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Abstract

When assessing surrogate endpoints in clinical studies under a causal-inference

framework, a simulation-based sensitivity analysis is required, so as to sample

the unidentifiable parameters across plausible values. To be precise, correlation

matrices need to be sampled with only some of their entries identified from the

data, known as the matrix completion problem. The positive-definiteness con-

straints are cumbersome functions involving all matrix entries, making this a

challenging task. Some existing algorithms rely on sampling and then rejecting

invalid solutions. A very efficient algorithm is built on previous work to gener-

ate large correlation matrices with some a prior fixed elements. The proposed

methodology is applied to tackle a difficult problem in the surrogate marker

field, namely, the evaluation of multivariate, potentially high-dimensional, sur-

rogate endpoints. Whereas existing methods are limited to very low-dimensional

surrogates, the new proposal is stable, fast, shows good properties, and is im-

plemented in a user-friendly and freely available R package.
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1. Introduction

In the causal-inference framework, one frequently fits models with an only

partially identifiable set of parameters θ, i.e., there is a subset of θ that cannot

be estimated from the data. A possible solution to this problem is to impose

untestable restrictions, e.g., based on expert knowledge, for the unidentifiable5

parameters to estimate the model. Alternatively, one can conduct a sensitiv-

ity analysis to assess how the fitted model and conclusions based there upon

change as the unidentifiable parameters vary across plausible values. The latter

option is taken by [1] and [2] to evaluate univariate and multivariate surrogate

endpoints in a causal-inference framework. Surrogacy is then evaluated using10

the so-called individual causal association (ICA), i.e., the association between

the individual causal treatment effects on the surrogate and true endpoints.

The ICA is a function of a partially identifiable correlation matrix (R). Their

approach rests upon computing the ICA across a set of randomly generated cor-

relation matrices, taken to mean sampling from the collection of all symmetric15

positive semi-definite matrices (PSD) of a given dimension, and with unit diag-

onal, but, importantly, while keeping the estimable values fixed. This so-called

matrix completion problem is non-trivial.

The PSD constraint involves all values of a correlation matrix, and therefore,

its random generation is very challenging. However, several algorithms have20

been presented. [3] proposes a method based on a transformation of partial

correlations, later extended by [4]. The parameterization in terms of partial

correlations and its application on the completion problem are also presented

by [5] and [6], respectively. [7] introduced an algorithm using the hyperspherical

parametrization (HP) of the Cholesky factor. More alternatives can be found25

in [8, 9, 10], among others. Although many of these approaches would target

PSD matrices, we do prefer a positive-definite (PD) constraint because of the

operations we need to perform on the so-resulting matrices, involving inversion

of these as a whole and sub-matrices thereof.

In this paper, we build on previous work and evaluate through simulations30
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various algorithms to generate random correlation matrices with fixed entries

in the multiple surrogaty assessment. Joe’s algorithm is generalized by conve-

niently rearranging the fixed elements of the correlation matrix and leads to

excellent performance, in particular also in terms of speed and the ability of

handle high-dimensional matrices. On the other hand, the adaptation of the35

method proposed by [7] is cumbersome. Another alternative is to simulate a

pseudo-correlation matrix and to find the nearest correlation matrix, according

to some metric, keeping the identifiable values fixed. Some of these adjust-

ments for non-positive-definiteness can be found in [11] and [12]. Furthermore,

the methodology is applied to solve a difficult problem in the surrogate marker40

field, namely, the evaluation of multivariate surrogate endpoints, as well as in a

different, high-dimensional context.

The structure of the manuscript is as follows. Section 2 presents the method-

ology for assessing multiple surrogates. In Section 3, various algorithms to

generate unrestricted random correlation matrices are introduced. Section 445

describes the algorithms to generate random correlation matrices with some of

their values fixed. A simulation study to compare the methods is executed in

Section 5. A motivating experiment on mice (the transPAT study) is presented

and analyzed in Section 6. Section 7 is reserved for final remarks.

2. Assessing a multivariate surrogate50

In clinical trials, a true endpoint is defined as the most credible indicator of

drug response. However, its measurement might be costly, difficult or requiring

long follow-up time. Therefore, finding a less complex valid “substitute”, termed

as surrogate, of the true endpoint is very convenient [13]. In the last decades,

several statistical methodologies to evaluate surrogate endpoints have been pro-55

posed, most of them within the causal-inference and meta-analytic paradigms.

