
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A multiobjective stochastic simulation optimization algorithm

Non Peer-reviewed author version

ROJAS GONZALEZ, Sebastian; Jalali, Hamed & VAN NIEUWENHUYSE, Inneke

(2020) A multiobjective stochastic simulation optimization algorithm. In: EUROPEAN

JOURNAL OF OPERATIONAL RESEARCH, 284 (1), p. 212-226.

DOI: 10.1016/j.ejor.2019.12.014

Handle: http://hdl.handle.net/1942/30492

A multiobjective stochastic simulation optimization algorithm

Sebastian Rojas Gonzaleza,∗, Hamed Jalalib, Inneke Van Nieuwenhuysea,c

aDepartment of Decision Sciences and Information Management, KU Leuven, Belgium.
bDepartment of Information Systems, Supply Chain and Decision Making, Neoma Business School, 1 Rue

du Maréchal Juin, Mont-Saint-Aignan, 76825, France
cQuantitative Methods, Research Group Logistics, UHasselt, Belgium

Abstract

The use of kriging metamodels in simulation optimization has become increasingly popular

during recent years. The majority of the algorithms so far uses the ordinary (determinis-

tic) kriging approach for constructing the metamodel, assuming that solutions have been

sampled with infinite precision. This is a major issue when the simulation problem is

stochastic: ignoring the noise in the outcomes may not only lead to an inaccurate meta-

model, but also to potential errors in identifying the optimal points among those sampled.

Moreover, most algorithms so far have focused on single-objective problems. In this ar-

ticle, we test the performance of a multiobjective simulation optimization algorithm that

contains two crucial elements: the search phase implements stochastic kriging to account

for the inherent noise in the outputs when constructing the metamodel, and the accu-

racy phase uses a well-known multiobjective ranking and selection procedure in view of

maximizing the probability of selecting the true Pareto-optimal points by allocating ex-

tra replications on competitive designs. We evaluate the impact of these elements on the

search and identification effectiveness, for a set of test functions with different Pareto front

geometries, and varying levels of heterogeneous noise. Our results show that the use of

stochastic kriging is essential in improving the search efficiency; yet, the allocation proce-

dure appears to lose effectiveness in settings with high noise. This emphasizes the need

for further research on multiobjective ranking and selection methods.

Keywords: Simulation, Stochastic processes, Multiobjective simulation optimization,

Kriging

1. Introduction

Simulation optimization refers to optimization using (stochastic) simulation (Chen

& Lee, 2010); the simulation model acts as a black box that numerically evaluates the

objective for any given decision vector, and the goal is to find the values of the decision

vector(s) that optimize the objective of interest. Yet, in most settings, the analyst has

limited computational budget: the challenge thus is to develop a strategy that searches

∗Corresponding author
Email address: sebastian.rojasgonzalez@kuleuven.be (Sebastian Rojas Gonzalez)

Preprint submitted to Elsevier October 4, 2019

the solution space in a way that is both effective (i.e., it has high probability of finding

the optimal decision vectors), and efficient (it does so with limited computational budget).

This is a significant challenge, especially in settings where the search space is vast, and/or

the simulation itself is computationally expensive. Consequently, different approaches have

been developed to provide inexpensive metamodels (also referred to as surrogate models)

that seek to provide predictions of the objective, using the information obtained from a

limited number of sampled points. Evidently, in order for such metamodels to be useful,

they have to be accurate and sufficiently cheap to evaluate.

The use of kriging (Sacks et al., 1989; Van Beers & Kleijnen, 2003) metamodels has

been increasingly popular in modeling and optimizing deterministic computer experiments.

They are commonly used in engineering (see e.g., Forrester et al. (2008); Wang & Shan

(2007)), and machine learning (see e.g., Rasmussen & Williams (2005); Koch et al. (2015);

Zuluaga et al. (2016)); in the latter case, they are often referred to as Gaussian Process

Regression (GPR) or Gaussian random field metamodels. Recently, ordinary kriging is

also increasingly popular in the Operations Research and Management Science fields (see

e.g., Kleijnen (2015); Fu (2015)), as it can successfully approximate outputs over the

entire search space (yielding a global metamodel), while also providing a quantification of

the prediction uncertainty through the mean square error (MSE), also known as kriging

variance. In general, kriging-based optimization methods perform a sequential procedure,

as shown in Algorithm 1:

Algorithm 1 Generic procedure of kriging-based optimization algorithms

1: Sample initial design (using e.g., latin hypercube sampling)
2: Evaluate response(s) using the expensive simulator
3: while Stopping criterion not met do
4: Fit kriging metamodel to the observed simulation response(s)
5: Search for new infill point(s) using an infill criterion that exploits the kriging in-

formation
6: Evaluate the infill point(s) using the expensive simulator
7: end while
8: Identify the optimal point(s)

During the search phase, an infill criterion, also referred to as improvement function

(Wagner et al., 2010) or acquisition function (Rasmussen & Williams, 2005), directs the

search towards interesting solutions by exploiting the kriging information (i.e., the pre-

diction and its uncertainty). The metamodel is sequentially updated by simulating the

selected infill point(s) in the search space, until the computational budget is depleted or

a desired performance level is reached. The well-known Efficient Global Optimization

(EGO) algorithm (Jones et al., 1998), developed for deterministic and single-objective

optimization problems, introduced the Expected Improvement (EI) criterion; since then,

EI has been used in numerous kriging-based single- and multiobjective algorithms for

deterministic problems (see e.g., Knowles (2006); Zhang et al. (2010)).

However, ordinary kriging (hereafter referred to as deterministic kriging) models and

2

their related algorithms and infill criteria (such as EGO, resp. EI) are ill-suited for stochas-

tic simulation settings, as they ignore the noise in the observed objective outcomes, as-

suming they were sampled with infinite precision (Quan et al., 2013; Jalali et al., 2017).

Given that analysts typically have a limited simulation budget, stochastic settings always

contain a trade-off between the number of distinct points that can be sampled during

the search, and the accuracy obtained in the sampling process. Ignoring the noise in the

outcomes may obviously lead to an inaccurate metamodel (and, thus, mislead the search

for interesting new points to sample: see step 5 in Algorithm 1). Moreover, it also leads to

potential errors in identifying the solutions with the best expected performance among the

points sampled (step 6 in Algorithm 1). Current multiobjective optimization algorithms

simply identify these based on the observed mean outcomes of the sampled points, again

ignoring the noise. This may lead to two types of error due to sampling variability (Lee

et al., 2010): 1) a Type I error occurs when designs that actually belong to the Pareto

set, are observed as dominated; 2) a Type II error occurs when designs that are actually

dominated, fall into the observed Pareto set. Evidently, we are interested in identifying

the points with the best true performance. For single-objective settings, multiple ranking

and selection (R&S) procedures have been developed (Boesel et al., 2003; Chen & Lee,

2010) to aid in the correct selection of the optimal designs, by smartly allocating extra

replications to critically competitive designs, without wasting budget on designs that are

clearly suboptimal. Multiobjective ranking and selection (MORS) methods, however, have

received relatively little attention in the literature so far (Hunter et al., 2019).

In this paper, we propose an approach for the optimization of stochastic discrete-event

simulation problems with multiple objectives. Evidently, the goal of the algorithm is to find

the true Pareto set, i.e., the set of non-dominated solutions: these are the decision vectors

for which none of the objectives can be improved without deteriorating the outcome for

another objective. The evaluation of these solutions in the objective space corresponds

to the Pareto front. The current literature on algorithms tackling such multiobjective

stochastic problems is really scarce (Rojas-Gonzalez & Van Nieuwenhuyse, 2019). To

guide the search, these algorithms rely on deterministic kriging (i.e., they fit an ordinary

kriging metamodel to the observed sample means of each objective), or kriging with a

(fixed) nugget effect, which models the effect of white noise in the observations, under the

assumption that the variance of the noise is homogeneous (Gramacy & Lee, 2012).

