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Abstract

Motivation

Patients with hematological malignancies are susceptible to life-threatening infections after

chemotherapy. The current study aimed to evaluate whether management of such patients

in dedicated inpatient and emergency wards could provide superior infection prevention and

outcome.

Methods

We have developed an approach allowing to retrieve infection-related information from

unstructured electronic medical records of a tertiary center. Data on 2,330 adults receiving

13,529 chemotherapy treatments for hematological malignancies were identified and

assessed. Infection and mortality hazard rates were calculated with multivariate models.

Patients were randomly divided into 80:20 training and validation cohorts. To develop

patient-tailored risk-prediction models, several machine-learning methods were compared

using area under the curve (AUC).

Results

Of the tested algorithms, the probit model was found to most accurately predict the evalu-

ated hazards and was implemented in an online calculator. The infection-prediction model

identified risk factors for infection based on patient characteristics, treatment and history.

Observation of patients with a high predicted infection risk in general wards appeared to

increase their infection hazard (p = 0.009) compared to similar patients observed in hematol-

ogy units. The mortality-risk model demonstrated that for infection events starting at home,

admission through hematology services was associated with a lower mortality hazard com-

pared to admission through the general emergency department (p = 0.007). Both models

show that dedicated hematological facilities and emergency services improve patient
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outcome post-chemotherapy. The calculated numbers needed to treat were 30.27 and

31.08 for the dedicated emergency and observation facilities, respectively. Infection hazard

risks were found to be non-monotonic in time.

Conclusions

The accuracy of the proposed mortality and infection risk-prediction models was high, with

the AUC of 0.74 and 0.83, respectively. Our results demonstrate that temporal assessment

of patient risks is feasible. This may enable physicians to move from one-point decision-

making to a continuous dynamic observation, allowing a more flexible and patient-tailored

admission policy.

Introduction

Patients with hematological malignancies are known to be highly susceptible to infections,

since the disease and/or therapy significantly weaken their immune system, leading to consid-

erable infection-related mortality[1,2,3]. While the past decade has witnessed significant

advances in treatment strategies for hematological cancers, prevention, and adequate manage-

ment of infections still pose a major challenge. In a large retrospective study of more than

41,000 cancer patients admitted due to a suspected infection, mortality rates among those who

were treated for leukemia, lymphoma, and myeloma were as high as 14.3%, 8.9%, and 8.2%,

respectively[4]. Although for some patients with neutropenia developing during therapy for

solid tumors, ambulatory treatment was reported to be safe[5], this could not be extrapolated

to high-risk patients with hematological malignancies. Presently, there are no clear guidelines

for the identification of hemato-oncological patients who could be treated in the ambulatory

setting during post-chemotherapy neutropenia and who should be hospitalized either in a gen-

eral internal medicine ward (GW), or in a hematological facility. In reality, the shortage of ded-

icated beds and economical restrictions provide an incentive for minimizing hospital stay.

Obviously, patients with active life-threatening infections or other similar conditions should

be admitted to hospital; however, many centers are re-evaluating their current practice in an

attempt to reduce the number of "non-essential" hospitalizations. Commonly, in high-risk sit-

uations (e.g., induction therapy for acute leukemia), physicians choose to keep patients in the

hospital for observation after completion of chemotherapy until the recovery of white blood

cell (WBC) counts to ensure that immediate measures are taken in case of infection develop-

ment. However, due to limited bed availability in Hematology Wards (HW), some patients are

observed in GWs, or are discharged home shortly after chemotherapy completion. At multiple

medical centers, discharged patients that developed fever or other signs of infection at home,

receive emergency care at the Hematology Outpatient Clinic (HOutC) during morning hours

on weekdays, whereas in the afternoon, at night, and during weekends, such patients are

referred to the General Emergency Department (ED).

The well-established significance of rapid diagnostic measures and urgent initiation of anti-

biotic therapy at early signs of sepsis[6] and neutropenia[7] emphasizes the need for an emer-

gency system dedicated to hemato-oncological patients. While such emergency facilities,

termed Acute Oncology Service (AOS), are currently being promoted[8,9,10,11,12], no large-

scale analysis of potential effects of this approach has been conducted yet, and its claimed ben-

efits are supported by descriptive or qualitative evidence only. Additional emergency resources
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could also relieve acute medical units from the burden of managing complicated oncology

patients[13,14].

