gene of an individual sample jointly follow a multivariate negative-

binomial distribution. Additional correlation between exon counts obtained

for, e.g., individual samples within the same pair or cluster is taken into

account by including into the model a cluster-level normal random effect.

An interesting feature of the model is that it provides explicit expressions

for marginal correlation between exon counts at different levels. The perfor-

mance of the model is evaluated by using a simulation study and an analysis

of two real-life datasets: a paired RNA-Seq experiment for 24 patients with

clear-cell renal cell carcinoma and longitudinal RNA-Seq experiment for 29

patients with Lyme disease.

Python–code to apply the model is available at https://sourceforge.net/

projects/dgeee/
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1 INTRODUCTION

1 Introduction

mRNA sequencing (mRNA-Seq) is a powerful and versatile high-throughput

technique to study gene- and transcript-expression. The output of a mRNA-

Seq experiment is typically a set of overdispersed counts. A large number

of methods have been specifically developed to conduct differential gene-

expression based on mRNA-Seq counts. Soneson et al. Soneson and De-

lorenzi (2013), Rapaport et al. Rapaport et al. (2013), Seyednasrollah et

al. citeSeyednasrollah2015, and Conesa et al. Conesa et al. (2016) give a

detailed overview and comparison of these methods.

Some experimental designs, such as matched-pair experiments or longitudi-

nal studies, may yield RNA-Seq counts that are correlated across samples.

A number of methods have been proposed to analyze data from such exper-

iments. For instance, Pham and Jimenez Pham and Jimenez (2012), Hard-

castle and Kelly Hardcastle and Kelly (2013), and Chung et al. Chung et al.

(2013) have developed methods to analyze matched-pair data. For longi-

tudinal studies and/or other types of clustered experiments several methods

have been introduced Spies and Ciaudo (2015), including PLNSeq Zhang et al.

(2015) and DESeq2 Love et al. (2014).

In this article, we propose a hierarchical model for differential gene expression

analysis of correlated RNA-Seq data based upon exon counts. Exons are basic

units in transcription. Within a gene expression of individual exons vary

due to, among the other things, differences in exon lengths and alternative

isoform regulation. Conventional methods for differential gene expression

4



1 INTRODUCTION

operate on a summarized gene-level and disregard exon-expression variability.

On the other hand, the methods assume that expression of a single exon

has to necessarily lead to differential expression of the gene that contains

that exon Anders et al. (2012). We propose to acknowledge the variation in

exon expression when making an inference about gene expression by using a

multivariate distribution for the exon-expression levels.

In particular, the model we propose includes two types of random effects

which account, respectively, for the correlation between different samples

(cluster random effect) and for the correlation within a sample (individual

random effect). The cluster random effects are assumed to be normally

distributed, whereas the individual random effects follow a gamma distribu-

tion. Consequently, conditionally on the cluster random effect, counts from

exons of the same gene in a particular sample follow a multivariate negative-

binomial (MVNB) distribution. Essentially, the proposed model falls in the

framework developed by Molenberghs et al. Molenberghs et al. (2010). An

important advantage of the model is that it can be applied to data coming

from various designs that may yield correlated RNA-Seq counts, including

matched pairs, clustered sampling, and longitudinal studies. Moreover, it al-

lows computing the conditional and marginal correlation coefficients, which

offer insight into the correlation structure of the data.
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2 METHODOLOGY

2 Methodology

We consider per-gene analysis. Thus, in what follows, we drop the index

indicating the gene.

Assume that a gene consists of J exons. For a particular sample, the exon

counts may be correlated. To account for the correlation, we propose that

the counts follow a MVNB distribution Fabio et al. (2012).

In particular, denote by ys = (ys1, . . . , ysJ)′ the vector of exon counts for a

particular gene in sample s. Let nj denote the length of exon j and Ls be the

effective library size Robinson and Oshlack (2010) of sample s. Additionally,

let xs = (1, xs1, . . . , xsp)
′ be the vector of covariates describing the sample.

Then the joint probability mass function for ys is assumed to be given by

P (ys) =
Γ(φ+

∑J
j=1 ysj)

Γ(φ)
∏J

j=1(ysj!)
Q−φs

J∏
j=1

(
µsj
φQs

)ysj
, (1)

where

µsj = njLs exp(x′sβ)

is the expected value of the count for exon j, β is the (p + 1)-dimensional

vector of (unknown) coefficients (including the intercept) corresponding to

the covariates in xs, Qs = 1+
∑

j µsj/φ, and φ is the overdispersion parameter

so that

Var(ysj) = µsj(1 + µsj/φ). (2)
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2 METHODOLOGY

Note that the use of MVNB distribution implies that

Corr(ysj,ysk) =
µsjµsk√

(φ+ µsj)(φ+ µsk)
. (3)

Fabio et al. Fabio et al. (2012) demonstrated that the MVNB distribu-

tion, defined by (1), can be obtained as a distribution of a set of indepen-

dent Poisson-distributed random variables with mean values depending on a

gamma-distributed random effect:

ysj|γs ∼ Poisson(µsjγs), (4)

γs ∼ Gamma(φ, 1/φ). (5)

Note that (5) implies that the expected value of γs is equal to 1 and the

variance is equal to 1/φ.

Assume now that exon counts ys are collected for a set of samples that may be

correlated. Thus, we observe N clusters, each with Nc samples. We extend

our notation and identify a sample by index c for cluster (c = 1, . . . , N)

and s for the sample within the cluster (s = 1, . . . , Nc). To account for

the correlation between the exon counts obtained for samples from the same

cluster, we include in our model a cluster-specific random effect bc that is

normally distributed with mean zero and variance σ2. In particular, using the

hierarchical representation (4)–(5) of the MVNB (1), we define the following
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2 METHODOLOGY

hierarchical model:

ycsj|γcs, bc ∼ Poisson{njLcsγcs exp(x′csβ + bc)}, (6)

γcs ∼ Gamma(φ, 1/φ), (7)

bc ∼ Normal(0, σ2). (8)

Note that, alternately, we can describe the model as resulting from the as-

sumption that, conditionally on bc, exon counts ycs within a sample are

correlated as in (3) and distributed according to the MVNB (1) with overdis-

persion φ and with mean values

µcsj|b = njLcs exp(x′csβ + bc) ≡ Kcsj exp(bc). (9)

For the hierarchical model (6)–(8) it is possible (2010, Molenberghs et al.

(2010)) to derive marginal moments. The marginal mean and variance of the

exon count ycsj are given by, respectively,

E(ycsj) = Kcsje
σ2/2, (10)

Var(ycsj) = Kcsje
σ2/2 +K2

csje
2σ2
(

1/φ+ 1− e−σ2
)
, (11)

with Kcsj defined in (9). The marginal covariance between counts for two

exons, j and k, observed for two samples from the same cluster c, is given by

Cov(ycsj, yctk) =


KcsjKcske

2σ2
(

1/φ+ 1− e−σ2
)

if s = t & j 6= k,

KcsjKctke
2σ2
(

1− e−σ2
)

if s 6= t.

(12)
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2 METHODOLOGY

Thus, the model implies that counts of exons from different samples (s 6= t)

that are part of the same cluster are (positively) correlated. The correlation

is weaker than the correlation between counts of exons obtained for the same

sample (s = t).

Note that correlation coefficients are functions of the marginal means defined

by (10), which depend on the exon length nj, library size Lcs, and sample-

specific covariates. Thus, even for the same sample, the correlation will differ

for different pairs of exon counts, unless the exons are of the same length.

On the other hand, for a fixed pair of exons, the correlation will differ for

different samples, unless the library sizes and sample-specific covariates are

exactly the same.

The marginal likelihood for model (6)–(8) for exon-count data observed for

N clusters with Nc samples each is given by

L(β, φ, σ2) =
N∏
c=1

∫ ∞
−∞

Nc∏
s=1

P (ycs|bc)f(bc)dbc, (13)

where P (ycs|bc) is the probability mass function (1) defined by using mean

values µcsj|b specified in (9), while f(bc) is the density of the mean-zero normal

distribution with variance σ2. Note that, for brevity, we have not indicated

the dependence of the functions involved in the right-hand-side part of (13)

on the parameters.

The estimates of the parameters β, φ, and σ are obtained by maximizing the

marginal likelihood function (13).

The integral involved in (13) is computed by using the adaptive Gaussian-
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3 DATA

Hermite quadrature (AGHQ). In our study we used 10 quadrature points.

Variance-covariance matrix of the estimated parameters is obtained from the

inverse of the negative Hessian of the logarithm of the marginal likelihood.

The model (6)-(8) is implemented in python. Our open source software is

available under https://sourceforge.net/projects/dgeee/

3 Data

To investigate the performance of our model, we conducted simulation stud-

ies. We also applied the model to two real-life RNA-Seq datasets.

We considered settings of a matched-pair design and of a clustered experi-

ment. For each of these settings, we generated 10,000 datasets with exon-

counts for a gene that consists out of three exons. Data were generated by

using the hierarchical model (6)–(8).