The algorithm evaluated in this paper is referred to as SK-MOCBA, and has the

following characteristics:

1. In the search phase, it uses stochastic kriging metamodeling (Ankenman et al., 2010),

to take account of the noise when selecting new points to sample. The stochastic

kriging information is reflected in the Modified Expected Improvement (MEI) infill

criterion (Quan et al., 2013). Consequently, as opposed to the multiobjective al-

gorithms of Koch et al. (2015), Zuluaga et al. (2016) and Horn et al. (2017), our

algorithm is able to handle heterogenous noise, i.e., noise that varies in strength

3

over the search space. This is the most prevalent type of noise in practical settings

(Kleijnen & Van Beers, 2005; Kim & Nelson, 2006).

2. It integrates a MORS method in the identification phase, in view of maximizing the

probability of selecting the true Pareto-optimal points. We opt for the Multiobjective

Optimal Computing Budget Allocation (MOCBA) procedure (Lee et al., 2010; Chen

& Lee, 2010), a well-known Bayesian allocation framework.

To the best of our knowledge, this is the first stochastic multiobjective algorithm to im-

plement these aspects. A basic version of the algorithm was published in Rojas-Gonzalez

et al. (2018); yet, in this paper, we discuss the full improved version of the proposed

method in detail, and test it using standard benchmark functions for multiobjective op-

timizers, exhibiting different Pareto front geometries (Huband et al., 2006) and different

levels of noise. We evaluate the performance (both in objective space and decision space)

using quality indicators that are commonly used in the literature (Zitzler et al., 2008),

and explicitly evaluate the power of the stochastic kriging element (combined with the

MEI criterion) in improving the search efficiency of the algorithm, by comparing with

its deterministic counterpart. We also explicitly evaluate the contribution of the MORS

procedure in correctly identifying the true Pareto-optimal points, by comparing results

with and without MOCBA.

The remainder of this article is structured as follows: In Section 2 we provide the basic

theory of stochastic kriging metamodeling. Section 3 describes the proposed algorithm in

detail. Section 4 explains the numerical experiments designed to test the performance of

the proposed algorithm, while Section 5 discusses the results. We conclude the article in

Section 6, and identify some promising directions for further research.

2. Stochastic kriging

Stochastic kriging (SK) is a recently developed metamodeling technique for represent-

ing the response surface implied by a stochastic simulation (Ankenman et al., 2010). For

a given objective and an arbitrary design point xi, the model represents the observed

objective value f̃r(x
i) in the rth replication as:

f̃r(x
i) = f(xi)Tβ +M(xi) + εr(x

i) (1)

In this expression, f(xi) is a vector of known functions of xi, with β a vector of unknown

parameters of compatible dimension. M(xi) is a realization of a mean 0 covariance sta-

tionary Gaussian random field at the design point xi. It is assumed that this field exhibits

spatial correlation: i.e., M(xi) and M(xh) will tend to be similar when xi is close to xh

in the design space. This assumption is analogous to the assumption made in the tra-

ditional deterministic kriging metamodel (Van Beers & Kleijnen, 2003; Forrester et al.,

2008; Kleijnen, 2015); essentially, this type of uncertainty is imposed on the problem to aid

in developing the metamodel. Hence, it is referred to as extrinsic uncertainty. Different

4

spatial correlation functions (also referred to as kernels) exist; the most popular ones in

the kriging literature are the Gaussian and Matérn kernels (Rasmussen & Williams, 2005).

The intrinsic uncertainty εr(x
i) is, naturally, independent and identically distributed

across replications, having mean 0 and variance τ2(xi) at any arbitrary point xi. Note that

the model allows for heterogenous noise, implying τ2(xi) need not be constant throughout

the design space. The model also allows for Corr[εr(x
i), εr(x

h)] > 0, as tends to be

the case with the use of common random numbers (CRN); yet, this is not desirable, as

discussed in Chen et al. (2012). In what follows, we only consider the case where the

first term in Expression 1 is a constant, β0, representing the overall mean of the response

surface, as this has been shown to be the most useful model in practice (Santner et al.,

2013; Kleijnen, 2015).

The stochastic kriging prediction f̂(xi) at any design point xi (whether it has been

sampled or not) is given by

f̂(xi) = β0 + ΣM (xi, ·)T [ΣM + Σε]
−1(f̄ − β01p) (2)

This expression is analogous to the kriging predictor in the well-known ordinary (deter-

ministic) kriging model, except for the impact of the intrinsic noise, present through Σε.

Σε is the p× p covariance matrix with (i, h) element cov
[∑ri

j=1 εj(x
i)/ri,

∑rh
j=1 εj(x

h)/rh
]

accross all design points xh and xi; when CRN are not used, this reduces to the diago-

nal matrix diag[τ2(x1)/r1, ..., τ2(xp)/rp]. The notation f̄ is the vector containing all the

observed mean outcomes at the already sampled design points: f̄ = [f̄(x1), ..., f̄(xp)]T ,

with f̄(xi) =
∑ri

k=1 f̃k(x
i)/ri, and 1p is a p × 1 vector of ones. Analogous to the or-

dinary kriging model, ΣM denotes the p × p matrix containing the covariances between

each couple of already sampled points, as implied by the extrinsic spatial correlation

model: ΣM (xi,xj) = Cov[M(xi),M(xj)]. The notation ΣM (xi, ·) is the p × 1 vector

containing the covariances between the point under study, and the p already sampled

points: ΣM (xi, ·) = [Cov[M(xi),M(x1)], Cov[M(xi),M(x2)], ..., Cov[M(xi),M(xp)]T . As

opposed to the ordinary kriging predictor, the stochastic kriging predictor no longer in-

terpolates, due to the presence of the intrinsic noise.

The MSE of the stochastic kriging predictor (i.e., the stochastic kriging variance),

denoted s2(xi), is given by (Ankenman et al., 2010; Chen & Kim, 2014):

s2(xi) = ΣM (xi,xi)− ΣM (xi, ·)T [ΣM + Σε]
−1ΣM (xi, ·) +

γTγ

1Tp [ΣM + Σε]−11p
(3)

with γ = 1− 1Tp [ΣM + Σε]
−1ΣM (xi, ·)

Again, the difference with the ordinary kriging expressions lies in the impact of the intrinsic

noise, through Σε; in the absence of intrinsic noise, expressions (2) and (3) thus reduce to

the ordinary kriging predictor, and its variance. The presence of intrinsic noise inflates

the MSE, as discussed in Ankenman et al. (2010). The above expressions suppose that

β0, Σε and ΣM are known; clearly, in a realistic application, they must be estimated. This

5

is commonly done using maximum likelihood estimation (MLE); yielding β̂0, Σ̂ε and Σ̂M .

We refer to Ankenman et al. (2010) for the detailed derivation of these MLE estimators.

These estimators are then commonly used in expressions (2) and (3) to yield the estimated

kriging predictor f̂ , and its variance ŝ2.

3. Proposed algorithm

This section discusses the proposed algorithm, which consists of 3 phases. Section 3.1

discusses the distribution of the computational budget across these phases, while Section

3.2 gives the step-by-step outline of the procedure.