Machine learning prediction models were shown to accurately predict patient outcome in

several clinical situations, such as cardiac and general surgeries[15,16], ICU admissions, initia-

tion of dialysis [17,18], etc. The majority of described infection predicting models focused on

estimating the aggregated risk. A previous trial demonstrated that an artificial intelligence-

based algorithm could successfully predict the development of sepsis in patients admitted to

ICU[19]. Similarly, the present study was designated to develop a dynamic model for daily

infection prediction. Additionally, we aimed to evaluate the rationale of keeping patients hos-

pitalized for observation upon completion of chemotherapy and to compare the efficacy of a

GW and an HW in such situations. The study intended to compare the outcome of hemato-

oncological patients admitted and treated for infection in the ED/GW to that of patients

whose infection was managed in dedicated facilities (HOutC and/or HW).

While scarce studies did develop models predicting daily infection risks, they were designed

for a completely different clinical setting[20,21].

To the best of our knowledge, the present study is the first to quantitatively analyze the ben-

efits of hematological emergency services and the impact of observational policy on infection

and mortality hazard in patients with hematological malignancies.

Methodology

The study was approved by the Institutional Review Board (Approval #066-14RMB), and was

conducted in accordance with the Declaration of Helsinki. A waiver of patient informed con-

sent was granted as it was a retrospective chart review study.

Study design and setting

Rambam Health Care Campus is a tertiary hospital, providing advanced treatment for a popu-

lation of about 2 million people. This retrospective cohort study encompassed all hematologi-

cal patients who visited Rambam between 01/2011 and 10/2015. For these patients, electronic

medical records (EMR) were reviewed starting from their first visit to the hospital (even before

2011) till 10/2015. Data obtained included patient demographics, ICD-9 codes, patient flow

information throughout each visit, lab results, vital signs, administered medications [antibiot-

ics, chemotherapy (CTX) drugs (S1 Table)], and major treatments [radiation therapy (RT),

hematopoietic stem cell transplantation (HSCT), etc.]. While data were anonymized, different

hospital visits of the same patient could be linked, using unique patient and visit numbers. If

no or more than one ICD-9 code was recorded, a hematology physician accessed full patient

records to determine the cancer diagnosis relevant to each visit.

Model development

The current study included two stages. At the first stage, infection and mortality risk models

for patients treated for hematological malignancies were built, taking into consideration

patient clinical and laboratory parameters along with admission wards. These models identi-

fied the admission ward as a significant factor for infection and mortality risks. Of several pre-

diction methods, we found the probit models to be the most accurate and allowing for daily

evaluation of patient risk throughout the entire treatment cycle. The relative importance of an

HW and a GW was estimated, using the number-needed-to-treat measurements to quantify

the life-saving potential of the dedicated facilities. At the second stage, we built a prediction

model for infection and mortality risks for a given patient if treated in a dedicated or general

ward.
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Patient population and treatment definitions

During the study period, 8,786 patients visited the Adult HW and HOutC. Out of these, 2,330

had malignant hematological diseases and received treatment at the Rambam hospital. The

evaluable patients were categorized into the following four groups. The Acute Leukemia (AL)

group included patients with all subcategories of acute myeloid leukemia (AML), as well as

acute lymphoblastic leukemia, and aplastic anemia. The Chronic Leukemia (CL) group

included patients diagnosed with chronic myeloid leukemia, chronic myelomonocytic leuke-

mia, chronic lymphocytic leukemia, high- and low-risk myelodysplastic syndrome, and myelo-

proliferative neoplasms. Patients diagnosed with any kind of lymphoma were incorporated

into the Lymphoma group (L), and patients with multiple myeloma or any plasma cell discra-

sia formed the Multiple Myeloma group (MM). Only patients diagnosed with one (or more) of

these diseases were included in the study.

A treatment protocol was defined as a combination of chemotherapy drugs prescribed to

treat a specific disease at a predefined schedule. Each protocol regimen was administrated at

repetitive cycles, which included active treatment and observation periods. The first day when

CTX or RT was administered was considered the first day of an active treatment cycle. Each

active cycle continued till the last day of CTX/RT administration. The observation period

started on the first day of an interval of more than four consecutive days when a patient was

off therapy. Consecutive days of CTX/RT treatment or treatment days that were separated by a

weekend break were considered part of the same active cycle Consecutive treatments that were

separated by at least four days of observation were considered separate cycles, even if they

included identical drug combinations.