We also generated data from a conditional-independence model where, con-

ditionally on the normally-distributed random effect, exon counts were inde-

pendent and followed negative binomial distributions with mean values given

by (9) and overdispersion parameter φ.

3.1 A simulated matched-pair RNA-Seq experiment

We simulated datasets for a hypothetical matched-pair experiment. We as-

sumed that that the samples within each pair originated from two different bi-

ological conditions, “control” and “experimental,” say. Thus, xcs = (1, xcs1)
′,

10
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3.1 A simulated matched-pair RNA-Seq experiment 3 DATA

where xcs1 is the binary indicator of the “experimental” condition, and

β = (β0, β1)
′. We assumed that β0 = 0.5.

We considered different scenarios by varying the effect of the “experimental”

condition (β1), the number of matched pairs (N), the value of the overdisper-

sion parameter (φ), and the standard deviation of the cluster random effect

(σ). The scenarios are listed in Table 1. We assumed β1 = 0, 0.12, or 1 and

combined it with N = 12, 24, or 36 to study the Type-I error probability

and power in function of the sample size. The value of φ was set to be equal

to 54.6, 7.4, and 2.7 to investigate the effect of the correlation between exon

counts on the estimation and model-based inference. In particular, the values

implied the within-sample correlation of exon counts equal to 0.51, 0.87, and

0.95, respectively. The value of σ was set to 0.2 or 0.4 to evaluate the effect of

increasing marginal between-sample correlation. We additionally considered

the performance of the model in the case when, conditionally on the cluster

random effect, there was no within-sample correlation.

In particular, scenarios (1)–(3) correspond to the situation of no difference

in gene-expression between the two biological conditions. These scenarios

allow, in particular, investigation of the Type-I error probability for testing

β1 = 0. On the other hand, scenarios (4)–(7) specify the case when there

is differential expression, with a smaller (exp β1 = exp(0.12) = 1.12) and a

larger (exp β1 = exp(1) = 2.73) fold-change. They allow investigation of the

power for testing β1 = 0. Scenarios (8)–(15) allow evaluation of the Type-I

error probability and power for stronger within-cluster and/or within-sample

correlations.
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3.2 A simulated longitudinal RNA-Seq experiment 3 DATA

Finally, scenarios (16)–(17) focus on the performance of model (6)–(8), which

assumes a positive within-sample correlation, when, in fact, data are gener-

ated from a simpler model independent exon-counts within the same sample.

3.2 A simulated longitudinal RNA-Seq experiment

We simulated also datasets for a hypothetical longitudinal study. We as-

sumed that samples from the same individual were obtained at three different

time points. Thus, xcs = (1, xcs1, xcs2)
′, where xcs1 and xcs2 are the binary

indicators of the second and third measurement occasion, respectively, and

β = (β0, β1, β2)
′. We assumed that β0 = 0.5.

Table 2 presents the considered combinations of the effect of the measurement

occasion (β1 and β2), the number of clusters (N), the value of the overdisper-

sion parameter (φ), and the standard deviation of the cluster random effects

(σ).

We were particularly interested in the Type-I error probability and power for

the Wald test for the following two null hypotheses:

H1
0 : β1 = β2 ≡ 0, (14)

H2
0 : β1 = β2. (15)

Rejection of H1
0 indicates that gene-expression changes with time. Rejection

of H2
0 implies that a change occurs between the second and third measurement
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3.2 A simulated longitudinal RNA-Seq experiment 3 DATA

Table 1. Parameters of the simulations (10,000 replicates each) of a matched pair RNA-
Seq experiment for one gene consisting of three exons. (N is the number of pairs. σ (lnσ),
φ (lnφ), β1 refer to model (6)–(8). In all scenarios β0 = 0.5. ρ|b and ρ∗|b are the conditional
correlations between exon 1 and exon 3 for control and experimental samples, respectively,
for a pair with the random effect equal to zero (bc = 0). ρs,s and ρs,t are the marginal
correlations between exon 1 and exon 3 within the same control sample and for different
samples within the same pair, respectively. All correlations were calculated from the true
parameter values.)

Scenario N σ (lnσ) φ (lnφ) β1 ρ|b ρ∗|b ρs,s ρs,t
No differential expression (β1 = 0)

(1) 12 0.2 (-1.6) 54.6 (4) 0 0.51 0.51 0.76 0.52
(2) 24 0.2 (-1.6) 54.6 (4) 0 0.51 0.51 0.76 0.52
(3) 36 0.2 (-1.6) 54.6 (4) 0 0.51 0.51 0.76 0.52

Small fold change (β1 = 0.12)
(4) 12 0.2 (-1.6) 54.6 (4) 0.12 0.51 0.54 0.76 0.52
(5) 24 0.2 (-1.6) 54.6 (4) 0.12 0.51 0.54 0.76 0.52

Large fold change (β1 = 1)
(6) 12 0.2 (-1.6) 54.6 (4) 1 0.51 0.73 0.76 0.53
(7) 24 0.2 (-1.6) 54.6 (4) 1 0.51 0.73 0.76 0.53

Increased marginal within-cluster correlation (σ = 0.4)
(8) 12 0.4 (-0.9) 54.6 (4) 0 0.51 0.51 0.91 0.81
(9) 12 0.4 (-0.9) 54.6 (4) 0.12 0.51 0.54 0.91 0.81

Increased conditional within-sample correlation (φ = 7.4)
(10) 12 0.2 (-1.6) 7.4 (2) 0 0.87 0.87 0.90 0.20
(11) 12 0.2 (-1.6) 7.4 (2) 1 0.87 0.95 0.90 0.21
(12) 24 0.2 (-1.6) 7.4 (2) 1 0.87 0.95 0.90 0.21
(13) 36 0.2 (-1.6) 7.4 (2) 1 0.87 0.95 0.90 0.21
Increased within-cluster (σ = 0.4) and -sample (φ = 7.4) correlations
(14) 12 0.4 (-0.9) 7.4 (2) 1 0.87 0.95 0.95 0.50

Increased conditional within-sample correlation (φ = 2.7)
(15) 12 0.2 (-1.6) 2.7 (1) 1 0.95 0.98 0.96 0.09

Conditional-independence model (ρ|b = 0)
(16) 12 0.2 (-1.6) 54.6 (4) 1 0 0
(17) 24 0.2 (-1.6) 54.6 (4) 1 0 0

occasion.

In simulated scenarios (1)–(2), presented in Table 2, both null hypotheses

H1
0 and H2

0 were true. Thus, the scenarios allowed estimation of the Type-I
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3.3 Renal-cell carcinoma matched-pair experiment 3 DATA

error probability. In scenarios (3)–(4), only H2
0 was true. These scenarios

were suitable for evaluating the Type-I error probability for H2
0 and power

for H1
0. The settings of scenarios (5)–(7) allowed us to investigate the influ-

ence of the sample size and of the magnitude of fixed effects on the power.

Finally, in scenarios (8)–(11) we analyzed the influence of the magnitude of

the marginal and conditional correlations on the power. In all scenarios we

also observed the performance of the model in terms of the bias and precision

of the parameter estimates.

3.3 Renal-cell carcinoma matched-pair experiment

Metastases in clear cell renal cell carcinoma (RCC) are associated with poor

treatment outcomes Capitanio and Montorsi (2016). Recent drug discov-

ery strategies in metastatic RCC have been directed to specific targets in

a few biological pathways Capitanio and Montorsi (2016). It is, therefore,

important to identify genes associated with differences in metastatic status.

The dataset contained the outcomes of a pre-processed RNA-Seq experiment

for 24 RCC patients. Twelve patients with a metastatic disease were matched

with twelve non-metastatic patients based on the SSIGN–score Frank et al.

(2002). It must be noted, that absence of metastases at the time of the study

did not rule out the risk of development of metastases at later stages of the

disease.

Pre-processed data were obtained from the Division of Biomedical Statistics

and Informatics, Mayo Clinic, Rochester, MN.
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3.3 Renal-cell carcinoma matched-pair experiment 3 DATA

Table 2. Parameters of the simulations (10,000 replicates each) of a longitudinal RNA-
Seq experiment with one gene consisting of three exons. (N is the number of clusters.
σ (lnσ), φ (lnφ), β1, β2 refer to model (6)–(8). In all scenarios β0 = 0.5. ρ|b and ρ∗|b are
the conditional correlations between exon 1 and exon 3 for an individual with the random
effect equal to zero (bc = 0) at the first and third time point, respectively. ρs,s is the
marginal correlation between exon 1 and exon 3 within the same sample at the first time
point. ρs,t is the marginal correlation between exon 1 from a sample collected at the first
point and exon 3 from a sample collected at the third time point. All correlations were
calculated from the true parameter values.)