3.1. Distribution of the replication budget

The algorithm consists of 3 phases: the initial design phase, exploratory phase and

accuracy phase. It requires an upfront choice regarding the distribution of the total repli-

cation budget, denoted T , across these three phases (see Table 1). Let n0 denote the

number of points to sample in the initial design phase, with B the (fixed) number of

replications per initial design point, and let N denote the number of infill points one

wishes to sample in the exploratory phase. The total replication budget is then set to

T = B(n0 +N) replications; the part of the budget spent in the initial design phase obvi-

ously equals Tinit = Bn0 replications. Yet, in the exploratory phase, a reduced number of

replications b < B is used per infill point, thus Texp = bN replications. This allows to save

budget for the accuracy phase (i.e., Tacc = N(B − b)) replications; this remaining budget

will be allocated only to competitive designs, according to the MOCBA procedure.

Table 1: Overview of the distribution of the replication budget across the 3 phases of the algorithm

Total budget: T = B(n0 +N)

Initial design phase Exploratory phase Accuracy phase

Tinit = Bn0 Texp = bN
Tacc = N(B − b)n0: number of initial design points N : number of infill points

B: number of replications per initial design point b: number of replications per infill point

While efforts have been made (see, e.g., Quan et al. (2013) and Hernández L. et al.

(2016)) to allocate the budget dynamically during the run of the optimization algorithm,

we explicitly chose static resampling during the initial design and exploratory phases of

the algorithm, using B and b replications respectively. The reason for this is twofold.

Firstly, the issue of how to optimally distribute the budget while sampling remains an

important challenge in current research (see, e.g., Jalali et al. (2017) for comments on the

heuristic presented in Quan et al. (2013); see also Binois et al. (2018) for an approach to

dynamically allocate budget for resampling existing points versus exploring new points).

Secondly, as the algorithm uses stochastic kriging to construct the metamodel, we expect

that the model outcomes inherently take into account the resulting amount of noise in the

observations, so the choice of B and b should not be so crucial; we also test this explicitly in

our experiments, varying B and b across high versus low replication budgets (as discussed

6

in Section 4). Only in the accuracy phase, extra replications are added dynamically to the

already sampled points (as discussed in section 3.2).

3.2. SK-MOCBA: Algorithm outline

The algorithm focuses on solving the following multiobjective optimization problem:

min
x∈D

[f1(x), f2(x), ..., fm(x)] (4)

for m objectives in the objective space Θ, and decision vectors x = [x1, ..., xd]
T in the

decision space D. The objectives are analytically intractable; they can only be observed

through (noisy) simulation estimates. Algorithm 2 shows the sequential steps performed

by the proposed algorithm, which we refer to as SK-MOCBA.

As is common in kriging-based optimization, step 1 uses a maximin latin hypercube

sample to obtain a space filling set of initial design points. As suggested in the literature

(Jones et al., 1998; Forrester et al., 2008), we set n0 = 11d − 1, with d the dimension

of the design space D. In step 2 we run a fixed number of replications B per design

point, yielding an estimate of the response for each objective, and an estimate of each

response variance, for the points in the initial design. In step 3 the exploratory loop is

initialized by first normalizing the objectives with respect to their observed ranges so that

each objective function lies between [0, 1]. Then the observed means of the objectives are

combined into one scalarized objective Zλλλ(x), which is, by consequence, also noisy. As is

common in the literature, we use the augmented Tchebycheff scalarization function (see

e.g., Miettinen (1999); Knowles (2006); Zhang et al. (2010)):

Zλλλ(x) = max
j=1,..,m

(λjf j(x)) + ρ
m∑
j=1

λjf j(x) (5)

with 0 ≤ λj ≤ 1,
∑m

j=1 λ
j = 1,∀j ∈ {1, ..,m}, and ρ is a small positive value (e.g.,

ρ = 0.05). This scalarization approach is chosen (as opposed to, e.g., the weighted sum

approach) because the nonlinear term of the function ensures that points on nonconvex

regions of the front can be detected, while the linear term ensures that weak Pareto optimal

solutions are rewarded less than strict Pareto optimal solutions (Miettinen & Mäkelä,

2002; Knowles, 2006). Each set of λ values is defined as a weight vector λλλ = λ1, ..., λm.

By assigning different weight vectors at each iteration, we aim at exploring points that

are sufficiently diverse (i.e., spread across different areas of the Pareto front).

In step 4, we use stochastic kriging to approximate the scalarized objectives over the

design space. The kriging information is then used in step 5 to compute the Modified

Expected Improvement (MEI) infill criterion (Quan et al., 2013) over the design space, in

order to select a new infill point to simulate:

MEI(x) = E{max[Ẑ(xmin)− Z∗N (x), 0]} (6)

7

Algorithm 2 SK-MOCBA

Input:
n0 ←Number of initial design points that we wish to sample.
B ←Number of replications per initial design point.
N ←Number of points that we wish to sample during the exploratory phase.
b ←Number of replications per infill point sampled during the exploratory phase.
Bmax ←Maximum number of replications per sampled point.
Output:
PFobs → The observed Pareto front.
PSobs → The observed Pareto set.

Initial design
S = ∅: Initialize the set of sampled points.
Step 1: Construct the initial design (LHS), using a maximin latin hypercube sample
of n0 points.
Step 2: Simulate B replications for each initial design point and update the set of
sampled points: S ← S ∪ LHS.

Exploratory phase
for i = 1 : N do

Step 3: Normalize the objective values of all simulated points so far in S. Randomly
select a weight vector λλλ and scalarize the normalized objectives of each point x into
Zλλλ(x).

Step 4: Fit a stochastic kriging metamodel to the scalarized objective values: Ẑλλλ(x).
Step 5: Search and select the infill point xi with highest MEI using the kriging

information.
Step 6: Simulate b replications on the selected point and update the set of sampled

points: S ← S ∪ {xi}.
end for

8

Accuracy phase: MOCBA procedure
βi ← Total number of replications run so far for any point xi ∈ S.
Smax = ∅: Initialize set of points that have reached Bmax replications.
while Tacc > 0 do

Step 7: Evaluate equations 11 - 17 in Appendix A to determine the subsets of
sampled points regarded as dominated (SA) and non-dominated (SB).

Step 8: Compute and normalize the allocation quantities αi for each xi ∈ S, ac-
cording to equations 9 and 10 (see Appendix A).

Step 9:
for each xi ∈ S do

γi = αiTacc
if γi + βi < Bmax then

Run γi replications on point xi.
Update the number of replications run on point xi: βi = βi + γi.

else
γi = Bmax − βi
Run γi replications on point xi.
Update S and Smax: S\{xi}, Smax ∪ {xi}

end if
Step 10: Update the available accuracy budget: Tacc = Tacc − γi.

end for
end while

Identification of the observed PF and the observed PS
Step 11:
Update the set of candidate points: S ← S ∪ Smax.
Run a non-dominated sort on S to identify PFobs and PSobs.

9

where Ẑ(xmin) is the stochastic kriging prediction at xmin = arg minx∈S Z̄(x) (i.e. the

alternative with the lowest sample mean among the already sampled points); and Z∗N (x)

is the normal random variable:

Z∗N (x) ∼ N [Ẑ(x), ŝd(x)] (7)

where the mean Ẑ(x) is the stochastic kriging prediction at solution x (Eq. 2), and ŝ2d(x)

the estimated deterministic kriging variance (see Jones et al. (1998)). The MEI criterion

can be calculated as:

MEI(x) = [Ẑ(xmin)− Ẑ(x)]Φ

(
Ẑ(xmin)− Ẑ(x)

ŝd(x)

)
+ ŝd(x)φ

(
Ẑ(xmin)− Ẑ(x)

ŝd(x)

)
(8)

where Φ denotes the normal cumulative distribution and φ denotes the normal probability

density function. When the design space is continuous, maximizing MEI requires an

iterative search procedure; a metaheuristic approach (e.g., a genetic algorithm) could be

used to avoid getting stuck in a local optimum (see, e.g., Knowles (2006); Scott et al.