Among the 15,144 treatment cycles excluded from our analysis there were 523 cycles when

an infection event occurred early during active therapy. We also excluded 1,092 cycles of ther-

apy prescribed to patients within one year from hematopoietic stem cell transplantation

(HSCT), as we could not differentiate between treatments prescribed for a post-transplant

relapse and pre-planned maintenance therapy. In addition, 2,346 cycles were excluded due to

the lack of important information, such as WBC counts.

We identified 4492 infection events, 176 of which were excluded due to missing data.

Hence, the final models included 4,316 infection events that occurred following 11,183 treat-

ment cycles.

Patient data were randomly divided into training (80%) and validation (20%) sets.

Identification of infections in EMR

Since infections are not always accurately recorded on a daily basis, we developed an approach

allowing for the identification of such events in EMRs. An infection was assumed to have

occurred if at least one of the following took place: 1. a patient was admitted to hospital with

an ICD-9 code indicating infection, 2. a patient had a fever higher than 38˚C, or 3. a patient

started antibiotic therapy that lasted for at least three consecutive days. The list of the antibiotic

options is presented in S2 Table. Ciprofloxacin, fluconazole, and twice-weekly trimethoprim,

commonly used for infection prophylaxis, were excluded from this list. We assumed an infec-

tion episode to last for 72 hours at least. If fever recurred or a new antibiotic was prescribed

within 72 hours, we assumed these events to be related to the same infection episode. If fever

higher than 38˚C was documented after at least 72 hours of normal temperature, we consid-

ered this a new infection event. Application of this approach allowed for automatic identifica-

tion of the events that were then verified and approved by physicians who double-checked

random sample cases. Hospitalization of a patient without infection for more than 24 hours

after an active treatment cycle was considered to occur merely for observation purposes.
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Outcomes and statistical analysis

The primary outcome evaluated in the study was the infection rate within 30 days after the end

of each cycle of treatment. Specifically, we modeled the infection hazard rate on day t after the

cycle completion, that is, the probability that a patient develops an infection on day t, given

that he/she has not had an infection yet. The second study outcome was the death rate within

30 days after an infection event start. The data were randomly divided into two sets: the train-

ing set included 80% of the patients and the test set included 20% of the patients. Each of the

outcomes was estimated using discrete-time survival (probit) models, allowing for the inclu-

sion of time-varying variables, such as a change in the patient location within or outside the

hospital, lab results, administered drugs, and vital signs [22,23,24]. Multi-collinearity tables of

the features extracted from the data appear in Tables A-C in S1 File; Tables A-C and Fig B in

S2 File, confirming that candidate variables are not highly correlated. Different models were

compared using gradual (step-wise) addition of variables to attain the appropriate feature

selection, and to better understand risk factor importance. Some of these models are presented

herein and in Tables A-C in S1 File; Tables A-C and Fig B in S2 File. The main criterion for

feature/model selection was the Bayesian information criterion (BIC). The BIC was selected

because it penalized the number of features included in the model and therefore provided cer-

tain protection against over-fitting.

To establish the best possible prediction application, we compared the probit model to the

following statistical methods: Logistic regression (Logit), Random forest, and Regression tree.

Logit and Probit models have the advantage of interpretability, as it is relatively easy to under-

stand the influence magnitude of each risk factor included in the model. Random forest was

selected since it is known as one of the best machine learning methods for structured data clas-

sification problems[25]. Model prediction accuracy was evaluated using the test data based on

the AUC measurements. All statistical analyses and figures were generated using the statistical

programming environment R (the general GLM function was used for the statistical models,

ggplot package was used for figure preparation) or MATLAB (version 9.5.0 and the statistical

toolbox version 11.4).

Results

Patient characteristics

Table 1 summarizes patient and treatment characteristics, while Fig 1 presents a flowchart of

patient movements between hospital wards. Fifty five percent of all deaths recorded within the

study period were infection-associated. The infection rate within 30 days upon chemotherapy

completion was about 9% in the entire study population, but it was as high as 36.5% (ranging

between 18.6 and 58.3% depending on the disease type) for the patients who received their

treatment in the inpatient setting. The mean length of the observation period was four days. A

total of 4,492 infection events occurred during the study period. About 9% of these events

resulted in death, with this rate being comparable across the diseases. In 60% of patients, infec-

tion events started outside the hospital; 24% of these patients received emergency treatment in

the HOutC, 67% were treated in the ED and 9% were directly admitted to the HW. Most

patients in the latter group were suffering from serious conditions and were transferred from

other local hospitals. The majority of patients (97%) with infection were hospitalized for anti-

infection therapy, which on average lasted eight days. The choice of the inpatient facility where

a specific patient was hospitalized [HW (30%) versus GW (70%)] depended on infection sever-

ity and bed availability.