Scenario N σ (lnσ) φ (lnφ) β1 β2 ρ|b ρ∗|b ρs,s ρs,t
H1

0: β1 = β2 = 0
(1) 8 0.2 (-1.6) 54.6 (4) 0 0 0.51 0.51 0.76 0.52
(2) 16 0.2 (-1.6) 54.6 (4) 0 0 0.51 0.51 0.76 0.52

H2
0: β1 = β2 6= 0

(3) 8 0.2 (-1.6) 54.6 (4) 0.15 0.15 0.51 0.55 0.76 0.52
(4) 16 0.2 (-1.6) 54.6 (4) 0.15 0.15 0.51 0.55 0.76 0.52

β1 6= β2
(5) 8 0.2 (-1.6) 54.6 (4) 0.15 0.25 0.51 0.57 0.76 0.52
(6) 16 0.2 (-1.6) 54.6 (4) 0.15 0.25 0.51 0.57 0.76 0.52
(7) 8 0.2 (-1.6) 54.6 (4) 1 1.5 0.51 0.81 0.76 0.54

Increased conditional within-sample correlation (φ = 7.4)
(8) 8 0.2 (-1.6) 7.4 (2) 0 0 0.87 0.87 0.90 0.20
(9) 8 0.2 (-1.6) 7.4 (2) 0.15 0.25 0.87 0.90 0.90 0.20

Increased marginal within-cluster correlation (σ = 0.4)
(10) 8 0.4 (-0.9) 54.6 (4) 0 0 0.51 0.51 0.91 0.81
(11) 8 0.4 (-0.9) 54.6 (4) 0.15 0.25 0.51 0.57 0.91 0.82

For each patient, expression of 22,334 genes was quantified, yielding mea-

surements for the total of 234,575 exons. There were 24,158 exons with zero

counts across all the samples. The number of exons varied between 1 and

468 (mean 10.5, median 7) per gene.
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3.4 Tick-born Lyme disease longitudinal study

Lyme disease is a tick-born infection. Some patients report lingering or re-

curring symptoms lasting months to years after antibiotic treatment Bouquet

et al. (2016). Despite growing knowledge on immune response to an acute

Lyme disease, pathogenetic molecular mechanisms behind persistent post-

lyme symptoms are not well understood Bouquet et al. (2016); Strle et al.

(2014). Identifying the genes associated with the dynamics of Lyme disease

might bring better understanding of these mechanisms.

Bouquet et al. Bouquet et al. (2016) conducted a study in which RNA-

Seq data were collected from 29 patients with tick-born Lyme disease and

from 13 healthy controls. We downloaded these freely available data from

https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP049605

In our analysis, we only use the samples from the patients with Lyme disease.

From each patient, blood samples were taken three times: once before the

antibiotic treatment was started, once immediately after completion of the

treatment, and six months after treatment completion.

Eighty-seven libraries were sequenced as 100-bp paired-end runs on a HiSeq

2500 (Illumina). Three of them were discarded because of insufficient read

counts and transcriptome coverage. We analyzed only single-end reads in

order to limit the number of unaligned reads. The preprocessing steps in-

cluded removal of the 5’ and 3’ adapters, and trimming low-quality ends from

the reads using cutadapt Martin (2011). Processed reads shorter than 50bp

were discarded.
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4 RESULTS

Single-end processed reads were mapped to the human genome (GRCh38)

with Bowtie Langmead et al. (2009) allowing for up to two mismatches and

reporting the best mapping location for each alignment. The read counting

was performed by using the R function summarizeOverlaps Lawrence et al.

(2013) according to the exon annotation (GRCh38.82). As a result, 195,785

exons with non-zero sum of counts across all samples were included in the

analysis. Finally, we used 19,808 protein coding genes from the annotation

file to group exons into genes.

4 Results

4.1 A simulated matched-pair RNA-Seq experiment

Scenarios (1)–(3) (see Table 1) correspond to the situation when there is no

differential expression between the two biological conditions. For those cases,

Table 3 presents the true values of the parameters, their mean estimated

values, relative bias, mean model-based standard error estimate (SEmodel),

empirical standard error of the estimates (SEemp), the estimated coverage

(the percentage of cases when the CI does include the true value of the

parameter) of the 95% confidence interval (CI), and the percentage of cases

when the CI does not include the value of 0. The latter reflects power if

the alternative hypothesis is correct (the true value of the parameter is not

equal to zero) or the complement of the Type-I error probability if the null

hypothesis is correct (the true value of the parameter is equal to zero). Note

that, given 10,000 simulations, the standard error of the coverage is equal to

17



4.1 A simulated matched-pair RNA-Seq experiment 4 RESULTS

about
√

0.05× 0.95/100 = 0.002.

Table 3. A simulated matched-pair RNA-Seq experiment for scenarios (1)–(3) (no dif-
ferential expression; see Table 1). SEmodel and SEemp are the mean model-based and
empirical standard error estimates, respectively.

True Mean Relative SEmodel SEemp 95% CI
value estimate bias coverage

N=12 (Scenario 1)
lnσ -1.609 -1.803 0.120 21.201 0.699 0.991
lnφ 4.000 4.260 0.065 0.617 0.632 0.989
β0 0.500 0.499 -0.002 0.074 0.072 0.942
β1 0.000 0.001 NA 0.062 0.060 0.935

N=24 (Scenario 2)
lnσ -1.609 -1.674 0.040 0.245 0.237 0.979
lnφ 4.000 4.108 0.027 0.367 0.371 0.954
β0 0.500 0.499 -0.001 0.052 0.051 0.948
β1 0.000 0.000 NA 0.043 0.043 0.943

N=36 (Scenario 3)
lnσ -1.609 -1.650 0.025 0.164 0.165 0.969
lnφ 4.000 4.074 0.018 0.292 0.296 0.952
β0 0.500 0.499 -0.001 0.042 0.041 0.949
β1 0.000 0.000 NA 0.035 0.035 0.943

The results presented in Table 3 indicate that, under the null hypothesis

β1 = 0, both β0 and β1 are estimated with a negligible bias. The model-

based standard errors slightly overestimate, on average, the empirical stan-

dard errors. For N = 12 pairs, the estimated coverage of the 95% CI for β0 is

(statistically significantly) slightly below 95%. However, the under-coverage

essentially disappears with increasing N . A similar trend is observed for β1,

though for N = 36 the coverage is still below 95%. This indicates a slight

inflation of the Type-I error probability. Note that we did not investigate

the effect of increasing N beyond 36, as N = 36 seems to be already a
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4.1 A simulated matched-pair RNA-Seq experiment 4 RESULTS

considerable number of pairs for a matched-pair RNA-Seq experiment.

For the parameters linked to the random effects, i.e., lnσ and lnφ, the relative

bias is equal, respectively, to 12% and 6.5% for N = 12. The bias decreases

with increasing N .

For N = 12, the mean model-based standard error for lnσ is much larger

than the empirical standard error. This is largely due to 107 simulations

which yielded an extremely large (> 20) model-based standard error. In

those cases one can conclude problems with estimation of ln σ. The problem

disappears with increasing N . It is worth noting that for lnσ and lnφ the

mean model-based standard error underestimates the empirical standard er-

ror. Consequently, the coverage of the 95% CI of both parameters is too high,

i.e., above 95%. However, the coverage gets closer to 95% with increasing N .

In fact, for N = 24 and N = 36, it is not statistically significantly different

from 95% for lnφ.

Table 4 shows the results for scenarios (4)–(7) (see Table 1), i.e., for the situa-

tion of differential expression (β1 6= 0) between the two biological conditions.

Similarly to the case of no differential expression, β0 and β1 are estimated

with almost no bias. The coverage of the 95% CI of β1 is lower than 95%. It

is worth noting that the power for testing β1 = 0 when, in fact, β1 = 0.12 is

equal to about 0.5 for N = 12 and increases to 0.8 for N = 24. For β1 = 1

the power is essentially equal to 1 even for N = 12.

For lnσ and lnφ, the relative bias is equal to about, respectively, 10% and

6% for N = 12. The bias decreases to about, respectively, 4% and 3% for

N = 24.
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Table 4. A simulated matched-pair RNA-Seq experiment – scenarios (4)–(7) (differential
expression; see Table 1). SEmodel and SEemp are the mean model-based and empirical
standard error estimates, respectively.

True Mean Relative SEmodel SEemp 95% CI Power
value estimate bias coverage

N=12 (Scenario 4)

lnσ -1.609 -1.803 0.120 3.626 0.704 0.993
lnφ 4.000 4.243 0.061 0.579 0.592 0.983
β0 0.500 0.500 0.000 0.074 0.072 0.941
β1 0.120 0.120 0.001 0.062 0.060 0.938 0.495

N=24 (Scenario 5)
lnσ -1.609 -1.673 0.040 0.363 0.262 0.979
lnφ 4.000 4.115 0.029 0.364 0.370 0.954
β0 0.500 0.499 -0.002 0.052 0.051 0.946
β1 0.120 0.120 0.000 0.043 0.043 0.939 0.794

N=12 (Scenario 6)
lnσ -1.609 -1.776 0.103 1.909 0.571 0.991
lnφ 4.000 4.227 0.057 0.538 0.554 0.958
β0 0.500 0.499 -0.002 0.074 0.072 0.948
β1 1.000 1.001 0.001 0.060 0.059 0.938 1.000

N=24 (Scenario 7)
lnσ -1.609 -1.668 0.036 0.207 0.210 0.979
lnφ 4.000 4.106 0.027 0.345 0.348 0.948
β0 0.500 0.501 0.002 0.052 0.051 0.947
β1 1.000 0.999 -0.001 0.042 0.042 0.943 1.000

Similarly to the case of no differential expression (see Table 3), the mean

model-based standard error for ln σ for N = 12 is much larger than the

empirical standard error. Increasing N to 24 effectively removes the problem.