In this paper, we focus on the former. Details on surrogacy evaluation can be

found in [13], [14], [15], among others.

We consider a single-trial setting: the data consist of measurements of

3



a univariate true endpoint T and a p-dimensional surrogate endpoint S =60

(S1, . . . , Sp)′ for N patients. Moreover, only two treatments are under eval-

uation (Z = 0/1) in a parallel study design. Rubin’s model for causal inference

[16] assumes that each patient has two potential outcomes for T : an outcome T0

that would be observed under the control treatment (Z = 0), and an outcome

T1 that would be observed under the experimental treatment (Z = 1). Further-65

more, using obvious notation, let us now consider the 2 (p+ 1) dimensional vec-

tor of potential outcomes Y = (T0, T1, S10, S11, S20, S21, . . . , Sp0, Sp1)′ and the

corresponding vector of individual causal treatment effects ∆ = (∆T,∆S′)
′
,

where ∆T = T1−T0 and ∆S = (∆S1,∆S2, . . . ...,∆Sp)
′

with ∆Sk = Sk1−Sk0.

The so-called fundamental problem of causal inference states that only one of70

the potential outcomes associated with the true and surrogate endpoints are

observed in practice. Therefore, ∆ cannot be estimated from the data [17].

Note that, to avoid clutter, no subindex has been used to denote the patient.

Based on ∆, one can define the expected or average causal treatment effects

in the population of interest as E(∆) = (β,α′)′, where β = E(∆T ) and α =75

(α1, . . . , αp)′ with αk = E(∆Sk).

[18] provided three identifiability conditions under which it is possible to

obtain consistent estimators of the expected causal treatment effects. If Y

denotes the response of interest and Yz the potential outcome associated with

Z = z then the three identifiability conditions are: 1) Consistency: If Z = z for a80

given subject then Yz = Y for that subject, 2) Conditional exchangeability: This

condition essentially states that there are no unmeasured confounders given data

on baseline covariates L, that is, Yz ⊥ Z|L = l for each possible value z of Z and

l of L and 3) Positivity: If fL(l) 6= 0 then fZ|L(z|l) > 0. It can be easily shown

that in randomized clinical trials, all condition hold, and the expected causal85

treatment effects can be estimated as β = E(T |Z = 1)−E(T |Z = 0) and αk =

E(Sk|Z = 1)− E(Sk|Z = 0), where the conditional expectations are estimated

using the observed means in the control and treated groups, respectively. The

metric of surrogacy proposed by [2], and used in the following sections, is based

only on the individual causal treatment effects and it is valid if consistency90
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holds, i.e., it could also be applied to observational data.

In the surrogacy evaluation context, one is interested in the distribution of

the vector of potential outcomes Y . Further, it will be further assumed that

Y ∼ N(µ,Σ = DRD), where µ = (µT0
, µT1

, µS10
, µS11

, . . . , µSp0
, µSp1

)′, D is

a diagonal matrix with (σT0 , σT1 , σS10 , σS11 , . . . , σSp0 , σSp1) along the diagonal

and

R =



1 ρT0T1
ρT0S10 ρT0S11

ρT0S20 ρT0S21
. . . ρT0Sp0 ρT0Sp1

1 ρT1S10
ρT1S11 ρT1S20

ρT1S21 . . . ρT1Sp0
ρT1Sp1

1 ρS10S11
ρS10S20 ρS10S21

. . . ρS10Sp0 ρS10Sp1

1 ρS11S20
ρS11S21 . . . ρS11Sp0

ρS11Sp1

1 ρS20S21 . . . ρS20Sp0 ρS20Sp1

1 . . . ρS21Sp0
ρS21Sp1

. . .
...

...

1 ρSp0Sp1

1


, (1)

where bold symbols denote identifiable entries inR. Note that (1) has an specific

structure in which the unidentifiable parameters are located in the (2k − 1)-

diagonals, with k = 1, . . . , p of R, i.e., ρi,j is unestimable from the data when

one of the pairs (i, j) is an even integer and the other is odd.95

Under the previous assumptions, one has that ∆ ∼ N (µ∆,Σ∆), with µ∆ =

(β,α)′ and

Σ∆ =

 σ∆T Σ′∆S∆T

Σ∆S∆T Σ∆S

 ,

where σ∆T = σ2
T0

+ σ2
T1
− 2ρT0T1

√
σ2
T0
σ2
T1

is the variance of ∆T ; Σ∆S∆T is

a p-dimensional vector of covariances between ∆T and ∆S; and Σ∆S is the

(p× p) variance-covariance matrix of ∆S.