Infection outcome in hematological cancers
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Table 1. Patient and treatment characteristics.

All N = 2,330 Acute Leukemia

N = 558

Chronic Leukemia

N = 219

Lymphoma N = 1,158 Multiple Myeloma

N = 395

P-valuea

Age, mean

(95% CI)

55.5(54.9–56.2) 51.1(49.6–52.6) 60.0(58.2–61.8) 52.9(51.9–53.9) 59.8(58.6–61.1) <0.001K

Number of females (%) 1,044 (44.8) 243 (43.5) 82 (37.4) 548 (47.3) 171 (43.3) 0.035C

Number of infection events, total per

patient, mean

(95% CI)

4,4922.13(2.03–2.23) 1,7773.51(3.28–3.75) 3661.93(1.63–2.23) 1,6841.59(1.46–1.71) 6651.89(1.69–2.09) <0.001K

Number of chemotherapy cycles, total

per patient, mean

(95% CI)

13,5297.31(6.94–

7.68)

1,3123.89(3.55–4.24) 7204.35(3.76–4.93) 7,1647.23(6.95–7.50) 4,33314.04(12.25–

15.82)

<0.001K

Treatment lengthb1–5 days, No. (%)6-

8 days, No. (%)9-10 days, No. (%)10

+ days, No. (%)

11,636(86.01)1,037

(7.67)434 (3.21)422

(3.12)

798 (60.82)396

(30.18)16 (1.22)102

(7.77)

696 (96.67)20

(2.78)1 (0.14)3

(0.42)

6,755 (94.29)362

(5.05)19 (0.27)28

(0.39)

3,387 (78.17)259

(5.98)398 (9.19)289

(6.67)

Number of drugs per treatment, mean

(95% CI)

2.54(2.51–2.7) 1.54(1.49–1.58) 2.48(2.41–2.56) 3.36(3.32–3.40) 1.49(1.47–1.52) <0.001K

Treatments with only newer-

generation drugs, No. (%)Radiation

treatments, No. (%)

1,536(11.35)

89 (0.66)

81 (6.17)

11 (0.84)

72(10)

4 (0.55)

1,316 (18.37)

43 (0.60)

67 (1.55)

31 (0.72)

<0.001C

0.716C

Antibiotics administered, No. (%):

Anti-bacterial Anti-fungal Anti-viral

No antibiotics

3,701 (82.39)258

(5.74)275 (6.12)346

(7.7)

1,426 (80.25)201

(11.31)102 (5.74)83

(4.67)

300 (81.97)8 (2.19)

22 (6.01)43 (11.75)

1,390 (82.54)42 (2.49)

100 (5.94)178 (10.57)

585 (87.97)7 (1.05)

51 (7.67)42 (6.32)

<0.001C<0.001C0.344C<0.001C

Length of an infection event, average

number of days (95% CI)

8.08(7.80–8.36) 10.90(10.33–11.48) 6.67(5.91–7.43) 6.14(5.83–6.44) 6.24(5.78–6.70) <0.001K

Proportion of days in HW 40.96% 58.40% 21.21% 27.28% 39.88% <0.001K

Proportion of days in GW 39.56% 27.28% 54.36% 49.17% 39.94% <0.001K

a P-value represents comparisons across diseases for each variable. For continuous variables, p-values were obtained from a Kruskal-Wallis [k] rank sum test, since equal

variances or normality assumptions were often violated. For categorical variables, a Pearson’s Chi-squared [c] test was used.
b The protocol length is the number of days between the first and the last day of chemotherapy, even if there is a break of�5 days between treatments.

https://doi.org/10.1371/journal.pone.0211694.t001

Fig 1. The study cohort flowchart. Left-hand branch: Patient location during and following administration of each chemotherapy

cycle. Right-hand branch: Patient location following the diagnosis of an infection event.

https://doi.org/10.1371/journal.pone.0211694.g001
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Infection survival and hazard rate

As shown in Fig 2, panel A, infection probability was highest on the first 2 to 3 days upon

chemotherapy completion. As expected, the infection hazard was higher for AL patients and

for treatments lasting six to eight days, such as induction for AML. Likewise, the protocols

requiring hospitalization were associated with increased infection hazards. Data on post-

infection survival are presented in Fig 2, panels B-D. The post-infection survival rate

appeared to be related to the patient location (home, GW, or HW) at the time of infection

event onset, and the mode of hospital admission (HOutC, ED, or direct hospitalization). Sur-

prisingly, the survival rate of patients with infection was not related to the underlying hema-

tological disease.