(2011)). By definition, the optimality of such a heuristic approach can’t be guaranteed;

moreover, its performance also typically depends on a number of user-defined parameters

(such as population size, mutation and crossover rates, etc.). To avoid these issues in

our experiments, we discretized the search space into a large but finite set of points (see

Section 4.2): the algorithm then determines MEI for all unvisited alternatives, and chooses

the alternative with the highest MEI as the next infill point. In addition, discretizing the

search space facilitates the performance evaluation of the algorithm in the design space,

as discussed further in Section 4.3.

In step 6, the point with highest MEI is added to the set of sampled points by

performing b simulation replications at the new point. The MEI criterion is analogous

to the EI criterion of Jones et al. (1998), except for the use of the stochastic kriging

predictor (Eq. 2) instead of the deterministic kriging predictor. This is a straightforward

choice, given the heterogeneous nature of the noise. The MEI criterion still balances local

exploitation and global exploration of the design space, as does the original EI criterion,

through the use of ŝd(x): this helps the algorithm to escape local optima, directing it

towards promising regions of the response surface while at the same time reducing the

spatial uncertainty of the metamodel (Quan et al., 2013). Steps (3) to (6) are repeated

until the maximum number of iterations (N) has been performed. Note that the same

weight vector can be repeated during the algorithm; the same scalarized objective function

may thus be minimized several times during the run of the algorithm, based upon the

kriging information available at that iteration.

Once the exploratory budget has been depleted, the algorithm moves to the Accuracy

phase (steps 7 to 10), where the MOCBA procedure (Multi-Objective Computing Budget

Allocation) is used to allocate extra replications to competitive designs in the set of already

sampled points. In this way, we aim to maximize the probability of correctly selecting the

10

true non-dominated points. We focus on the simplified MOCBA procedure presented in

Chen & Lee (2010); as shown by the authors, there is no significant difference in the results

when compared with the original MOCBA procedure discussed in Lee et al. (2010). As

we implement the procedure without further changes, we do not discuss it in detail; the

related expressions can be found in Appendix A, and the interested reader is referred to

Lee et al. (2010) and Chen & Lee (2010) for further discussion of the MOCBA framework.

In step 7, MOCBA labels each sampled point as dominated or non-dominated, based

on the observed objective values and their respective variances (see expressions 14 and

15). In step 8, the allocation share of the remaining accuracy budget for each individual

point is computed using equations 9 and 10, then normalized. These new replications are

performed in step 9, and the number of replications run so far on point xi are updated.

In order to avoid MOCBA replicating excessively on a single point, the user may want

to limit the maximum number of replications allowed for any given point by choosing

a specific upper bound Bmax (which should in any case be larger than B, to allow the

accuracy budget to be used). Points that have reached a total of Bmax replications are

not further considered when allocating a new set of replications in the accuracy phase.

The accuracy budget is then updated in step 10. When the accuracy budget is

depleted, the algorithm proceeds to identify the observed Pareto front in step 11, by

considering the mean objective values observed for all sampled points, and running a

non-dominated sorting on the observed means (Deb et al., 2002).

4. Design of numerical experiments

This section discusses the setup of the experiments. Section 4.1 gives details on the test

functions. Section 4.2 outlines the different scenarios. Section 4.3 explains the performance

metrics used, and Section 4.4 discusses the implementation details .

4.1. Test functions

To assess the performance of the algorithms, we run it on three well-known, scalable

multiobjective functions from the ZDT and DTLZ test suites, which are commonly used

in the literature to test multiobjective optimizers. The selected test problems differ in

the geometries of the resulting Pareto fronts. We summarize the functions in Table 2.

As evident from this table, ZDT1 is a bi-objective function scalable only in the number

of dimensions d, while the DTLZ functions are scalable in the number of dimensions d

and number of objectives m. Figure 1 displays the shape of the Pareto fronts for these

test problems, for two and three objectives. We refer to Huband et al. (2006) for further

details on the properties and characteristics of these test problems.

11

Table 2: Analytical benchmark functions

Name Function Properties

ZDT1

min f1 = x1

min f2 = g × h(f1, g)

g = 1 + 9
d

∑d
i=2 xi

h = 1−
√

f1
g

Domain = [0, 1]

Geometry: convex

DTLZ6

min f1 = (1 + g)
∏m−1
i=1 cos (π2 θi)

min f j=2:m−1 = (1 + g)
(∏m−j

i=1 cos (π2 θi)
)

sin (π2 θm−j+1)

min fm = (1 + g) sin (π2 θ1)

θi = π(1+2gxi)
4(1+g) , for i = {2, ...,m− 1}

g =
∑d

i=1 x
0.1
i

Domain = [0, 1]

Geometry:

m ≤ 3 : concave

m ≥ 4 : unknown

DTLZ7

f j=1:m−1 = xj

fm = (1 + g)
(
m−

∑m−1
i=1

[
fi
1+g (1 + sin(3πfi))

])
g = 1 + 9

d

∑d
i=1 xi

Domain = [0, 1]

Geometry: disconnected

As is common in the literature (see e.g., Picheny (2015), we discretize the search space

using a Sobol sequence (i.e., a quasi-Monte Carlo sampling method with desirable space-

filling properties). Other appropriate sequences can be used such as the Halton sequence,

though we didn’t see a significant difference in results during preliminary experiments. We

set the number of discrete points in the search space equal to 1000×d (see Lemieux (2009)

for further details on quasi-Monte Carlo sampling); this set of points is further referred to

as the design space D. Given that the test problems are analytical functions, the points

in D that form the Pareto set can be exactly determined, along with their true objective

values.

To test the performance of SK-MOCBA, all objectives are perturbed by heterogeneous

Gaussian noise. More specifically, we obtain noisy observations f̃ jk(xi) = f j(xi) + εk(x
i),

with εk(x
i) ∼ N (0, τ j(xi)) for j = {1, ...,m} objectives at the kth replication. As in the

experiments in Huang et al. (2006) and Picheny et al. (2013), the magnitude of the noise

imposed on any objective j is determined based on the range of that objective over the

design space D: Rjf = maxx∈D f
j(x) − minx∈D f

j(x), ∀j ∈ {1, ...,m}. Analogous to the

single-objective experiments in Jalali et al. (2017), we consider a low noise case, where

the standard deviation of the noise (τ j(x)) for each objective, after B replications, varies

between 0.01×Rjf and 0.5×Rjf , and a high noise case, where it varies between 0.5×Rjf
and 1.5 × Rjf . In between these limits, τ j(x) decreases linearly with the objective value:

τ j(x) = ajf j(x) + aj × bj , ∀j ∈ {1, ...,m}. We thus assume minimum noise at the global

minimum of each individual objective: minx∈D τ
j(x) at minx∈D f

j(x) and maxx∈D τ
j(x)

at maxx∈D f
j(x). We run the experiments without the use of common random numbers,

since its use increases the variance of the kriging predictor and variance of the constant

trend estimator, as shown in Chen et al. (2012).