2.1. Individual causal association based on a multivariate surrogate

In the univariate setting (p = 1), [1] defined the ICA as the Pearson corre-

lation coefficient between ∆T and ∆S:

ρ∆ =
σT0

σS0
ρT0S0

+ σT1
σS1

ρT1S1
− σT1

σS0
ρT1S0

− σT0
σS1

ρT0S1√(
σ2
T0

+ σ2
T1
− 2σT0

σT1
ρT0T1

) (
σ2
S0

+ σ2
S1
− 2σS0

σS1
ρS0S1

) , (2)
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where ρXY is the correlation between the potential outcomes X and Y . It100

quantifies how accurate the prediction is of the causal treatment effect on the

true endpoint using the causal treatment effect on the surrogate, for a given

patient. Note that, the ICA is not simply the treatment-corrected correlation

between S and T , but it is based on the individual causal treatment effects

concept and it has a direct causal interpretation [1, 19].105

Only the variances and correlations ρT0S0
, ρT1S1

are identifiable from the

data. Therefore, the ICA cannot be identified without imposing untestable

restrictions on the unidentifiable correlations. Hence, [1] proposed a simulation-

based sensitivity analysis in which ρ∆ is calculated across a set of plausible values

for the inestimable elements in (2). To be precise, they considered all positive-110

definite matrices over a grid of values G = (g1, . . . , gk), with −1 ≤ gi ≤ 1 for

the unidentifiable correlations, and then calculated ρ∆ for each of them. The

so-obtained collection produces an insightful distribution that can be examined

graphically, or summarized using appropriate point and/or interval summaries.

For the case of a multivariate surrogate, [2] proposed the so-called squared

information coefficient of correlation (SICC; 20, 21) to quantify the ICA, i.e.,

R2
H =

Σ′∆S∆TΣ−1
∆SΣ∆S∆T

σ∆T
.

The R2
H ranges over the unit interval [0, 1], and takes the value zero if and115

only ∆T and ∆S are independent, while it takes the value one if and only

if ∆T is perfectly linearly predictable from ∆S. As in the univariate case,

R2
H is not identifiable from the data and a simulation-based sensitivity analysis

is recommended. However, the grid-based approach becomes computationally

too intensive, even infeasible, as the number of surrogate endpoints increases.120

The main issue is that with increasing dimensions, the space of positive-definite

matrices is an ever smaller subset of the rectangle [−1,+1]k with k as the

number of functionally different correlations involved. Therefore, this approach,

rejection sampling, to be discussed in the next section, is limited to a small

number of surrogates.125
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3. Generating random correlation matrices

3.1. Rejection sampling (RS) algorithm

In this method, R is constructed by drawing ρij independently from a dis-

tribution on (−1, 1), e.g., uniform. If the generated R̃ matrix is not PD, it is

rejected. This method performs well when the order of the correlation matrix130

is small. However, the rejection rate increases rapidly with d, making it time-

consuming or even not possible. [22] derived an expression for the probability

of the RS algorithm to generate a valid correlation matrix, and the rejection

probability is practically equal to one for d ≥ 6.

3.2. Gradual rejection sampling (GRS) algorithm135

To decrease the rejection rate and computing time, the RS algorithm can

be implemented in a gradual way using Sylvester’s criterion, i.e., a matrix is

PD when all the upper-left sub-matrices have positive determinants. Thus, to

generate a (d×d) correlation matrix, we start by randomly sampling the upper-

left (2×2) sub-matrix using the RS algorithm (i.e., simulating ρ12). When the140

determinant is positive, the same procedure is used for the upper-left (3×3) sub-

matrix (i.e., sampling ρ13 and ρ24 keeping ρ12 fixed), and so on until the

(d× d) is completely generated (in the last step, ρ1d, ρ2d, . . . , ρd−1,d are

simulated keeping the other correlation fixed). This approach improves

the acceptance rate and speed of the RS algorithm. However, it is still limited145

in practice to d ≤ 10 [2].