Fig 2. Infection hazard rate and survival after infection. Infection hazard during the first 30 days post-chemotherapy according to:

A. The underlying hematological disease. Survival during the first 21 days following infection event according to: B. The underlying

hematological disease. C. The setting where the infection event was diagnosed. D. The ward where emergency care was provided.

https://doi.org/10.1371/journal.pone.0211694.g002
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Model 1—Infection hazard rate after chemotherapy completion

Results for the discrete-time probit model, predicting infection hazard for each of the first 30

days after every protocol cycle are presented in Table 2. The final model included the following

explanatory factors: the protocol treatment length, the underlying disease, WBC counts on the

last day of chemotherapy, the cycle number, patient’s age, and location during treatment and

observation period (the correlation matrix appears in Fig A in S1 File). Based on sensitivity

analysis, we coded the WBC count variable as a dummy variable distinguishing between high

(i.e., more than 1,000 cells/μL) and low counts (Tables D-E and Fig A in S1 File, Table D in S2

File and S1 Fig). Protocols were also categorized based on the neutropenia-induction risk; spe-

cifically, we included the dummy variable TrDrugsNew to distinguish between the protocols

exclusively including newer generation non-cytotoxic drugs (e.g., bortezomib, azacitidine), on

the one hand, and commonly used chemotherapies, on the other hand.

Of the variables incorporated in the model, the underlying hematological disease, the WBC

count at the end of active treatment and the current day after treatment completion (Day and

Day2) were found to significantly interact with each other. Examples of the conducted sensitiv-

ity analysis appear in Tables C-E in S1 File (for the categorization of WBC and cycle number

variables).

At the feature selection stage, other models were also evaluated. Table 2 includes an addi-

tional baseline model that did not consider patient location information, and took into

account only data related to patient medical history, along with both current and past treat-

ments. Our findings showed that the location parameters were essential and significantly

improved the model accuracy.

Superior infection-related results were demonstrated for the patients who stayed for obser-

vation in the HW than for those observed in the GW, where a higher infection hazard was

revealed (p-value 0.009). The number needed to treat (NNT) for observation in the HW was

30.27, meaning that for every 30.27 days of observation in the HW one infection event was pre-

vented. We compared the probit model to other statistical prediction methods, particularly to

random forest, regression tree, and logit models. The ROC curves for these models are pre-

sented in Fig 3. While Probit, Logit and Random Forest exhibited similar results, the Probit

appeared to be most accurate with an AUC of 0.83. Of note, the performance of the regression

tree model was poor.

We have created a risk prediction tool (available at https://u0092023.shinyapps.io/

InfectionHazards2/) that predicts infection development for each patient receiving any proto-

col treatment for any hematological malignancy.

Model 2—Infection-related mortality hazard rate

Table 3 shows results for the discrete-time probit hazard model, estimating mortality hazard

during the first 30 days after an infection event onset. Feature selection and sensitivity analysis

were conducted in the same manner as for Model 1. The final model considered the impact of

patient location (home, GW, or HW) at the time of infection onset and on each day during

hospitalization as well as the mode of hospital admission (HOutC, ED, or direct hospitaliza-

tion). Additionally, patient-related variables, such as age, WBC count at the beginning of an

infection event, the number of previous infection events, and the number of administered

treatment cycles, were taken into account.

Patients presenting with infection were found to have a significantly superior survival rate

if they received emergency treatment in the HOutC compared to those treated in the ED. The

21-day post-infection survival was 93.1% and 91.2%, respectively for these groups (Fig 2D).

The NNT to save one life was 31.08 for the patients treated in the HOutC. Similar to model 1,
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Table 2. Model 1—Infection hazard rate after chemotherapy completion (training dataset).