It also improves the estimation of the standard error of lnσ and lnφ and the

95% CI coverage, especially for lnφ.

The results for scenarios (8)–(15) are presented in Table S4. They lead to

conclusions very similar to those presented above. The parameters of primary
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interest, β0 and β1, are estimated with a negligible bias. The estimates of the

parameters of secondary interest, ln σ and lnφ, have a larger, but reasonably

small, bias. For the latter parameters, increasing the number of observations

reduces the bias and improves the coverage of the 95% CI.

Table 5 presents results for scenarios (16)–(17), i.e., for the model in which,

conditionally on cluster random-effects, exon counts were not correlated. As

compared to scenarios (6) and (7) in Table 4, there is essentially no difference

in the bias nor precision of estimation of β0 and β1. Thus, estimates of

the parameters provided from our model seem to be robust to this type of

misspecification of the variance-covariance structure.

It is worth noting that, throughout the simulations, the library size was as-

sumed to be the same. Thus, for all scenarios, except of (16) and (17), we

could estimate the marginal correlation matrix corresponding to the marginal

variances (11) and covariances (12) for each simulated dataset by using the

estimated values of the parameters. The estimated matrices were then aver-

aged and compared to the true correlation matrix resulting from true param-

eter values. In particular, to summarize the relative bias, we calculated the

average of the relative differences between the upper triangular elements of

the estimated and true correlation matrices. Note that the bias was reported

only if the differenced were of the same sign. The obtained results (complete

results are available in the supplementary file S3.xlsx) indicated a satisfac-

tory performance of the estimates of the marginal correlations. In general,

the correlation coefficients were slightly underestimated. For instance, for

scenarios (1)–(3), the average relative bias was equal to −6.8%, −3.2%, and

21



4.2 A simulated longitudinal RNA-Seq study 4 RESULTS

−2.1% for 12, 24, and 36 pairs, respectively. For scenarios (4)–(5), increas-

ing the sample size from N = 12 to N = 24 reduced the bias from −5.7%

to −2.5%. Only when the within-sample correlation was extremely high (as

compared to other scenarios) and, at the same time, the between-sample

correlation was extremely low, as in scenario (15) (see Table 1), there was a

considerable positive bias of about 35% .

Table 5. A matched pair RNA-Seq experiment – scenarios (16)–(17) (a conditional-
independence model; see Table 1). SEmodel and SEemp are the mean model-based and
empirical standard error estimates, respectively.

True Mean Relative SEmodel SEemp 95% CI
value estimate bias coverage

N=12 (Scenario 16)
log σ -1.609 -1.723 0.071 0.373 0.319 0.974
log φ 4.000 5.025 0.256 0.738 0.757 0.737
β0 0.500 0.499 -0.002 0.068 0.067 0.936
β1 1.000 1.000 0.000 0.044 0.044 0.932

N=24 (Scenario 17)
log σ -1.609 -1.662 0.033 0.177 0.178 0.957
log φ 4.000 4.858 0.215 0.398 0.399 0.411
β0 0.500 0.500 0.000 0.047 0.047 0.945
β1 1.000 1.000 0.000 0.031 0.031 0.940

4.2 A simulated longitudinal RNA-Seq study

For scenarios (1) and (2) (see Table 2), the estimated Type-I-error probability

of the joint Wald test for hypotheses H1
0 and H2

0 (see equations (14) and

(15)) was equal to 6.9% and 6.1%, respectively. Doubling the number of

clusters from 8 to 16 in scenario (2) reduced the probability to 5.9% and

5.1%, respectively. Note that, given that 10,000 simulations were conducted,
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the former estimate is statistically significantly different from 5%, suggesting

a slight inflation of the Type-I-error probability for testing H1
0.

In scenario (3), only H2
0 was true. The estimated Type-I-error probability

was equal to 6.0%. The power of testing H1
0 was equal to 51%. Doubling

the number of clusters from 8 to 16 in scenario (4) reduced the Type-I-error

probability to 5.4% and increased the power to 82%.

Overall, the power of testing the hypotheses increased as the number of

clusters increased. For example, for scenario (5) with N = 8 clusters, the

estimated power for testing H1
0 and H2

0 was equal to 0.83 and 0.28, respec-

tively. Doubling the number of clusters in scenario (6) increased the power

to 0.99 and 0.48, respectively. Complete results related to the power of the

Wald test are available in the supplementary file S3.xlsx.

Table 6 presents the simulation results for scenarios (1) and (2). Similarly

to the matched-pair case (see Table 3), under the null hypothesis, the fixed

effects (β0, β1, β2) are estimated with a negligible bias. The coverage of the

95% CI is higher than the nominal level, but decreases when the increasing

number of clusters. The same is true for the 95% CI and bias of log σ and

log φ.

Similar observations can be made for scenarios (3)–(11). The detailed results

are presented in Supplementary Table S5. In particular, they confirm the

adequate performance of the model-based estimates of β0, β1, and β2.

We also investigated the bias of the estimates of the marginal correlations,

obtained by using the estimates of the model parameters. In most cases,
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a negative relative bias was observed. The largest absolute value of the

relative bias was equal to 14%. The bias substantially reduced when the

number of cluster increased. The detailed results related to the estimation

of the marginal correlation structure are available in the supplementary file

S3.xlsx.

Table 6. A longitudinal RNA-Seq experiment – scenarios (1)–(2)(a gene without differen-
tial expression; see Table 2). SEmodel and SEemp are the mean model-based and empirical
standard error estimates, respectively.

True Mean Relative SEmodel SEemp 95% CI
value estimate bias coverage

N=8 (Scenario 1)
log σ -1.609 -1.858 0.154 3.886 0.759 0.998
log φ 4.000 4.271 0.068 0.585 0.535 0.995
β0 0.500 0.499 -0.002 0.102 0.088 0.961
β1 0.000 0.000 NA 0.086 0.074 0.964
β2 0.000 0.000 NA 0.086 0.074 0.964

N=16 (Scenario 2)
log σ -1.609 -1.697 0.054 0.327 0.272 0.977
log φ 4.000 4.122 0.030 0.338 0.325 0.960
β0 0.500 0.499 -0.001 0.066 0.061 0.956
β1 0.000 0.000 NA 0.056 0.052 0.955
β2 0.000 0.000 NA 0.056 0.052 0.958

4.3 Renal-cell carcinoma matched-pair experiment

We applied our model, the PLNseq Zhang et al. (2015) and DESeq2 Love et al.

(2014) methods to the renal-cell carcinoma dataset.

To produce gene counts for PLNseq, we summed the relevant exon counts.

It is worth noting that the current implementation of PLNseq requires gene

counts to be equal to or larger than 50 in each condition. As a consequence,
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21% of 22,334 genes had to be excluded from the analysis. In the remain-

ing set (17,528 genes), 133 genes were found to be statistically significantly

(after the correction for multiple testing with the Benjamini-Hochberg (BH)

Benjamini and Hochberg (1995) procedure) differentially expressed between

the non-metastatic and metatstatic samples.

In contrast to PLNseq, our model does not require any minimum value of an

exon-count to include the count in the analysis. However, for 6.5% (1448) of

the genes we could not obtain estimates due to non-convergence. For infor-

mation about the PLNseq and non-convergence and the convergence criteria

of our approach, see Sections A.7 and A.5.2 in Supplementary Materials.

Only eight of the remaining 21786 genes were found to be statistically signif-

icantly differentially expressed after the BH-correction for multiplicity. None

of these eight genes was identified by PLNseq.

We also analyzed the data by using DESeq2. Also in that case we produced

gene counts by summing the relevant exon counts. We applied a multi-factor

design to analyze the paired gene-counts. In particular, the pair number

constituted a factor in the design formula Love et al. (2014). The method

identified 11 differentially expressed genes, different from those identified by

our method.

4.4 Tick-born Lyme disease longitudinal study

Only 8,760 genes were analyzed by the PLNseq method Zhang et al. (2015)

because the remaining 11,048 (56%) genes had a count smaller than 50 in
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any of the conditions. Moreover, as PLNseq cannot handle unbalanced data,

three patients with only two samples had to also be discarded.

The current implementation of PLNseq can only test null hypothesis H1
0 (see

Eq. (14)). For 2,456 genes (28%), the null hypothesis was rejected after the

BH-correction for multiplicity.

An advantage of our model is that it can handle unbalanced data. Hence,

we could analyze the data for all the Lyme-disease samples.