3.3. Algorithm based on partial correlations (PC)

[3] proposed to generate a PD random correlation matrix R progressively

based on a parameterization in terms of the correlations ρi,i+1 for i = 1, . . . , d−1

and the partial correlations ρij|i+1,...,j−1 for j − i ≥ 2. The algorithm is based

on the following equality:

ρj,j+k = r′1(j, k) {R2(j, k)}−1
r3(j, k) + ρj,j+k|j+1,...,j+k−1Dj,k, (3)
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where

R[j : j + k] =


1 r′1(j, k) ρj,j+k

r1(j, k) R2(j, k) r3(j, k)

ρj+k,j r′3(j, k) 1

 ,

with r′1(j, k) = (ρj,j+1, . . . , ρj,j+k−1), r′3(j, k) = (ρj+k,j+1, . . . , ρj+k,j+k−1),R2(j, k)

being the middle (k − 1× k − 1) matrix of R[j : j + k], and:

Dj,k =
√
{1− r′1(j, k)R2(j, k)r1(j, k)} {1− r′3(j, k)R2(j, k)r3(j, k)}.

Then, one can generate ρj,j+k|j+1,...,j+k−1 (1 ≤ k ≤ d− 1) independently in the

interval (−1, 1) and then use (3) to get ρi,i+k for 2 ≤ k ≤ d − 1. Furthermore,

the correlations ρj,j+1 are also independently generated in the interval (−1, 1).150

Therefore, a correlation matrix of size (d × d) is generated by sampling
(
d
2

)
appropriately chosen partial correlations. [4] extended the method to allow

computationally more efficient choices of
(
d
2

)
partial correlations.

To obtain identical symmetric marginal densities of each ρi,j , [3] proposes

to draw each ρj,j+1 (j = 1, . . . , d − 1) from a Beta
(
d
2 ,

d
2

)
on (−1, 1), and each155

ρj,j+k|j+1,...,j+k−1 from a Beta
{

1 + 1
2 (d− 1− k), 1 + 1

2 (d− 1− k)
}

on (−1, 1).

3.4. Algorithm based on the hyperspherical parameterization of the Cholesky

factor (HP)

[7] introduced a method based on the reparameterization of the Cholesky fac-

tor ofR using hyperspherical coordinates. Following the Cholesky factorization,

a PD correlation matrix R can be factorized by R = UU ′, where U = (uij) is

a lower triangular matrix with u11 = 1, ui1 = cos θi,1, for i = 1, . . . , d, and

uij =


∏j−1

k=1 sin θik for i = j,

cos θij
∏j−1

k=1 sin θik for 2 ≤ j ≤ i− 1,

where θij , i > j, are angles restricted to (0, π). Furthermore, the transformation

from R to Θ = (θij) is one-to-one.160

Then, a random correlation matrix R is generated by drawing values of the

j−th columns of the lower-triangular matrix Θ using the following distribution:
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θij ∼ gj(θ) ∝ (sin θ)2k+n−jI(0 < θ < π), i = j + 1, . . . , d, (4)

where k ≥ 0; and later, computing the lower triangular matrix U using θi,j and

constructing the correlation matrix R = UU ′.

For k = 0, each ρij follows a Beta
(
d
2 ,

d
2

)
distribution on (−1, 1), leading to

the same distribution as the algorithm proposed by [3].

4. Generating correlation matrices with fixed values165

With some correlations fixed, the same algorithms as presented in Section

3 can be implemented. The RS and gradual-RS algorithms can be applied

directly by randomly drawing the non-fixed ρi,j values independently from a

uniform distribution on (−1, 1) and rejecting the matrix if it is not PD. The

latter is implemented by [2] to compute R2
H . However, they concluded that this170

algorithm is computationally suitable to consider at most four surrogates, which

corresponds to generate random correlations matrices of size 10. For a larger

number of surrogates, it breaks down.

The implementation of the PC algorithm, or its extensions, for the matrix

completion depends on the pattern of the fixed entries. Using setting (1), its175

application is complicated. However, we can rearrange R as follows:

R′ =



1 ρT0S10 ρT0S20 . . . ρT0Sp0 ρT0T1
ρT0S11

ρT0S21
. . . ρT0Sp1

1 ρS10S20 . . . ρS10Sp0 ρS10T1
ρS10S11

ρS10S21
. . . ρS10Sp1

1 . . . ρS20Sp0 ρS20T1
ρS20S11

ρS20S21
. . . ρS20Sp1

. . .
...

...
...

...
...