12

ZDT1

DTLZ7

DTLZ6

Figure 1: Bi-objective (left and center) and tri-objective (right) Pareto fronts of the test functions. The
DTLZ testbed is scalable in both the number of objectives and decision variables; the ZDT1 (bi)objective
function is only scalable in the number of decision variables.

4.2. Parameters and scenarios

As prevalent in the literature, we fit all stochastic kriging models with a constant trend

(Eq. 1), by means of maximum likelihood estimation. We use the Gaussian kernel (see

Chapter 4 in Rasmussen & Williams (2005) for more details on this and other covariance

functions). Furthermore, we consider high and low replication budgets (i.e., the values for

b, B and Bmax, and N). For ease of reference, we summarize the parameters used in the

experiments in Table 3.

13

Table 3: Summary of parameters for the experiments

Kriging metamodels

Kernel: Gaussian kG(x,x′) = σ2 exp

[
−
∑m

i=1

(
|xi−x′i|√

2li

)2]
Noise levels

Low noise

High noise

0.01×Rjf ≤ τ(x) ≤ 0.5×Rjf
0.5×Rjf ≤ τ(x) ≤ 1.5×Rjf

Design space size

LHS 11d− 1

Quasi-random sequence d× 1000

Exploratory and accuracy budgets

Number of evaluations N
Low: 150

High: 300

repL: Low replication budget

b = 25

B = 50

Bmax = 100

repH : High replication budget

b = 50

B = 100

Bmax = 200

Table 4 gives an overview of the scenarios evaluated in the experiments. As evident

from the table, we vary the number of dimensions, number of objectives, and the replication

budgets across the scenarios: the first and second scenarios for each test function only

differ in the replication budget used (low versus high), while the third scenario increases

the number of dimensions and/or objectives (keeping the high budget). The test functions

also clearly differ in the range of the objective outcomes: the range of the mth objective for

the DTLZ7 function is clearly much larger than those of the ZDT1 and DTLZ6 objectives.

Each scenario is evaluated with high and low noise levels. The notation ref refers to the

reference point used to compute the hypervolume indicator (see Section 4.3).

4.3. Performance metrics

In deterministic multiobjective settings, the quality of the Pareto front is usually eval-

uated by a quantitative indicator, such as the hypervolume (HV) and/or the inverted

generational distance (IGD) (Zitzler et al., 2008). The hypervolume is the portion (vol-

ume) of the objective space covered by a particular Pareto front with respect to a given

reference point (see Table 4 for the reference points used in the experiments), whereas

the IGD measures the Euclidean distance between a member of the approximated Pareto

front and the closest member of a reference front (e.g., the true Pareto front). Thus, the

former is to be maximized, and the latter minimized.

Yet, as we study a stochastic setting, the Pareto front resulting from our algorithm

is characterized by noisy estimates of the objective values. While MOCBA intends to

14

Table 4: Overview of the 9 scenarios for the experiments, each one run with low and high noise levels.

ZDT1

R1
f ' 1

R2
f ' 1.93

R1
f ' 1

R2
f ' 1.93

R1
f ' 1

R2
f ' 2.94

d = 5
m = 2
N = 150

Budget: repL
|PS| ' 75

d = 5
m = 2
N = 150

Budget: repH
|PS| ' 75

d = 10
m = 2
N = 150

Budget: repH
|PS| ' 100

ref = [2, 2] ref = [2, 2] ref = [2, 2]

DTLZ6

1.79 . Rj=1:m
f . 1.99 1.79 . Rj=1:m

f . 1.99 2.62 . Rj=1:m
f . 2.99

d = 3
m = 3
N = 300

Budget: repL
|PS| ' 90

d = 3
m = 3
N = 300

Budget: repH
|PS| ' 90

d = 5
m = 4
N = 150

Budget: repH
|PS| ' 90

ref = [2, 2, 2] ref = [2, 2, 2] ref = [2, 2, 2, 2]

DTLZ7

R1
f ' 1

R2
f ' 18.53

R1
f ' 1

R2
f ' 18.53

Rj=1:m−1
f ' 1

Rmf ' 25.27

d = 5
m = 2
N = 300

Budget: repL
|PS| ' 75

d = 5
m = 2
N = 300

Budget: repH
|PS| ' 75

d = 10
m = 3
N = 300

Budget: repH
|PS| ' 230

ref = [2, 5] ref = [2, 5] ref = [2, 2, 8]

maximize the probability of correct selection of points (i.e., the true best points), it does

not eliminate the noise on the outcomes. The resulting estimates for HV and IGD are

thus also noisy. For that reason, we also evaluate the performance of the algorithm in

the design space, by evaluating the quality of the Pareto set obtained at the end of the

algorithm (PSobs). Ideally, this set should coincide perfectly with the true Pareto set (PS)

present in the design space D. Differences between PS and PSobs may be due to multiple

causes:

1. Some members of PSobs may be erroneously labeled as non-dominated due to the

noisy objective outcomes; this was referred to as a Type 2 error in the Introduction,

and we report the total number of these Type 2 errors as ET2.

2. The algorithm may not even have sampled all members of PS during the search.

This could be due to an inadequate choice of the number of iterations (N); yet, for

all experiments in Section 5, we ensure that the size of PS is smaller than N , so it is

theoretically possible for the algorithm to find the entire true set of non-dominated

points. The subset of points in PS that were effectively sampled by the algorithm

is referred to as PSs. We report on the percentage of PS points that was effectively

sampled as PSs(%); this thus gives an indication of the search effectiveness of the

algorithm.

3. Among the PSs points sampled, some may not have been correctly identified as

Pareto optimal at the end of the algorithm, due to noise. The subset of PSs that

was correctly identified as Pareto optimal is referred to as PSID, and we report on

15

the percentage of PSs points that were correctly identified as PSID(%). This thus

gives an indication of the identification accuracy of the algorithm. Points in PSs

that were erroneously labeled as dominated are referred to as Type 1 error points

(as discussed in the Introduction), and are reported in the counter ET1.

For ease of reference, Table 5 summarizes the notations, while Table 6 gives an overview

of the performance measures used.

Table 5: Overview of the different sets of points used to evaluate the algorithm.

Notation Description

PS True Pareto set in the design space D.

PSobs Observed Pareto set.

PSs Subset of points in PS that have been sampled.

PSID Subset of points in PSs that have been correctly identified as Pareto-optimal.

Table 6: Overview of performance measures used to evaluate the algorithms.

Notation Description

HV Hypervolume determined by the PF obtained with respect to a reference point.

IGD Inverted generational distance of the PF obtained with respect to the true front.

PSs Percentage of points in the true PS that was effectively sampled: PSs(%) = |PSs|
|PS| .

PSID Percentage of points in PSs that was correctly identified as Pareto optimal: PSID(%) = |PSID|
|PSs|

ET1 Number of points in PSs that are incorrectly identified at dominated (Type I error).

ET2 Number of points in PSobs that are incorrectly identified as non-dominated (Type II error).

As discussed in the Introduction, we explicitly wish to evaluate the impact of the

following elements in the SK-MOCBA procedure:

1. the use of the stochastic kriging metamodel and MEI (as opposed to deterministic

kriging and EI) during the search phase;

2. the added value of using MOCBA (as opposed to omitting a MORS procedure) in

the accuracy phase.