Our model did not converge for 1,680 (8.5%) genes. Among 18,128 genes

for which no convergence issues were noted, H1
0 was rejected for 4,096 (23%)

genes. Among those, 528 were also identified by PLNseq. Additionally, for

976 out of the 4,096 genes, H2
0 was rejected, i.e., we found that there was

a statistically significant difference in gene expression between the second

and the third measurement occasion. In particular, expression of 552 genes

increased at the third occasion as compared to the second occasion, whereas

expression of 424 genes decreased. The expression of the 47 significant genes

changed more than two-fold, suggesting their active involvement in the long-

term reaction to acute Lyme disease.

5 Conclusion

In this article we have presented a model for analyzing differential gene ex-

pression in correlated RNA-Seq data based on exon-level counts. The model

accounts for the within- and between-sample correlation between the exon

counts for a particular gene. The model can be applied to various types

26



5 CONCLUSION

of experiments that might yield correlated RNA-Seq data (matched pairs,

longitudinal studies, clustered sampling).

Simulation studies showed that the model is able to correctly estimate differ-

ential expression, even when there is no within-sample correlation. Increasing

the number of clusters reduces bias and improves precision of the estimation

of the random-effect parameters.

The performance of our model has been compared with PLNSeq with the

help of two real-life experiments. In contrast to PLNseq, our method can

handle unbalanced data, and a substantially larger number of genes can be

tested. Additionally, our model allows testing various hypotheses related to

the factors that might influence gene-expression levels.

In the paired experiment, the list of differentially expressed genes, reported

by our model, was completely different from the list obtained by the DESeq2

method (see Section 4.3). This difference may be due to the fact that DESeq2

is not designed for the analysis of correlated exon counts.

It is possible to use our model for the analysis of differential gene expression

in correlated RNA-Seq data with gene counts as input. Mathematically, the

model would simplify to a mixed-effects negative-binomial regression with

normal cluster-specific random effects. The user could run our model in the

same way as if there were just one exon per gene. Alternative solutions could

be found in other software like, for instance, Stata (menbreg command).

One noticeable drawback of our model is that it assumes that, after adjusting

for the exon length and library size, all exons within the same gene have the
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same level of expression. However, exon expression can vary due to alter-

native splicing. In our model alternative spicing is only partially accounted

for by using the overdispersion parameter φ. An extension of the model that

would allow for an explicit adjustment for existence of multiple isoforms of

a gene is a topic for further research.

It is worth noting that exon-level analysis of RNA-Seq data is that it dis-

regards exon-exon junctions. In addition, some exons may overlap in an

annotation file.

Our method is computationally intensive. It required roughly 5-6 hours per

1000 genes on one core for the real-life datasets described in this work. The

study was carried out on either Intel Xeon E5-2670 v3 or Intel Xeon E5-2697

v3 hardware.

The proposed model is implemented in open source Python software, which

is available under https://sourceforge.net/projects/dgeee/.
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AGHQ – Adaptive Gauss-Hermite quadrature

DE – differential expression

DGE – differential gene expression

EM – expectation maximization

iid – independent with identical distributions

GG – generalized gamma

GHQ – Gauss-Hermite quadrature

GLG – generalized log-gamma GLMM – generalized linear mixed model(s)

LOTUS – Law of the unconscious statistician

ML – maximum likelihood
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MVG – multivariate gamma

MVNB – Multivariate Negative Binomial

NB – Negative binomial

OLS – Ordinary Least Squares

pdf – Probability Density Function

pmf – Probability Mass Function

RE – Random Effect(s)

rv – random variable

sd – Standard Deviation

SE – Standard Error

mRNA-Seq – mRNA sequencing
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A.1 Results A SUPPLEMENTARY MATERIALS

TMM – Trimmed Mean of M-values

A.1 Results

The main results of some simulation scenarios are provided in this section.
The output of all simulations, including the tables below can be found in the
supplementary file S3.xlsx. Parameter names refer to Model (6)-(8). For each
scenario, label from the file file S3.xlsx is followed by scenario number from
the main text and then by number of clusters (of 2 for paired experiment or
of 3 for clustered experiment).

Table S1. Results for the scenario’s of a matched pair RNA-Seq experiment
trueVal – true value of the parameter; estim – point estimate of the parameter (mean

value of 10,000 point estimates); absBias – absolute bias; RelBias – relative bias; SEmean
– Mean value of estimated standard errors; SEmedian – Median of estimated standard
errors; SEemp – Empirical standard error; CICover – percentage of confidence intervals
which include true value; SECIC – standard error of confidence interval coverage, power
– percentage of confidence intervals which do not contain zero

losig; Scenario (4); 12 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -1.803 -0.193 0.120 3.626 0.291 0.704 0.993 0.001 0.978

log φ 4.000 4.243 0.243 0.061 0.579 0.539 0.592 0.983 0.001 0.999

β0 0.500 0.500 0.000 0.000 0.074 0.073 0.072 0.941 0.002 1.000

β1 0.120 0.120 0.000 0.001 0.062 0.061 0.060 0.938 0.002 0.495

LOSIG; Scenario (5); 24 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -1.673 -0.064 0.040 0.363 0.196 0.262 0.979 0.001 0.998

log φ 4.000 4.115 0.115 0.029 0.364 0.358 0.370 0.954 0.002 1.000

β0 0.500 0.499 -0.001 -0.002 0.052 0.051 0.051 0.946 0.002 1.000

β1 0.120 0.120 0.000 0.000 0.043 0.043 0.043 0.939 0.002 0.794

rho9 ; Scenario (11); 12 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -2.914 -1.305 0.811 126.623 0.735 2.346 0.963 0.002 0.557

log φ 2.000 2.217 0.217 0.108 0.415 0.437 0.428 0.924 0.003 1.000

β0 0.500 0.493 -0.007 -0.015 0.128 0.128 0.127 0.941 0.002 0.963

β1 1.000 0.998 -0.002 -0.002 0.154 0.154 0.156 0.933 0.003 1.000

RHO9 ; Scenario (12); 24 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -2.467 -0.858 0.533 120.791 0.495 1.923 0.954 0.002 0.708

log φ 2.000 2.101 0.101 0.051 0.285 0.295 0.296 0.926 0.003 1.000

β0 0.500 0.497 -0.003 -0.007 0.089 0.089 0.088 0.948 0.002 1.000

β1 1.000 0.999 -0.001 -0.001 0.109 0.109 0.109 0.941 0.002 1.000
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rho9 36 ; Scenario (13); 36 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -2.167 -0.557 0.346 36.996 0.391 1.543 0.951 0.002 0.806

log φ 2.000 2.063 0.063 0.031 0.232 0.238 0.234 0.935 0.002 1.000

β0 0.500 0.497 -0.003 -0.005 0.072 0.072 0.072 0.946 0.002 1.000

β1 1.000 0.999 -0.001 -0.001 0.089 0.089 0.088 0.949 0.002 1.000

nullsd4 ; Scenario (8); 12 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -0.916 -1.019 -0.103 0.112 0.379 0.240 0.260 0.945 0.002 0.998

log φ 4.000 4.257 0.257 0.064 0.597 0.546 0.640 0.983 0.001 0.998

β0 0.500 0.497 -0.003 -0.005 0.126 0.126 0.123 0.939 0.002 0.967

β1 0.000 0.000 0.000 NA 0.062 0.062 0.060 0.935 0.002 0.065

sd 4 losig; Scenario (9); 12 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -0.916 -1.011 -0.095 0.103 0.245 0.240 0.247 0.946 0.002 0.998

log φ 4.000 4.260 0.260 0.065 0.593 0.542 0.619 0.982 0.001 0.999

β0 0.500 0.500 0.000 0.000 0.127 0.126 0.123 0.941 0.002 0.969

β1 0.120 0.120 0.000 -0.003 0.062 0.061 0.060 0.939 0.002 0.494

sd4 rho9 ; Scenario (14); 12 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -0.916 -1.288 -0.372 0.406 12.806 0.340 1.186 0.992 0.001 0.846

log φv 2.000 2.192 0.192 0.096 0.443 0.447 0.452 0.928 0.003 0.999

β0 0.500 0.493 -0.007 -0.014 0.165 0.163 0.162 0.944 0.002 0.839

β1 1.000 1.001 0.001 0.001 0.158 0.158 0.156 0.935 0.002 1.000

null rho9 ; Scenario (10); 12 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -3.070 -1.460 0.907 475.250 0.749 2.627 0.957 0.002 0.547

log φ 2.000 2.214 0.214 0.107 0.420 0.443 0.426 0.929 0.003 1.000

β0 0.500 0.493 -0.007 -0.013 0.128 0.128 0.126 0.944 0.002 0.963

β1 0.000 0.000 0.000 NA 0.155 0.155 0.156 0.930 0.003 0.070

rho99 ; Scenario (15); 12 pairs

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -3.510 -1.901 1.181 276.854 2.629 2.651 0.908 0.003 0.186