1 ρSp0T1 ρSp0S11 ρSp0S21 . . . ρSp0Sp1

1 ρT1S11 ρT1S21 . . . ρT1Sp1

1 ρS11S21 . . . ρS11Sp1

1 . . . ρS21Sp1

. . .
...

1



. (5)

Starting from (5), we can apply the PC algorithm by generating partial
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correlations to complete one diagonal at a time starting from the diagonal closest

to the middle.

The adaptation of the HP algorithm is not straightforward. Translating the180

constraints on ρi,j to the angles θi,j is cumbersome and unpractical, even for

small d. Another alternative is to generate a random correlation matrix (R(0))

using the HP algorithm, replacing the prior fixed values to yield R(1). If the

R(1) is not PD, we can find the nearest PD correlation matrix using the weighted

scaling or linear shrinking method [11].185

4.1. Weighted scaling method

Here, we find the PD correlation matrix R̃ = (r̃i,j) that is as near as possible

to the pseudo-correlation matrix R(1) = (r
(1)
i,j ) using the following criterion:

S =

d∑
i=1

d∑
i=1

wij

(
r

(1)
ij − r̃ij

)2

, (6)

where wij = wji is the weight associated to correlation rij . Given that the PD

constraint on R̃ involves all r̃ij simultaneously, the minimization of (6) seems

intractable. However, this problem is overcome by describing R̃ in a geometric

way (Section 3.4), and then, iteratively finding the angles θij that minimize (6).190

By minimizing S as a function of θij , the PD constraint on R̃ is incorporated.

Since S is differentiable with respect to θij , we can apply iterative numerical

algorithms, e.g., the steepest descent method. As initial values, we can use the

θij associated to R(1).

To ensure that the fixed values do not move, or do so only very slightly, we195

set the corresponding weights to a very large value (e.g., 105) and, the weights

for elements that are allowed to change are set equal to a small value, e.g, one.

4.2. Linear shrinking method

Here, the pseudo-correlation matrix R(1) is shrunk towards an arbitrary

correlation matrix R(0) according to,

R̃ = λR(1) + (1− λ)R(0), (7)
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where λ is the largest value in [0, 1] which makes R̃ PD. In our case, R(0)

contains zero values for all correlations, except for the fixed ones. Then, to find200

R̃(1), we proceed as follows: (1) find λ in (7), (2) generate a random value λ̃ in

(0, λ), using an uniform distribution, for example, and (3) compute R̃ according

to (7) using λ̃.

5. Simulation study

To assess the performance of the previously introduced algorithms, a simula-205

tion study was carried out. The main objective of the simulation was to evaluate

the computational feasibility of the different algorithms, i.e., to assess the time

required to draw a random positive definite matrix. In addition, the generated

random matrices were used to evaluate the validity of a putative multivariate

surrogate endpoint S = (S1, . . . , Sp)′ for a univariate true endpoint (T ) using210

the ICA.

5.1. Settings

The identifiable correlations will be assumed equal, while different values

will be considered: (a) for the number of surrogates, and therefore the matrix

size and number of fixed entries, (b) and for the values of the fixed identifiable215

correlations:

• Number of surrogates (p): one surrogate (i.e., a 4× 4 matrix with two

fixed values), three surrogates (i.e., a 8×8 matrix with 12 fixed values), five

surrogates (i.e., a 12× 12 matrix with 30 fixed values) and 10 surrogates

(i.e., a 22× 22 matrix with 110 fixed values).220

• Level of correlation (ρ): low (ρ = 0.2), moderate (ρ = 0.5), and high

(ρ = 0.8) correlation.

For conciseness, the identifiable correlations are fixed at the same value in

the simulation settings. However, none of the algorithms require this. We per-

formed additional simulations with correlation matrices in which the identifiable225
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elements were not all equal. Results turn out to be very similar. One of these

simulations is presented in Section A.2 of the Supplementary Materials.

For each scenario, we implemented four different methodologies: (1) the

gradual rejection sampling algorithm (GRS), (2) the algorithm based on partial

correlation (PC), (3) the shrinking method (SHR), and (4) the scaling method230

(SCA). A total of 1000 random correlation matrices were generated with each

method. As a key quantity, we are interested in the computation time to draw a

correlation matrix with fixed values. Furthermore, we computed the univariate

(ρ∆; for p = 1) and multivariate (R2
H ; for p > 1) ICA using the generated

random correlation matrices. Here, we are interested in comparing the densities235

of the resulting ICA quantities.