To that end, we compare the results of SK-MOCBA to the results that are obtained

by its deterministic counterpart (referred to as DK/EI, as it uses deterministic kriging

and EI), and a counterpart that uses SK and MEI, but leaves out the MOCBA procedure

(referred to as SK/MEI). For a fair comparison, each of these counterparts gets the same

total replication budget as SK-MOCBA; yet, as they don’t have an accuracy phase, they

sample each infill point in the exploratory phase with B replications (so Texp = BN and

Tacc = 0). Note that the DK/EI algorithm is very similar to the ParEGO algorithm

(Knowles, 2006), except that we do not use a genetic algorithm for maximizing EI during

the search, but exhaustively search the (discretized) search space for the next infill point.

16

4.4. Implementation details

All experiments are coded in Matlab; MOCBA’s source code is written in C, but used in

Matlab. The code used for deterministic kriging is based on the open source STK toolbox

available here (http://kriging.sourceforge.net/htmldoc/); for stochastic kriging it is based

on the code available on the official website (users.iems.northwestern.edu/∼nelsonb/SK/).

The computations of the non-dominated set of points are done using the well-known non-

dominated sorting algorithm of Deb et al. (2002), and the computations of the hypervolume

are based on the algorithm in Tian et al. (2017). For each scenario (see Table 4), the

algorithms were run 5 times, each time using a new LHS design and a new search space D

(these runs are referred to as macroreplications; every algorithm was tested on the same

set of macroreplications). The results for the performance metrics shown in all tables are

the average values over these 5 macroreplications. All experiments are performed on a

Dell laptop running 64-bit Linux Debian, with an Intel i7 VPro CPU with 8 cores, 2.40

GHz processing speed, and 16 GB of RAM; the average running time of the algorithms

(in seconds) is reported as Tc.

5. Results

Tables 7, 8 and 9 summarize the performance metrics for the ZDT1, DTLZ6 and

DTLZ7 functions, with low and high noise levels. We show the average metrics obtained

over 5 macroreplications; for completeness, the numbers between brackets show the min-

imum and maximum values of the corresponding metric across the 5 macroreplications.

The most important results in the tables are shown in bold.

For the ZDT1 function, the use of SK/MEI over DK/EI yields a big improvement in

search efficiency: the PSs(%) improves drastically, reaching 100% in both high and low

noise cases, even with a low replication budget (see first and second scenarios). The choice

of the budget thus appears to be less crucial when stochastic kriging is used; as expected,

the fact that it accounts for the noise prevents the search from being misguided. Yet, the

identification accuracy in SK/MEI remains low: while a high percentage of Pareto optimal

points is sampled during the search, many of these points are incorrectly labeled as domi-

nated (resulting in a high ET1), and only a relatively low percentage is correctly identified

as Pareto optimal (PSID(%)). The additional use of MOCBA (as in SK-MOCBA) dras-

tically improves this accuracy, particularly in the low noise cases. In the high noise cases,

SK-MOCBA still succeeds in sampling a very high number of Pareto points (see PSs(%)),

in spite of the fact that it can spend less replications in the exploratory phase than its

counterparts. Yet, the accuracy budget now seems insufficient to bring the identification

accuracy to a really high level. This issue is illustrated in Figure 2, which shows the Pareto

fronts observed after running the algorithms, along with the ET1 and ET2 points, for 1

given macroreplication of the first scenario (low budget).

17

http://kriging.sourceforge.net/htmldoc/
http://users.iems.northwestern.edu/~nelsonb/SK/

Table 7: Summary of results for the ZDT1 function (average value over 5 macroreplications, [minimum value; maximum value]).

ZDT1 function with low noise
d = 5;m = 2; N = 150; Budget: repL; |PS| = 75 d = 5;m = 2; N = 150; Budget: repH ; |PS| = 75 d = 10;m = 2;N = 150; Budget: repH ; |PS| = 100
DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA

HV 3.656 3.662 3.660 3.655 3.660 3.660 3.653 3.662 3.660
[3.65;3.66] [3.66;3.67] [3.66;3.67] [3.65;3.66] [3.65;3.66] [3.66;3.67] [3.65;3.66] [3.66;3.67] [3.65;3.66]

IGD 0.014 0.011 0.007 0.011 0.007 0.004 0.012 0.007 0.005
[0.014;0.015] [0.010;0.012] [0.006;0.007] [0.008;0.014] [0.007;0.008] [0.003;0.004] [0.011;0.013] [0.007;0.008] [0.004;0.009]

ET1 6.2 18.2 6.6 1.6 8.2 0.2 0.6 15 3.6
[4;10] [15;23] [4;9] [1;2] [6;11] [0;1] [0;2] [10;18] [1;6]

ET2 0.4 1.6 0.4 0.2 1.0 0.4 0.2 0.4 0.6
[0;1] [0;4] [0;1] [0;1] [0;2] [0;1] [0;1] [0;1] [0;1]

PSs(%) 61.07 100 100 64.27 99.73 100 39.40 93.00 93.80
[56.00;66.67] [100;100] [100;100] [49.33;77.33] [98.67;100] [100;100] [37.08;45.00] [90.01;96.05] [86.01;99.04]

PSID(%) 52.80 75.73 91.20 62.13 88.80 99.73 38.80 78.01 90.20
[49.33;56.01] [69.33;80.02] [88.00;94.66] [48.04;74.66] [85.33;90.66] [98.66;100] [37.01;43.07] [75.02;81.03] [82.03;98.01]

Tc(s) 98.34 148.51 148.01 98.51 154.41 154.80 230.95 479.27 454.53
[98.03;98.98] [142.46;162.05] [145.82;150.80] [97.59;99.74] [146.23;167.51] [143.60;160.97] [230.58;231.38] [455.41;521.65] [433.63;498.69]

ZDT1 function with high noise
d = 5;m = 2; N = 150; Budget: repL; |PS| = 75 d = 5;m = 2; N = 150; Budget: repH ; |PS| = 75 d = 10;m = 2;N = 150; Budget: repH ; |PS| = 100
DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA

HV 3.677 3.756 3.689 3.688 3.701 3.679 3.699 3.732 3.689
[3.63;3.71] [3.73;3.78] [3.66;3.72] [3.68;3.70] [3.67;3.73] [3.67;3.70] [3.68;3.74] [3.72;3.75] [3.68;3.70]

IGD 0.055 0.063 0.031 0.031 0.029 0.017 0.040 0.042 0.023
[0.05;0.06] [0.06;0.07] [0.03;0.03] [0.03;0.04] [0.02;0.03] [0.02;0.02] [0.03;0.05] [0.03;0.05] [0.02;0.02]

ET1 13.4 58.0 44.2 11.6 43.4 31.6 16.2 66.6 58.8
[5;19] [55;63] [40;47] [8;15] [38;48] [29;33] [12;21] [63;71] [53;66]

ET2 5.6 4.0 4.6 2.0 2.4 2.5 1.4 2.8 2.8
[3;8] [3;6] [2;8] [0;6] [0;5] [0;4] [0;3] [1;5] [2;5]

PSs(%) 35.73 100 97.87 46.67 100 100 35.40 95.00 99.20
[21.33;44.01] [100;100] [89.33;100] [38.67;52.06] [100;100] [100;100] [30.12;40.02] [91.03;100] [96.34;100]

PSID(%) 17.87 22.67 38.93 31.20 42.13 57.87 19.20 28.40 40.40
[14.66;20.15] [16.14;26.67] [36.08;41.33] [28.00;33.33] [36.03;49.33] [56.21;61.33] [18.04;22.11] [26.14;31.31] [34.04;47.02]

Tc(s) 100.58 127.16 119.95 99.59 144.61 140.26 230.37 379.36 363.18
[99.65;102.04] [123.41;130.72] [114.63;126.55] [98.37;100.74] [136.27;151.99] [133.31;147.95] [229.51;231.15] [369.56;394.41] [354.67;372.12]

18

Table 8: Summary of results for the DTLZ6 function (average value over 5 macroreplications, [minimum value; maximum value]).