log φi 1.000 1.219 0.219 0.219 0.373 0.380 0.385 0.924 0.003 0.940

β0 0.500 0.473 -0.027 -0.054 0.198 0.196 0.189 0.950 0.002 0.674

β1 1.000 1.000 0.000 0.000 0.254 0.254 0.253 0.936 0.002 0.968
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Table S2. Results for the scenario’s of a longitudinal RNA-Seq experiment
trueVal – true value of the parameter; estim – point estimate of the parameter (mean
value of 10,000 point estimates); absBias – absolute bias; RelBias – relative bias; SEmean
– Mean value of estimated standard errors; SEmedian – Median of estimated standard
errors; SEemp – Empirical standard error; CICover – percentage of confidence intervals
which include true value; SECIC – standard error of confidence interval coverage, power
– percentage of confidence intervals which do not contain zero

null rho9 ; Scenario (8); 8 clusters

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -3.015 -1.405 0.873 110.383 0.816 2.471 0.993 0.001 0.539

log φ 2.000 2.225 0.225 0.112 0.436 0.450 0.384 0.951 0.002 1.000

β0 0.500 0.491 -0.009 -0.018 0.176 0.175 0.152 0.967 0.002 0.815

β1 0.000 -0.003 -0.003 NA 0.217 0.216 0.191 0.962 0.002 0.038

β2 0.000 -0.002 -0.002 NA 0.217 0.216 0.190 0.964 0.002 0.036

lsrho9 ; Scenario (9); 8 clusters

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -3.006 -1.396 0.867 265.258 0.812 2.454 0.993 0.001 0.543

log φ 2.000 2.229 0.229 0.114 0.434 0.448 0.382 0.951 0.002 1.000

β0 0.500 0.491 -0.009 -0.018 0.176 0.175 0.151 0.969 0.002 0.815

β1 0.150 0.150 0.000 0.002 0.216 0.216 0.188 0.963 0.002 0.091

β2 0.250 0.251 0.001 0.006 0.216 0.216 0.190 0.962 0.002 0.198

null sd04 ; Scenario (10); 8 clusters

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -0.916 -1.066 -0.150 0.163 0.452 0.332 0.328 0.960 0.002 0.944

log φ 4.000 4.283 0.283 0.071 0.585 0.551 0.536 0.990 0.001 0.999

β0 0.500 0.501 0.001 0.001 0.174 0.172 0.151 0.955 0.002 0.820

β1 0.000 -0.002 -0.002 NA 0.086 0.086 0.074 0.964 0.002 0.036

β2 0.000 -0.001 -0.001 NA 0.086 0.086 0.075 0.959 0.002 0.041

lssd04 ; Scenario (11); 8 clusters

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -0.916 -1.067 -0.151 0.165 0.408 0.331 0.328 0.957 0.002 0.947

log φ 4.000 4.281 0.281 0.070 0.565 0.539 0.518 0.983 0.001 1.000

β0 0.500 0.499 -0.001 -0.002 0.173 0.171 0.149 0.957 0.002 0.825

β1 0.150 0.150 0.000 -0.002 0.085 0.085 0.073 0.963 0.002 0.418

β2 0.250 0.251 0.001 0.003 0.085 0.084 0.074 0.963 0.002 0.850

soft; Scenario (7); 8 clusters

trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC power

log σ -1.609 -1.826 -0.217 0.135 1.584 0.374 0.621 0.997 0.001 0.985

log φ 4.000 4.238 0.238 0.060 0.505 0.497 0.453 0.963 0.002 1.000

β0 0.500 0.499 -0.001 -0.003 0.102 0.101 0.088 0.963 0.002 0.998

β1 1.000 1.000 0.000 0.000 0.084 0.083 0.072 0.964 0.002 1.000

β2 1.500 1.500 0.000 0.000 0.083 0.083 0.072 0.966 0.002 1.000

37



A.2 Example of a significant gene A SUPPLEMENTARY MATERIALS

A.2 Example of a significant gene

Here we consider a gene which is significantly differentially expressed in the

RCC paired data (Section 3.3).

CTNNA1 gene has 18 exons and 27 protein coding transcripts. This gene

encodes a protein called α-catenin, which part of protein complex in the junc-

tions of neighboring cells. It is generally considered as a tumor-supressing

agent, although it’s role in metastases is not fully established Sun et al.

(2014). As Figure S1 indicates, CTNNA1 is actually over-expressed in metastatic

RCC. The Y axis presents the normalized counts (counts divided by length

and effective library size). Distribution of each exon is depicted with a box-

plot, separately for each group. We can observe that on average express of

each exon is higher in the patients with metastases (on the right) in com-

parison to the same exon in metastases-free patients (on the left). Note

that variability of all exons with a group is larger than a variability of any

particular exon across conditions.
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Figure S1. Normalized exon counts of gene CTNNA1. There are two boxblots for each
exon. Exons of metastases-free patients are shown on the left, and exons of patients with
metastases are shown on the right.On the Y axis there are normalized counts (counts
divided by length and effective library size). Effective library size is defined as a product
of TMM normalization factor and sample’s library size

A.3 Simulation of a paired experiment without true

differential expression

In this section we provide detailed results of one representative set of simu-

lations of a paired experiment for “scenario (2)” presented in Tables 1 and 3.

We simulated the RNA-Seq data from 24 pairs of patients. The patients in

the same pair shared the random effect bp. Data were generated such that

true value of β1 in (6) was equal to zero. The results of the simulation are

provided in the Table S3.
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param trueVal estim absBias RelBias SEmean SEmedian SEemp CICoverage SECIC

lnσ -1.609 -1.674 -0.064 0.040 0.245 0.197 0.237 0.979 0.001
lnφ 4.000 4.108 0.108 0.027 0.367 0.361 0.371 0.954 0.002
β0 0.500 0.499 -0.001 -0.001 0.052 0.051 0.051 0.948 0.002
β1 0.000 0.000 0.000 NA 0.043 0.043 0.043 0.943 0.002

Table S3. Summarized analysis of 10,000 replicates of artificial RNA-Seq experiment with
known true values for one gene with 3 exons. param – parameter name; trueVal – true
value of the parameter (used in data generation); estim – point estimate of the parameter
(mean value of 10,000 point estimates, obtained by applying the model to the generated
data); absBias – absolute bias in parameter estimation; RelBias – relative bias in parameter
estimation; SEmean – Mean value of estimated standard errors of the parameter in the
simulation; SEmedian – Median of estimated standard errors of the parameter; SEemp
– Empirical standard error (standard deviation of 10,000 point estimates) ; CICover –
confidence interval coverage (percentage of confidence intervals which include true value);
SECIC – standard error of confidence interval coverage

The main parameter of interest is β1, because it reflects log-fold-change

between conditions (after taking into account correlation between patients

within a pair). Point estimates of β1 are virtually without bias (Table S3).

Distribution of β1 estimates is well-centered around 0 (Figure S3).

Maximum likelihood standard errors tend to underestimate true standard

errors. As a result, the null hypothesis is rejected too often. In order to solve

this issue we considered multiplying the ML standard errors by an inflation

factor equal to n/(n − 2), where n was the number of pairs and 2 was the

number of βs (see Section A.5.1 for more details). After the adjustment, the

percentage of CIs for β1, which included the true value, was equal to 0.943

with standard error of 0.002 (Table S3). Thus, it was less than 95%, though

slightly.

In this simulation the null hypothesis that β1 = 0 was true. Hence, the

probability of Type-I error could be calculated as a percentage of CIs which

did not include zero. That value is equal to one minus confidence interval
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coverage, and it is slightly more that 5%.

The distribution of β0-estimates is fairly close to normal and there is no

substantial bias, despite a small dip near the mean value on the density plot

(Figure S2).

Unlike distributions of βs, distributions of lnσ and lnφ are skewed (Fig-

ures S4 and S5) and their estimates biased by 4% and 3% respectively. It

is our conjecture that estimates for association parameters still converge to

normal distribution, though more slowly than parameters for the mean.

The model-based mean standard error of ln σ was notably larger than the

model-based median standard error, and the model-based standard errors

in four of the simulated experiments were extremely large and equal to 21,

91, 95, 111. In all four cases the point estimates of lnσ were small, so σ

was estimated as 0.004 or less. More details on the relationship between σ

estimates and their SE are given in Section A.4.

It is worth noting that there is a non-negligible correlation (see Table S4 )

between point estimates of parameters, which capture correlation between

lnσ and lnφ and, separately, between the estimates of β0 and β1.

To sum up, this example of simulation demonstrates that the parameter of

interest β1 is estimated virtually without any bias.

lnsig lnphi beta0 beta1

lnsig 1.00 0.21 -0.03 0.01

lnphi 0.21 1.00 -0.03 -0.01

beta0 -0.03 -0.03 1.00 -0.42

beta1 0.01 -0.01 -0.42 1.00

Table S4. Correlation matrix of the parameter estimates in the simulation of paired
experiment without true differential gene expression

41



A.3 Simulation of a paired experiment without true differential expressionA SUPPLEMENTARY MATERIALS

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Density of beta0

D
en

si
ty

standardized beta0

standard normal

Figure S2. Density plot for the estimate of β0 in the simulation of paired experiment
without true differential gene expression
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Figure S3. Density plot for the estimate of β1 in the simulation of paired experiment
without true differential gene expression
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Figure S4. Density plot for the estimate of log of normal random effect σ in the simulation
of paired experiment without true differential gene expression
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Figure S5. Density plot for the estimate of log φ in the simulation of paired experiment
without true differential gene expression
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A.4 SE of lnσ

In some simulation scenarios with a high conditional correlation ρ|b there

was a notable fraction of very large SE of ln σ.