All algorithms were run on a laptop computer with an Intel(R) Core(TM)

i5-6200U CPU 2.30GHz processor and 16GB of RAM.

5.2. Results

Table 1 shows the expected time to generate a random correlation matrix240

with fixed values using the four methods. The GRS algorithm works well for

matrices of sufficiently small dimension, around eight say, and when the magni-

tude of the fixed correlations is sufficiently small. At the same time, it is almost

impossible sampling a valid correlation matrix randomly when the dimension is

12 or larger and/or when the fixed correlations are relatively large in absolute245

value. Nevertheless, the rejection rate rapidly increases with the di-

mension of the matrix. To draw a (12×12) matrix and ρ = 0.8, it takes more

than five minutes, making it impractical. Both methods based on adjustments

for non-positive-definiteness are fast, with a longer time for the SCA method.

However, they do not perform well with high-dimensional matrices. The SCA250

method fails to keep fixed the identifiable correlations for matrices of size greater

than four, even using very large weights for the fixed values. On the other hand,

the shrinking parameter (α) goes to zero as the matrix size increases, leading to

draws closer to 0 for the SHR method (for more details, see Section A.1 of the

Supplementary Materials). Our algorithm based on partial correlations is the255
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fastest and generates correlations with constant symmetric densities (see Figure

A.1 of the Supplementary Materials).

Table 1: Mean computation time (in seconds) to draw a correlation matrix with fixed values

using different algorithms for various number of surrogates (p) and fixed ρ.

ρ = 0.2 ρ = 0.5 ρ = 0.8

p GRS PC SHR SCA GRS PC SHR SCA GRS PC SHR SCA

1 0.004 0.001 0.004 0.013 0.004 0.001 0.005 0.014 0.004 0.001 0.005 0.026

3 0.011 0.004 0.019 0.18 0.117 0.003 0.024 0.207 0.512 0.003 0.052 0.199

5 2.196 0.012 0.083 0.56 4.288 0.018 0.074 0.487 384.846 0.008 0.064 0.513

10 ∞ 0.023 0.283 1.592 ∞ 0.034 0.36 1.861 ∞ 0.06 0.267 1.704

The frequency densities for the ICA obtained from the different methods

are displayed in Figure 1 for p = {1, 3, 5, 10}. The GRS and HP algorithm

provide similar frequency densities for the ICA in all scenarios where the latter260

are feasible. The SHR method leads to a more peaked distribution of the ICA

when p and ρ increase. The SCA algorithm provides results similar to those

of the GRS and PC methods when the fixed correlations are low. However, it

does not behave well for ρ = 0.5 or ρ = 0.8. Given that it fails to keep fixed the

identifiable correlations, it leads to invalid values for the ICA. Note that we are265

using the GRS method as the reference when analyzing the ICA densities.

5.3. Identifiable bounds: Additional simulation

One of the advantages of the simulation-based sensitivity analysis introduced

by [1] and [2], is that it can provide approximate identifiable bounds for the

unidentifiable ICA. An additional simulation study was conducted to evaluate270

the performance of these identifiable bounds. The bounds are calculated based

on M runs of the PC algorithm. Indeed, if the number of simulated correlation

matrices is sufficiently large and the PC algorithm samples from the entire

space of correlation matrices, producing the corresponding R2
H values, then the

observed (min R2
H ,max R2

H) should contain the true value of the ICA and,275

therefore, they can be considered as approximate bounds for the true ICA.

For the simulations, a setting with a bivariate S = (S1, S2) surrogate end-

point was considered. Three PD matrices were generated using the GRS algo-
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Figure 1: Density of the univariate and multivariate ICA computed using four methods to

generate the unidentifiable correlations: gradual rejection sampling (solid black lines), algo-

rithm based on partial correlations (dashed black line), linear shrinking method (solid grey

line) and scaling method (dashed grey line) for different number of surrogates (p) and fixed ρ.
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rithm. These matrices led to ICA values equal to 0.75, 0.85 and 0.95. Based on

each of these matrices, 250 datasets of sizes N = {100, 200, 500} were generated.280

When analyzing each dataset, the unidentifiable quantities were removed and

the bounds for the ICA were computed by M = {100; 500; 1000; 5000; 10,000;

50,000} runs of the PC algorithm. Table 2 shows the percentage of cases in

which the true ICA was included in the range of the calculated R2
H (coverage)

and the average [min,max] interval.285

Table 2: Percentage of cases in which the true ICA was included in the [min,max] (the average

interval in parenthesis) range of ICA values computed using the PC algorithm.