DTLZ6 function with low noise
d = 3;m = 3;N = 300; Budget: repL; |PS| = 90 d = 3;m = 3;N = 300; Budget: repH ; |PS| = 90 d = 5;m = 4;N = 150; Budget: repH ; |PS| = 90
DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA

HV 6.103 6.138 6.102 6.031 6.101 6.085 11.502 11.549 11.507
[6.08;6.12] [6.11;6.15] [6.10;6.11] [5.98;6.08] [6.09;6.10] [6.08;6.09] [11.46;11.56] [11.50;11.62] [11.49;11.52]

IGD 0.038 0.031 0.016 0.032 0.017 0.010 0.105 0.069 0.085
[0.03;0.06] [0.02;0.04] [0.01;0.02] [0.02;0.05] [0.015;0.020] [0.01;0.01] [0.09;0.11] [0.04;0.12] [0.05;0.12]

ET1 24.8 50.8 42.8 20.0 43.2 37.4 7.0 21.8 18.6
[19;31] [44;57] [37;47] [18;22] [38;47] [32;44] [5;9] [20;24] [15;24]

ET2 1.0 0.2 0.4 0.4 1.0 0.6 0.8 1.0 1.2
[0;3] [0;1] [0;1] [0;1] [0;2] [0;2] [0;2] [0;4] [0;3]

PSs(%) 56.05 100 100 55.58 100 100 46.35 83.29 74.82
[50.00;61.63] [100;100] [100;100] [47.67;60.47] [100;100] [100;100] [43.53;48.24] [77.65;88.23] [71.76;81.18]

PSID(%) 27.21 40.93 50.23 32.33 49.77 56.52 38.12 57.67 52.94
[23.26;31.40] [33.72;48.83] [45.35;56.98] [23.26;37.21] [45.35;55.81] [48.84;62.79] [35.29;41.18] [52.94;61.18] [44.71;61.18]

Tc(s) 138.85 263.8 310.6 139.01 212.05 270.97 101.94 237.49 169.86
[137.55;140.13] [248.22;286.49] [291.53;328.99] [138.75;139.12] [205.98;219.96] [260.76;286.45] [100.64;102.75] [221.36;260.62] [154.83;182.93]

DTLZ6 function with high noise
d = 3;m = 3;N = 300; Budget: repL; |PS| = 90 d = 3;m = 3;N = 300; Budget: repH ; |PS| = 90 d = 5;m = 4;N = 150; Budget: repH ; |PS| = 90
DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA

HV 6.637 6.792 6.411 6.302 6.383 6.234 12.090 12.389 11.928
[6.45;6.83] [6.66;6.93] [6.38;6.44] [6.22;6.38] [6.30;6.44] [6.17;6.30] [11.72;12.98] [12.19;12.90] [11.82;11.99]

IGD 0.161 0.108 0.075 0.078 0.066 0.042 0.163 0.123 0.087
[0.11;0.24] [0.08;0.14] [0.06;0.09] [0.06;0.11] [0.05;0.08] [0.03;0.05] [0.15;0.18] [0.10;0.14] [0.07;0.10]

ET1 30.4 62.2 54.6 31.6 57.6 53.6 7.2 25.8 22.6
[28;34] [59;66] [50;63] [24;39] [51;61] [49;58] [6;10] [21;32] [21;26]

ET2 14.0 12.4 10.6 7.8 11.0 7.0 14.8 9.2 5.2
[9;19] [9;16] [6;16] [1;14] [5;22] [3;10] [7;21] [3;17] [2;7]

PSs(%) 50.23 100 91.39 59.54 100 100 36.94 83.53 78.82
[40.70;56.98] [100;100] [84.88;98.84] [52.33;69.77] [100;100] [100;100] [31.76;44.70] [75.29;87.05] [75.29;83.53]

PSID(%) 14.88 27.67 27.91 22.79 33.02 37.67 28.47 53.18 52.23
[8.14;20.93] [23.26;31.40] [24.42;30.24] [12.79;30.23] [29.07;40.70] [32.56;43.02] [24.71;32.94] [47.06;58.82] [48.23;56.47]

Tc(s) 135.44 239.25 231.14 137.97 292.64 255.36 102.06 126.67 121.23
[133.70;138.23] [230.32;251.30] [217.81;243.09] [134.99;139.52] [276.71;307.33] [244.49;262.53] [101.50;102.96] [124.21;129.10] [116.89;124.19]

19

Table 9: Summary of results for the DTLZ7 function (average value over 5 macroreplications, [minimum value; maximum value]).

DTLZ7 function with low noise
d = 5; m = 2;N = 300; Budget: repL; |PS| = 75 d = 5; m = 2;N = 300; Budget: repH ; |PS| = 75 d = 10;m = 3;N = 300; Budget: repH ; |PS| = 230
DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA

HV 4.436 4.457 4.427 4.425 4.421 4.418 17.343 17.351 17.349
[4.42;4.45] [4.45;4.46] [4.42;4.43] [4.41;4.43] [4.42;4.43] [4.41;4.42] [17.32;17.37] [17.3;17.4] [17.3;17.4]

IGD 0.033 0.036 0.020 0.019 0.018 0.009 0.033 0.026 0.014
[0.03;0.04] [0.03;0.04] [0.02;0.02] [0.01;0.02] [0.01;0.02] [0.007;0.011] [0.03;0.04] [0.02;0.03] [0.011;0.017]

ET1 35.80 40.8 29.6 25.4 27.2 14.4 6.0 8.2 4.4
[33;42] [38;44] [23;34] [19;29] [25;29] [11;17] [2;9] [3;14] [3;7]

ET2 0.8 1.2 0.6 0.8 0.2 0.8 1.0 0.8 1.0
[0;2] [0;3] [0;1] [0;3] [0;1] [0;3] [0;2] [0;2] [0;2]

PSs(%) 85.07 92.23 93.33 87.47 93.33 93.33 87.03 100 100
[80.21;90.67] [92.33;93.33] [93.33;93.33] [81.33;93.33] [93.33;93.33] [93.33;93.33] [85.71;89.01] [100;100] [100;100]

PSID(%) 37.33 38.93 53.87 53.60 57.07 74.13 80.44 90.99 95.17
[34.67;42.67] [34.66;42.66] [48.00;62.66] [45.33;60] [54.66;60] [70.66;78.66] [75.82;83.51] [84.60;96.71] [92.32;96.71]

Tc(s) 255.93 514.59 481.38 253.89 519.50 487.74 667.65 1454.5 1228.3
[254.54;257.09] [492.25;532.07] [468.14;492.62] [252.15;256.15] [498.64;548.57] [474.46;499.16] [659.05;674.56] [1380.8;1568.4] [1177.8;1281.6]

DTLZ7 function with high noise
d = 5; m = 2;N = 300; Budget: repL; |PS| = 75 d = 5; m = 2;N = 300; Budget: repH ; |PS| = 75 d = 10;m = 3;N = 300; Budget: repH ; |PS| = 230
DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA DK/EI SK/MEI SK-MOCBA

HV 5.192 5.761 4.948 4.974 4.990 4.696 18.550 18.619 17.816
[4.84;5.57] [5.46;6.08] [4.76;5.04] [4.70;5.22] [4.89;5.12] [4.57;4.88] [18.3;18.79] [18.22;19.19] [17.6;18.1]