Here were focus on scenario (10) in Table 1, which is a representative exam-

ple of such a case. Table S5 provides results of the simulation of an experi-

ment under the null hypothesis β = 0 not too dissimilar from the simulation

considered in Section A.3. There are two differences between simulations

summarized in Tables S3 and S5 though: number of pairs was twice smaller

in the latter (24 vs 12) and lnφ was twice smaller in the latter (4 vs. 2); all

other parameters were the same.

Table S5 demonstrates that the fixed effects and overdispersion parameter

φ are, on average, estimated reasonably well, but the estimate for the lnσ

is nearly twice smaller than true value and the mean SE of that estimate is

extremely large.

param trueVal estim absBias RelBias SEmean SEmedian SEemp CICover SECIC

lnσ -1.609 -3.070 -1.460 0.907 475.250 0.749 2.627 0.957 0.002
lnφ 2.000 2.214 0.214 0.107 0.420 0.443 0.426 0.929 0.003
β0 0.500 0.493 -0.007 -0.013 0.128 0.128 0.126 0.944 0.002
β1 0.000 0.000 0.000 NA 0.155 0.155 0.156 0.930 0.003

Table S5. Summarized analysis of 10,000 replicates of artificial RNA-Seq experiment with
known true values for one gene with 3 exons. param – parameter name; trueVal – true
value of the parameter (used in data generation); estim – point estimate of the parameter
(mean value of 10,000 point estimates, obtained by applying the model to the generated
data); absBias – absolute bias in parameter estimation; RelBias – relative bias in parameter
estimation; SEmean – Mean value of estimated standard errors of the parameter in the
simulation; SEmedian – Median of estimated standard errors of the parameter; SEemp
– Empirical standard error (standard deviation of 10,000 point estimates) ; CICover –
confidence interval coverage (percentage of confidence intervals which include true value);
SECIC – standard error of confidence interval coverage
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Maximal SE of lnσ is larger than 106 and 23% of lnσ estimates are smaller

than -6. As Figure S6 demonstrates that standard error of lnσ gets extremely

large if estimate of lnσ is very small This trend holds in other simulations

with high conditional correlation.

Figure S6. Standard error of lnσ estimate vs lnσ estimate in the simulation of 10,000
replicates of paired RNA-Seq experiment (12 pairs)

We calculated profile likelihood as a function of lnσ for an experiment with

SE of ln σ equal to more than 106 as follows by fixing possible values of

lnσ and computing the ML estimates of all other parameters. The profile

likelihood is presented in Figure S7. The result of the full maximization of

the likelihood function over all parameters (including lnσ) is shown as a red
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dot. It is worth noting that the ML estimate of ln σ could vary depending on

a software and hardware, but in any case lnσ always stayed in the flat part

of the graph (and σ was estimated as approximately equal to zero). Thus,

the issue with estimation of ln σ can be explained by the fact that maximum

of the likelihood function is located at the boundary of the parameter space

for σ. As the likelihood function is flat in the proximity of the ln σ point

estimate (red dot on Figure S7), the second partial derivative with respect

to lnσ is close to zero, and its inverse is large. That is why the estimate of

SE of lnσ is large.

We checked several other experiment-replicates with large values of SE of lnσ,

and their profile likelihood plots were nearly identical in shape to Figure S7.

In each case the point estimate for σ was close to zero. Because of the shape

of the likelihood function, the actual point estimate of lnσ in each case is to

some extent a random draw between roughly -30 and -6.

The relationship between SE of ln σ and lnσ on Figure S6 may reflect asymp-

totic behavior of likelihood function at σ = 0. Starting from lnσ = −15 and

looking to the right, SEs of lnσ are less and less extreme. Moreover, there

is a decreasing linear trend, despite the fact that in the region where ln σ is

less than -6, likelihood function is presumably flat, similar to Figure S7.

Of note, the profile likelihood plots for experiments with non-zero σ estimates

have a parabolic-like shape and do not contain flat regions on the proximity

of ML estimates.

It is interesting to understand why in the simulations, presented in Table S3,

there were only four cases of zero estimates of σ (Section A.3), whereas
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Figure S7. Likelihood as a function of lnσ for an experiment-replicate with large SE of
lnσ

there were more that 23 hundred such cases in the simulations presented in

Table S5. In the supplementary file S3.xlsx, these simulations are labeled

as NULL24p and nullrho9, respectively.

According to the model assumptions there are three sources of variation: the

gamma random effect, the normal random effect, and the Poison variation

conditional on the random effects.

In simulations NULL24p, the value of lnφ is equal to 4, so the variance of

the gamma random effect is approximately equal to 0.02 (see Equation (5)).

In simulations nullrho9, the value of lnφ is twice smaller, so the variance

of gamma random effect becomes almost seven times larger and is equal to

approximately 0.14. Hence, in the latter case it becomes much more difficult
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to discern the normal-random-effect contribution to the overall variability.

The problem is exacerbated by the small sample size; there are only 12 pairs

in simulations nullrho9, twice less than in simulations NULL24p.

As shown in supplementary file S3.xlsx, increasing the number of pairs

or increasing the magnitude of σ notably reduces (but does not eliminate

completely) the percentage of zero σ estimates in the simulations with small

value of φ.

A.5 Implementation

A.5.1 Estimation procedure

The initial values for (13) is obtained through the following procedure. The

initial value of β is obtained by treating the observed exon counts as indepen-

dent realizations of Poisson-distributed random variables with mean values

µcsj = Kcsj.

The initial value of φ is calculated by assuming independence of the exon

counts, obtaining moment-based estimates of φj from (2) for each exon, and

setting φ to the average of the so-computed φ′js.

The initial value of σ is obtained by calculating the average exon count for

each cluster and then by calculating standard deviation of the logarithms of

these average counts.

After defining the initial values, β and φ are updated by fitting the gamma-

Poisson model (4)–(5) with mean values µcsj = Kcsj.
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Finally, by using the so-obtained initial values of the parameters, the (log-

arithm of the) marginal likelihood (13) is approximated with AGHQ and

then maximized. Note that, to improve numerical stability, the likelihood

is re-parameterized by using lnφ and lnσ. Standard errors of the estimated

parameters is obtained from the inverse of the negative Hessian - which is

computed numerically with numdifftools - of the logarithm of the marginal

likelihood.

The model (6)-(8) was implemented in set of Python scripts which are avail-

able at https://sourceforge.net/projects/dgeee/.

Maximum-likelihood estimation was conducted by using the L-BFGS-B algo-

rithm was carried out by L-BFGS-B FORTRAN routines via Python pack-

age scipy.optimize.minimize Zhu et al. (1997). It is essentially a quasi-

Newton method which iteratively approximates Hessian, defines quadratic

model of the objective function, and minimizes it Nocedal (1980); Zhu et al.

(1997). First-order partial derivatives can be approximated numerically.

Otherwise, analytical first-order partial derivatives can be provided as an

input to scipy.optimize.minimize command. Despite the fact that the

software actually executes minimization of negative likelihood, we will refer

to it with the conventional notion of maximization of likelihood function.

Overdispersion φ and standard deviation of normal pair random effect are

bounded to be non-negative, so log transformation were used.

Parameter estimation is carried out in three stages:

1. Calculate initial values β̂ββ, l̂nφ and l̂nσ using moments.
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2. Run the model without normal RE with β̂ββ, l̂nφ as a starting values;

if converged then update values of β̂ββ, l̂nφ.

3. Run the full model starting from β̂ββ, l̂nφ and l̂nσ.

The very first step, initial value generation, is outlined in Section A.5.1

Next, a simplified model without the normal random effects is applied to

the data. Each sample is treated as independent and the model is applied to

the data disregarding the clustered nature of the data [function NREIndivLL

in stvgen.Stvgen class]. So, bc is set to zero for each cluster at this step.

In that simplified model, the log-likelihood of the data is the sum of individual

logs where each log is given by

lnP (ycs|b) = ln Γ(φ+
∑
j

ycsj)− ln Γ(φ)−
∑
j

ln Γ(ycsj + 1)− φ lnQcs

−
∑
j

ycsj lnQcs +
∑
j

ycsj ln(µcsj/φ) (16)

where

Qcs = 1 +

∑
j µcsj

φ

Strarting values (will all the steps listed above) are generated by stvgen.py

script.

L-BFGS-B maximization of log likelihood is conducted with analytical first

derivatives [function NREIndiv der in stvgen.Stvgen class].