Number of runs (M)

True ICA N 100 500 1,000 5,000 10,000 50,000

0.75 100 0.54 0.68 0.75 0.83 0.84 0.88

(0.73, 0.96) (0.7, 0.97) (0.69, 0.98) (0.67, 0.98) (0.67, 0.98) (0.66, 0.99)

200 0.59 0.76 0.82 0.92 0.94 0.95

(0.74, 0.96) (0.71, 0.97) (0.70, 0.98) (0.68, 0.98) (0.68, 0.98) (0.66, 0.99)

500 0.61 0.87 0.92 0.98 0.99 1

(0.74, 0.96) (0.71, 0.97) (0.70, 0.98) (0.68, 0.98) (0.68, 0.98) (0.66, 0.99)

0.85 100 0.98 0.99 0.99 1 1 1

(0.73, 0.96) (0.7, 0.97) (0.69, 0.98) (0.67, 0.98) (0.67, 0.98) (0.66, 0.99)

200 1 1 1 1 1 1

(0.74, 0.96) (0.71, 0.97) (0.70, 0.98) (0.68, 0.98) (0.68, 0.98) (0.66, 0.9)

500 1 1 1 1 1 1

(0.74, 0.96) (0.71, 0.97) (0.70, 0.98) (0.68, 0.98) (0.68, 0.98) (0.66, 0.99)

0.95 100 0.79 0.93 0.96 0.99 0.99 1

(0.73, 0.96) (0.70, 0.97) (0.69, 0.98) (0.67, 0.98) (0.67, 0.98) (0.66, 0.99)

200 0.85 0.98 1 1 1 1

(0.74, 0.96) (0.71, 0.97) (0.70, 0.98) (0.68, 0.98) (0.68, 0.98) (0.66, 0.99)

500 0.89 1 1 1 1 1

(0.74, 0.96) (0.71, 0.97) (0.70, 0.98) (0.68, 0.98) (0.68, 0.98) (0.66, 0.99)

When N = 500 and a minimum of M = 1000 runs are used, valid bounds are

generally obtained, i.e, the coverage probability exceeds 90% in all cases and it is

often larger than 95%. However, when the ICA equals 0.75 and the sample size is

relatively small and more runs may be necessary to obtained satisfactory bounds.

Regarding the average [min,max] interval, it always covers the true ICA, even290
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in the case of low coverage, and gets wider as the number of runs increase.

Furthermore, it does not change with the true ICA. This last result is expected

as the identifiable parameters are equal in the three settings. Extra simulations

showed that the GRS algorithm provides reasonably similar coverage rates as

the ones exhibited in Table 2, at least with M = {100, 200, 500}. The coverage295

evaluation for higher numbers of runs of this algorithm is computationally too

time-consuming.

6. The transPAT microbiome intervention study

The TransPAT experiment [23] is an animal study conducted to evaluate the

influence of an antibiotic treatment on the immune system (Immunoglobulin A300

level, IgA level). The dataset consists of information from 15 germ-free mice

that received cecal contents of a donor mouse. The cecal contents of seven donor

mice were exposed to a tylosin pulse (experimental treatment group) and eight

mice were not exposed (control treatment group). 12 days after starting the

experiment, the relative abundance of a total of 67 operational taxonomic units305

(OTUs) was measured. Regarding multiple surrogates assessment, the objective

of the study was to evaluate whether the treatment effect on one or more OTUs

(candidate surrogate endpoints) conveys information on the potential treatment

effect on the immune response (IgA level at day 20; true endpoint). The data are

available on github (see https://github.com/blaser-lab/Paper-Ruiz-2017)310

and was used by [2] to illustrate the multiple surrogates evaluation methodology.

6.1. Assessing the validity of a multivariate surrogate in the case study

[2] conducted a simulation-based sensitivity analysis where the R2
H was com-

puted using random correlation matrices simulated by the gradual rejection

sampling algorithm (GRS). Since the number of potential surrogate endpoints315

is large (p = 67), they opted for a forward selection approach to identify the best

set of surrogates. At first, a univariate analysis for each candidate surrogate is

performed. Then, the one with the highest median R2
H is kept. Afterwards,
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multivariate analyses are conducted, including the first chosen surrogate com-

bined with each of the remaining candidates. Then, the pair of surrogates with320

the highest median R2
H is retained. The procedure continues until the group of

selected surrogates reach a criterion, e.g., until the median R2
H > 0.95. In this

Section, we proceed in the same way but using the PC algorithm generating

10,000 random correlation matrices. Section A.3 of the Supplementary Materi-

als shows how to conduct a multiple surrogacy analysis using the Surrogate R325

package.