Model parameters Model without patient location

information

Model with patient location

information

Coefficients Standard Error Coefficients Standard Error

Intercept -0.9692��� 0.1219 -0.7949��� 0.1254

Number of days after chemotherapy completion (Day) -0.0952��� 0.0262 -0.0674� 0.0270

Day2 (A quadratic term of Day) 0.0018 0.0010 0.0013 0.0011

Patient location on a particular day (baseline is HW)

GW 0.2340�� 0.0906

Home -0.5765��� 0.0578

Age 0.0043��� 0.0008 0.0034��� 0.0009

Protocol length, (active cycle days—baseline is 6–8 days)

1–5 days (TrLength(1,5]) -0.3129��� 0.0375 -0.3196��� 0.0382

9–10 days (TrLength(8,10]) -0.6828��� 0.1372 -0.6688��� 0.1370

>10 days (TrLength(10,Inf]) -0.3037��� 0.0815 -0.2998��� 0.0819

Location of chemotherapy delivery (baseline is HW)

GW (TrGW) -0.1850�� 0.0698 -0.2761��� 0.0798

Clinic (TrClinic) -0.5248��� 0.0335 -0.3748��� 0.0379

Number of administered drug groups (TrNBDrugs) 0.0296�� 0.0113 0.0378�� 0.0115

Treatment included only newer-generation (non-CTX) drugs (TrDrugsNew) -0.3199��� 0.0711 -0.3072��� 0.0719

First/Second treatment cycle (CycleNB1or2) 0.1853��� 0.0299 0.1546��� 0.0306

Number of previous infection events (InfNB) 0.0643��� 0.0050 0.0623��� 0.0051

WBC count >1000 at the end of treatment (TrEndWBC(1000,Inf]) -1.2756��� 0.1199 -1.1889��� 0.1229

Underlying hematological disease (baseline is acute leukemia)

Chronic leukemia 0.1137 0.1835 0.2616 0.1901

Lymphoma 0.0688 0.0920 0.1790 0.0945

Multiple myeloma -0.1891 0.1133 -0.0044 0.1173

Interaction of Day and TrEndWBC(1000,Inf] 0.1700��� 0.0283 0.1776��� 0.0288

Interaction of Day2 and TrEndWBC(1000,Inf] -0.0056��� 0.0011 -0.0061��� 0.0011

Interaction of Day and chronic leukemia -0.0935�� 0.0359 -0.1169�� 0.0372

Interaction of Day2 and chronic leukemia 0.0035� 0.0014 0.0042�� 0.0015

Interaction of Day and lymphoma -0.0782��� 0.0174 -0.0989��� 0.0180

Interaction of Day2 and lymphoma 0.0032��� 0.0007 0.0038��� 0.0008

Interaction of Day and multiple myeloma -0.0424 0.0236 -0.0736�� 0.0242

Interaction of Day2 and multiple myeloma 0.0019 0.0010 0.0029�� 0.0010

AIC 9073.61 8894.21

BIC 9320.45 9160.79

Log Likelihood -4511.80 -4420.10

Deviance 9023.61 8840.21

N 143424 143424

Coefficients with

�p<0.05;

��p<0.01;

���p<0.001

The model baseline was an AL patient who got the first or second protocol treatment at the HW and stayed there for observation. The baseline protocol was 6–8 active

treatment day long, involved newer-generation drugs only, and the WBC count on the last day on active treatment was lower than 1000. In case the location of

chemotherapy administration was changed during a treatment cycle, the location where the patient received the last treatment was defined as the treatment location.

The mean length was calculated only for the protocols including observation.

https://doi.org/10.1371/journal.pone.0211694.t002
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this model was compared to other prediction methods. The ROC curves of several models are

presented in Fig 4. Again, the probit model appeared to have the highest prediction power,

with an AUC of 0.74 (results of Logit and Random Forest appear to be close). The final probit

model was used to create a tool that predicts daily mortality risk based on individual patient

data (available at https://u0092023.shinyapps.io/Mortality/).

Time between the infection onset and the antibiotic therapy start

To elucidate why dedicated emergency units appeared to be more effective in treating infec-

tions in hematology patients we examined the time interval between the onset of an infection

episode and the beginning of antibiotic therapy. Unfortunately, the database on hospitalized

patients did not contain information regarding the exact time point of the first symptoms of

infection. Fever measurement is an unreliable marker in such cases, since in this high-risk

population physicians may diagnose an infection event based on minor symptoms or labora-

tory/imaging results, even when the patient is afebrile.

Therefore, for hospitalized patients, the upper limit of the symptoms-to-treatment time lag

was approximated as the period between the last routine temperature reading below 38˚C and

the start of the antibiotic treatment (Fig 5A). For the patients whose infection event started at

home, the time lag between the first symptoms of infection and arrival in hospital is unknown.