∂

∂βl
lnP (ycs|b = 0) = xl

∂

∂b
lnP (ycs|b)|b=0
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∂

∂φ
lnP (ycs|b = 0) = ψ(φ+

∑
j

ycsj)−ψ(φ)−lnQcs+
(φ+

∑
j ycsj)

∑
j µcsj

Qcsφ2
−
∑

j ycsj

φ

where ψ(·) is a digamma function and

∂

∂bc
lnP (ycs|bc) =

∑
j

ycsj −
(φ+

∑
j ycsj)

Qcs

∑
j

ξcsj (17)

where, in turn ξcsj = µcsj/φ) Thus, at step 2 of Algorithm ?? maximum like-

lihood point estimates generated [function SetStartVals in stvgen.Stvgen

class].

Next, the full model (6)-(8) is applied to the data. L-BFGS-B algorithm

is used for likelihood function maximization of the log of likelihood func-

tion (13) [function RUNminimizer in minimizer.Minimizer class]. First-

order partial derivatives of likelihood function are calculated numerically.

Total log likelihood for data is summarized from pair log likelihoods by

negLLcalculator.NegLLcalculator class. At each iteration during the

maximization process (16) needs to be evaluated for each pair. Integrals in

(13) are approximated by (A.6), which in turn requires calculation of mode of

the integrand µ̂ and posterior standard deviation of the integrand σ̂. Of note,

this terminology owes to Bayesian origins of (A.6); Liu and Pierce invented

approximation of µ̂ and σ̂, which is used in (A.6) in this work and in SAS

procedure NLMIXED Liu and Pierce (1994). Note on notation: traditional

µ̂ and σ̂ AGHQ notation is not related to µcij and σ in Model (6)-(8).

Functions, related to adaptive quadrature, are located in adapt.Adapt class.

As explained in the section A.6, mode of g(t) is calculated by maximizing
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ln g(t). ln g(t) is maximized inside PosteriorMuFUN function with the use

of analytical first derivatives; thus,posterior mode µ̂ is obtained. Function

PosteriorSigmaHatFun calculates posterior standard deviation σ̂. µ̂ and

σ̂ rely, in turn, upon log of probability of exon counts in individual given

normal random effect (see section A.6). lnPi|c(yci|bc) is calculated by function

IndLLgREFUN in IndegrandFUN.IndegrandFUN class. Second derivative of

ln g(t), which is required for calculation of σ̂, is obtained by the function

Indiv SecDer.

After ML point estimates are obtained, Hessian matrix is numerically evalu-

ated at ML point estimates (function CalcHessian in minimizer.Minimizer

class) with python package numdifftools. ML estimates of standard errors

are calculated as square roots of diagonal of inverse of Hessian. Standard

errors reported by the our software are unadjusted. It is important to adjust

them, because ML estimates of standard errors underestimate true standard

error (see eg section 4.5 in Fitzmaurice et al. (2012)). In this work we use

factor N
N−p to inflate standard errors, where n is the number of clusters and

p is the number of fixed effects (in other words, number of betas). Inflation

of ML-based SE of point estimates is performed in R, outside the python

scripts.

On the contrary, inside calculated variance-covariance matrix, which is used

in composite Wald test, SE is inflated by the factor N
N−p . Calculation of Wald

test statistic is performed inside CalcHessian function after line CalcHessian

function.

There is a subtle technical detail in numerical evaluation of the Hessian:
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(16) needs to be approximated many times as a function of parameters and

then as a function of parameters with tiny increments (like in mathematical

definition of derivative as a limit). The downside of an evaluation with

adaptive Gaussian quadrature is that it is computationally demanding. So,

exact approximation of (16) at each function call at Hessian calculation be

inefficient. We applied the following workaround. The integrand in (16)

changes very little (we’ve checked that) if we calculate (16) as a function of

a parameter x or a function of x+ ∆x. Therefore, it is plausible to apply the

same posterior mode µ̂ to approximate the integrand in both cases. So, before

CalcHessian function is invoked µ̂ are calculated at ML point estimates

and stored for each pair (function MuHatExtractor in minimizer.Minimizer

class).

A.5.2 Nonconvergence criteria

Nonconvergence per se can occur due to failure in maximizing likelihood

function. In the case where ML estimates are successfully obtained, stan-

dard errors might not be calculated when either Hessian is non-ivertible or

there are negative values in the inverse of diagonal of Hessian. If standard

error for parameter of interest (e.g. β1 in paired data example) was not cal-

culated, then this gene considered as not converged despite point estimates

were calculated successfully. It is also possible to set an arbitrary cut-off

in the number of exons. If number of exons in a gene exceeds cut-off value

then calculations of point estimates is skipped all together and this gene is

considered as not converged. This cut-off can be set to arbitrary value in
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init function of minimizer.Minimizer class.

A.6 AGHQ quadrature

We have used AGHQ approximation, proposed by Liu and Pierce Liu and

Pierce (1994), for the evaluation of the integral (13).

∫ ∞
−∞

g(b)db ≈
√

2σ̂
d∑

k=1

wke
x2kg(µ̂+

√
2σ̂xk) (18)

where µ̂ is the mode of g(t), xk and wk are standard Gauss-Hermite evaluation

points and weights, σ̂ = 1/

√
ĵ and

ĵ = − ∂2

∂t2
ln g(b)

∣∣∣
b=µ̂

Note, that we’ve preserved original notation from the work of Liu and Pierce

Liu and Pierce (1994) in ; µ̂ and σ̂ are not related to µ and σ in (6)-(8).

The requirements for (A.6) to work are that g(b) > 0 and that ratio of g(b) to

some Gaussian curve be a moderately smooth function. Product of likelihood

function and a Gaussian density (as in (13)) meets these requirements Liu

and Pierce (1994). Mathematical machinery behind (A.6) is based on the first

order Laplacian approximation Tierney and Kadane (1986); Rabe-Hesketh

et al. (2002).

Posterior mode of g(b) :

We find the mode of g(b) in (A.6) by maximizing ln g(b). As follows from
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(13),

g(bc) = f(bc)
nc∏
s=1

Ps|c(ycs|bc)

and

ln g(bc) = ln f(bc) +
nc∑
s=1

lnPs|c(ycs|bc) (19)

Partial derivative of (19) with respect to bc is the sum of the partials for the

following individual terms.

∂ ln f(bc)

∂bc
=

∂f(bc)
∂bc

f(bc)
=
−b
σ2 f(bc)

f(bc)
=
−bc
σ2

(20)

and ∂
∂bc

lnPc|s(ycs|bc) is given in (17).

Second partial derivatives are required to calculate σ̂ in (A.6).

∂2

∂b2c
lnPs|c(ycs|bc) = −

(φ+
∑

j yj)
∑

j ξj

Q2
(21)

Avoiding numerical underflow :

Pc|s(ycs|bc) is a probability that exon counts of all the exons in the particular

gene is equal to some particular numbers. This probability alone is numer-

ically an extremely small number, but in this case the issue is even more

serious, because integrand in (13) contains product of such probabilities Pc|s.

Obvious overcome an issue like this is to work on log scale. Technically it

is possible to calculate in such a case ln g(bp), however the exponent of this

this number exp ln g(bp) would be less than a smallest positive floating point

number in the computer system. The output of this calculation would be
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zero To avoid this underflow we can divide and multiply the integral by some

large number M .

∫
g(b)db = M

∫
g(b)

M
db

ln

∫
g(b)db = ln g(µ̂) + ln

∫
exp(ln g(b)− ln g(µ̂))db

(22)

µ̂ and σ̂ in the integrand in (22) remain the same as in (A.6) due to

∂

∂t
ln kg(t) =

1

��kg(t)
��k
∂

∂t
g(t) =

∂

∂t
ln g(t)

Note, that the integral in (22) is approximated by weighted sum of some

array, where each array member is a result of applying some function of

Gauss-Hermite locations. Therefore, it seems natural to set lnM to the

maximum of that array. That standard technique is known as log-sum-exp

formula (equation 16.1.9 in Press et al. (2007)).

log

(∑
i

exp(zi)

)
= zmax + log

(∑
i

exp(zi − zmax)

)

A.7 Existing methods: PLNSeq

In this section, we briefly discuss a PLNseq method which we have applied

to the data for the purposes of comparison with our method.

Zhang et al. Zhang et al. (2015) proposed a model (termed PLNseq) for

the analysis of matched-pair RNA-Seq data, which can also be applied in a

longitudinal setting.
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Let Xctg denote read-count for cluster c, condition t, and gene g. Denote by

Zctg the corresponding gene-expression level. It is assumed that, conditionally

on Zctg, counts Xctg for different conditions t = 1, . . . , T are independent and

follow a Poisson distribution:

Xctg|Zctg = zctg∼Poisson(kctzctg),

where kct is the library-size-related normalizing factor. On the other hand,

the vector of the logarithms of the gene-expression levels,

Z̃cg = (lnZc,1g, . . . , lnZcTg)
′

follows a multivariate normal distribution:

Zcg ∼MVN(µg,Σ),

where µg = (µ1g, . . . , µTg)
′ and Σ is a T × T variance-covariance matrix

with condition-specific variances σ2
tg and correlation coefficients ρt1,t2,g =

Corr{ln(Zt1,g), ln(Zt2,g)}.

Note that, in practice, the PLNseq method assumes that σ2
tg ≡ σ2

g and that

ρt1,t2,g ≡ ρt1,t2 .
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