Figure 2 (left hand side) shows the median R2
H of all sets of surrogates eval-

uated in each step. In the univariate evaluation, not all the candidates seem to

be good, several medians R2
H are very small. Nevertheless, the median of the

best one (S1) is relatively high. As more candidates are jointly evaluated, the330

medians increase. In the third step, all the evaluations show a median higher

than 0.85. Figure 2 (right hand side) displays the range of R2
H values obtained

from the best combination of surrogates in each step. When the best candidate

surrogate is individually evaluated, the R2
H exhibits a wide range, indicating

a strong impact of the unverifiable parameters. However, the range gets nar-335

rower as more surrogates are simultaneously assessed. With five surrogates, the

median R2
H reaches 0.976 with a minimum of 0.922 and a maximum of 0.999.

Until this step, the selected vector of surrogates corresponds to S1 =OTU 44,

S2 =OTU 17, S3 =OTU 37, S4 =OTU 40 and S5 =OTU 30 (S1 belongs to

the family Ruminococcaceae, S2 to Verrucomicrobiaceae, and S3, S4 and S5 are340

members of the Lachnospiraceae family).

[2] performed the forward selection approach until step three, finding fairly

very similar results for the R2
H . However, they selected a different set of surro-

gates after the first step. This can be explained by the fact that the bivariate

analysis of most of the other candidates and S1 provide high R2
H values (see345

Figure 2, left hand side). Around 15% of the them combined with S1 lead to a

median R2
H higher than 85%.

The median time to generate 500 correlation matrices in the evaluation of

one to all surrogates is presented in Figure 3. The evaluation of a small number

17
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Figure 2: TransPAT data. Median R2

H computed by the PC algorithm of all the sets of surro-

gates evaluated in each step of the forward selection (left hand side), where the black dot repre-

sents the highest median, and the grey dots the median of the rest of sets. (minR2
H ,maxR2

H)

interval of the best set of surrogate in each step (right hand side).

of surrogates is fast, e.g., around 3 seconds to assess five surrogates, but the350

computation time increases exponentially. Nevertheless, the PC algorithm can

still generate large random correlation matrices in a relatively short time. The

evaluation of 67 surrogates, i.e., simulating 500 (136× 136) correlation matrices

with 4488 fixed values, took around 56 minutes.

7. Final remarks355

Various methods for generating random correlation matrices were proposed

for the setting where some of the correlations are fixed, a typical situation in the

causal-inference framework. We focus on multiple surrogacy assessment using

the ICA in which the partially identifiable correlation matrix has a specific

pattern (1). In this case, the simulation study showed that all methods exhibit360

reasonably similar performance with small size matrices. However, for medium

to high dimensional matrices, the adaptation of the algorithm based on partial

correlations (PC) outperforms the others. It is stable and computationally

highly efficient.

In the multiple surrogacy evaluation, the computation of the R2
H by the GSR365
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Figure 3: TransPAT data. Median computation time to calculate R2
H based on 500 randomly

generated correlation matrices using the PC algorithm.

method is computationally intensive even with few surrogates, and unfeasible

with more than five, limiting the joint evaluation to a relatively small number of

candidates. On the other hand, the PC algorithm allows assessing more surro-

gates in a short time. Although the evaluation of a large number of surrogates

combined is not commonly encountered in practical cases, the PC algorithm370

is not only limited to this framework. It can be used with high-dimensional

matrices. In the case study, we were able to simulate random correlation matri-

ces of size (136× 136) (evaluating all candidates combined) in a relatively fast

manner. Furthermore, it allows incorporating additional restrictions about the

unidentifiable correlations easily, e.g., biologically implausible values. However,375

this may affect the marginal distribution of the single correlations considerably.

The PC algorithm can be implemented to a different arrangement of known

entries of the correlation matrix by reindexing its columns and rows. However,

it does not mean that this method is the best, or even feasible, for all patterns.

Depending on the positioning of the fixed values in the matrix, a different choice380

of partial correlations may lead to computationally better results. For more

details on this, we refer to [5, 6] and [4].
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