Hence, the lower limit of the symptoms-to-treatment time lag for this patient group was the

Fig 3. ROC curves for the infection models, using out-of-sample test data.

https://doi.org/10.1371/journal.pone.0211694.g003
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ED length-of-stay (time from admission till hospitalization) (Fig 5B). Time from admission

through the general ED was associated with significant delays in antibiotic administration

compared to admission through the HOutC (S2 Fig).

Discussion

Among multiple toxicities and risks associated with intensive chemotherapy for hematological

malignancies, life-threatening infection events are extremely common. This justifies the defini-

tion of patients suffering from these diseases as a population at risk that requires special

considerations. The present study has demonstrated that patients treated for malignant

Table 3. Model 2—Infection-related mortality hazard rate (training dataset).

Model parameters Coefficient Standard

Error

Intercept -3.6528��� 0.1517

Location of the patient when the infection event started (baseline is home)

HW -0.3634��� 0.0835

GW 0.0635 0.1089

Location of emergency treatment delivery for patients who developed infection at

home (baseline is ED)

Direct hospitalization (AdmDirectHosp)§ -0.3118� 0.1243

HOutC (AdmClinic) -0.2077�� 0.0771

First admission ward after emergency treatment (baseline is HW)

GW (FirstHospGW) -0.2248� 0.0971

Not admitted (i.e., discharged/died at ED/ HOutC) (NoHosp) 0.5498��� 0.1660

Patient location on a particular day (baseline HW)

GW 0.1787 0.0914

Home -0.2817� 0.1306

ED 0.2886 0.1500

Number of days after an infection event started (InfectionDay) 0.0583��� 0.0121

InfectionDay2 (A quadratic term of InfectionDay) -0.0012�� 0.0004

Age 0.0124��� 0.0018

Cycle number (CycleNB) 0.0091�� 0.0035

Infection developed after chemotherapy initiation (baseline is chemotherapy-

unrelated infection)

0.2099�� 0.0732

Number of previous infection events (InfNB) 0.0296��� 0.0082

WBC count at the infection event start (baseline is [0,2000])

(2000,15000] -0.0267 0.0559

>15000 0.2610��� 0.0710

Log likelihood -1502.06

Deviance 3004.12

N 30033

Coefficients with

�p<0.05;

��p<0.01;

���p<0.001

Model 2: The model baseline was an infection event starting at home for a patient with an initial WBC count lower

than 2000, first treated at the ED and subsequently admitted to the HW.
§ Hospitalization was defined as direct when a patient was transferred from another hospital directly to the HW

without passing through ED or HOutC.

https://doi.org/10.1371/journal.pone.0211694.t003
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Fig 4. ROC curves for the mortality model, using test data (AUC values are indicated on the graph).

https://doi.org/10.1371/journal.pone.0211694.g004

Fig 5. Estimated time lags in anti-infectious therapy initiation. Panel A shows the HW-GW differences in the estimated time lag

between first signs of infection and antibiotic initiation, based on the time period between the last normal temperature record and

the start of the antibiotic treatment. Panel B shows general ED-HOutC differences in the estimated time lag between patient arrival

in hospital and completion of emergency evaluation and initiation of antibiotic therapy, based on the time of patient admission.

https://doi.org/10.1371/journal.pone.0211694.g005
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hematological conditions have a better outcome when they are managed in specialized units.

This is true both of observation upon chemotherapy completion and emergency treatment if

an infection event occurs after discharge from hospital. Due to the shortage of such dedicated

facilities, the identification of the patients who would benefit most from management in these

wards is critical.

We have chosen the probit models as they provide more accurate results in predicting the

risk of rare events, such as death. Since the interpretation of the coefficients is not intuitive

[26], we have developed visual tools showing predictive values for infection hazard after

treatment or mortality hazard following infection, which can be accessed online. These tools

may be used for daily risk prediction for any patient, based on his/her demographics, specific

disease, therapy administered, and location within the hospital. This approach can also help in

assessing the dynamics of risk development on each particular day of observation and treat-

ment periods.

Our models suggest that keeping high-risk patients in the HW for post-chemotherapy

observation is effective for infection prevention and that the mortality hazard following an

infection event is likely to be lower if emergency therapy is given in the HOutC compared to

the general ED and even the GW. We are aware of the challenge of providing an understand-

able rationale for algorithm predictions[27] and have looked for potential explanations for our

findings. Differences in infection hazard and related mortality rates cannot be attributed to

variations in infection prevention or monitoring, since all units and departments at Rambam

apply the same infection therapy strategy. Notably, despite the hospital admission policy advo-

cating referral of patients with a high infection risk (e.g., acute leukemia) to the HW, the infec-

tion hazard in the HW is lower than in the GW. In all likelihood, a more aware staff, a better

nurse-to-patient ratio resulting in higher nurse availability, and a faster response to symptoms

or abnormal signs, may explain the reduction in infection or mortality rates in the dedicated

units. We have demonstrated that a lag in response to high fever in the GW compared to the

HW does exist, as reflected by longer intervals between the last normal temperature record

and antibiotic therapy initiation. Manpower shortage and lack of awareness of the fragility of

hematological patients may account for inferior outcomes of such patients, if observed in the

GW.

The estimated contribution of a specific ward (HW/GW) where a patient is hospitalized

upon receipt of emergency treatment for infection may be biased by hospital admission policy.

At Rambam, hematological patients with severe infection are more likely to be admitted to the

HW and as a result, the mortality hazard among patients first hospitalized in the GW is signifi-

cantly lower (p-value 0.0206). However, for patients staying in the GW on subsequent days the

mortality hazard is higher than for those hospitalized in the HW (p-value 0.0505). Remarkably,

the underlying hematological disease is not found to be a significant risk factor for infection-

related mortality. Yet, the mortality hazard appears to be significantly higher for heavily pre-

treated patients, those who had many infection events in the past, or are of older age.

The current study has analyzed data derived from a single center. While this is a limitation,

the homogeneity of the institutional infection prevention and treatment scheme reduces the

impact of potentially confounding factors. Obviously, centers around the world differ in their

patient population and the quality of care provided by their general wards. Our approach can

be readily applied to other institutions with different standards of operation and EMR systems.

Using this approach, patients at a high risk of life-threatening infection who will benefit from

treatment in a dedicated facility can be identified and characterized in each particular center.

Hence, the current study presents an efficient tool for identification and quantification of the

patients requiring observation and treatment in specialized wards.
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The decision of whether a patient should stay at hospital for observation is currently made

upon completion of a chemotherapy course. The most frequently used criterion is the WBC

count. This reflects myopic decision making. Once a patient is discharged, he/she will only

return to hospital in case of an infection event.

Since our model provides temporal evaluation of patient risks, it may enable physicians to

move from myopic (one-point) to a continuous dynamic decision making policy. With our

tool, physicians can compare risks at different time points, which may result in a more flexi-

ble patient management policy. Importantly, the present study has demonstrated that while

in some patients the infection risk is monotone decreasing, in others, the pattern appears to

be increasing-decreasing. Our proposed calculator is capable of predicting the exact time

point during post-chemotherapy observation when the infection risk in patients from the for-

mer group decreases to a level allowing their discharge from hospital. For the latter group

that is usually discharged immediately after chemotherapy, one can calculate the exact date

when the infection risk increases to a level justifying patient hospitalization. We are currently

investigating the ways to identify optimal policies that minimize the expected combined

infection and mortality risks, taking into account both patient point-of-view and capacity

constraints. This is a very complicated optimization problem that is beyond the scope of the

current paper.

As to the specialized emergency services, to the best of our knowledge, the present study is

the first to provide quantitative support for the availability of such facilities for hematological

patients. This is not trivial. For example, the queuing theory suggests that a larger ED may be

more flexible and efficient in providing care to severely ill patients (since they are prioritized

over regular ones). On the other hand, a small ED may provide a “concierge” treatment with

faster reach of the required specialist. Our hospital actually chooses a mid-way solution, i.e.,

providing specialized ED services in the HOutC.

Our findings may have implications for future resource distribution in hospital develop-

ment programs. HW beds are known to be expensive and cheaper substitutes are required.

Combining the results of the two models developed in the current study suggest that establish-

ing specialized ED or fast-track oncological emergency services could be more efficient in

infection prevention and management than expanding the available GW.

In conclusion, our model for infection risk and associated mortality prediction among

hemato-oncological patients has demonstrated that post-treatment observation in a specialized

unit and dedicated emergency services may significantly improve patient outcome. Differences

between dedicated hematological and general facilities are institution-specific, but the pro-

posed model could be applied to any given EMR dataset, providing a reliable support tool for

resource allocation decisions.
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