IGD 0.339 0.340 0.133 0.142 0.186 0.082 0.175 0.144 0.091
[0.08;0.51] [0.24;0.41] [0.11;0.16] [0.11;0.21] [0.16;0.25] [0.07;0.09] [0.14;0.21] [0.12;0.17] [0.08;0.10]

ET1 18.8 61.4 55.6 41.4 58.6 54.2 43.4 44.4 23.0
[15;22] [60;63] [51;58] [45;46] [57;61] [53;56] [39;52] [37;51] [17;27]

ET2 1.8 4.4 4.2 2.8 3.2 2.8 8.6 7.0 10.0
[0;3] [1;8] [1;9] [2;3] [1;5] [2;4] [3;13] [2;10] [6;20]

PSs(%) 33.6 93.33 93.33 70.67 93.33 93.33 88.79 100 100
[29.33;36.02] [93.33; 93.33] [93.33;93.33] [60.41;78.67] [93.33;93.33] [93.33;93.33] [84.62;91.20] [100;100] [100;100]

PSID(%) 8.53 11.47 19.20 15.46 15.20 21.07 41.10 51.21 74.73
[5.33;13.33] [9.34;13.34] [16.00;25.33] [13.34;17.34] [12.00;17.33] [18.66;22.66] [32.97;48.35] [44.32;59.34] [70.31;81.35]

Tc(s) 259.58 431.84 423.83 253.91 428.38 395.67 653.99 1050.20 1155.4
[256.35;261.15] [426.09;439.03] [393.30;447.62] [252.84;255.49] [415.60;439.35] [387.28;414.80] [646.80;664.64] [1010.4;1094.7] [1074.9;1252.9]

20

Clearly, the use of stochastic kriging (as in SK/MEI and SK-MOCBA) guarantees a

big jump in the number of true Pareto points visited during the exploratory search; yet,

while SK/MEI shows a high number of ET1 points at the end of the algorithm (with

very inaccurate observed objective values in the high noise case), SK-MOCBA succeeds in

improving the objective estimates and decreasing ET1, particularly in the low noise case;

in the high noise case, however, the identification accuracy is much lower.

DK/EI

SK/MEI

SK-MOCBA

Figure 2: ZDT1 function, first scenario. The left column shows the low noise case, and the right column
the high noise case. The figure displays the observed Pareto front along with the error Type I and Type
II points resulting from each algorithm, for a given macroreplication.

21

As MOCBA sorts all points as either dominated or non-dominated based on the ob-

served means and variances, and aims at maximizing the probability of correct selection,

the procedure may allocate a lot of accuracy budget to points that appear to marginally

dominate other points (or vice versa), while they are actually both (non-)dominating.

Clearly, this can waste a lot of budget in the high noise case, without effectively improv-

ing the correct identification of the Pareto optimal points.

A similar type of conclusion is evident from the DTLZ6 results. The use of stochastic

kriging (as in SK/MEI and SK-MOCBA) again guarantees a jump in search efficiency

both in the low and high noise cases (recall that SK-MOCBA needs to split its replication

budget across the exploratory and accuracy phases, contrary to its counterparts, yet it still

effectively performs the search even with high noise on the objective estimates). Naturally,

PSs(%) suffers in the third scenario, even when SK/MEI or SK-MOCBA are used, as the

number of evaluations N is cut in half. The advantage of using MOCBA is less clear for

this function: as evident from the results, the intervals of the PSID(%) results tend to

overlap rather substantially for SK/MEI and SK-MOCBA, resulting in relatively small

differences in the average PSID(%).

The results for the DTLZ7 function again confirm the previous findings: the use of

stochastic kriging is key in improving the search efficiency of the algorithms, while MOCBA

appears to be relatively ineffective in achieving a high identification accuracy with the

given budgets, particularly in the high noise cases; in the low noise case, the increase in

budget in the second scenario is sufficient to yield a significant improvement in PSID%

compared with the first scenario. Figure 3 illustrates the observed Pareto fronts, along

with the Type I and Type II errors, for a given macroreplication of the first scenario.

Again, we see that the use of MOCBA succeeds in yielding better estimates for the truly

non-dominating points (note the shift of ET1 points towards the front, in both the high

and low noise cases); yet, it is not able to solve the ET1 errors by the end of the algorithm.

The noise level has again a detrimental effect during the accuracy stage; see for instance

some of the cases with high noise, where SK/MEI and SK-MOCBA sample more than

93% of the true Pareto set, but correctly identify only 11% and 19% respectively.

Note also that the HV indicator is very misleading in a stochastic setting, often showing

little to no difference in the quality of the observed fronts for the different algorithms, or

yielding contradictory results (showing better outcomes for DK/EI and/or SK/MEI, while

actually the number of ET1 and/or ET2 points is worse than for SK-MOCBA). Indeed,

due to the absence of an accuracy phase, the observed Pareto front obtained by DK/EI and

SK/MEI may remain very inaccurate, yielding “better” HV results than the more accurate

estimates obtained by SK-MOCBA. On the contrary, the IGD indicator is consistent with

the improvements obtained by SK-MOCBA, as it measures the distance between the (more

accurate) observed front estimates and (in our experiments) the true Pareto front.

22

SK-MOCBA

DK/EI

SK/MEI

Figure 3: DTLZ7 function, first scenario. The left column shows the low noise case, and the right column
the high noise case. The figure displays the observed Pareto front along with the error Type I and Type
II points resulting from each algorithm, for a given macroreplication.

6. Conclusions and future research

In this work, we studied the benefits of using stochastic kriging (along with the MEI

infill criterion) and the MOCBA procedure for optimizing multiobjective problems in

settings with heterogeneous noise on the objectives. The resulting algorithm, SK-MOCBA,

was evaluated on three analytical test functions. The results clearly show that the use

of stochastic kriging yields big improvements in search efficiency, irrespective of the noise

23

level. Apparently, the fact that the intrinsic noise is inherently taken into account in the

metamodel and the infill criterion prevents the search from being misguided. The use

of MOCBA is effective in improving the accuracy of the observed Pareto points (moving

them closer to the true Pareto front), yet the budget requirement for reducing/avoiding

ET1 errors is high, as the procedure may allocate a lot of budget to points that appear to

marginally dominate others (denoted as SB in Appendix A), while actually they are all

truly non-dominated.

The remarkable performance of stochastic kriging improves the prospects for opti-

mization problems with limited budget and heterogeneous noise, as it allows to shift more

budget to the accuracy phase. Evidently, the current research on multiobjective R&S al-

gorithms may also yield algorithms that outperform MOCBA for the same budget. While

MOCBA aims at maximizing the probability of correct selection, it may be more appro-

priate to adopt an indifference zone approach: indeed, it is unlikely that a decision maker

will truly differentiate between marginally different solutions in real life.

Finally, our results have highlighted that the traditional hypervolume performance

metric, can be very misleading in stochastic settings, as the objective outcomes are noisy.

As we tested the algorithms on known analytical functions perturbed by noise, we could

reliably evaluate the performance of the algorithms in the design space. Also, we could

calculate the IGD metric using the true Pareto front as the reference front. Obviously, such

approaches are not possible in real-life problems, as the true Pareto points are unknown.

The current literature lacks of solutions or guidelines to reliably assess the Pareto front

quality in such cases: all too often, one simply resorts to computing deterministic per-

formance measures (such as HV and IGD) on the estimated objective outcomes, thereby

ignoring the inherent noise. Some of the few works include Syberfeldt et al. (2010) and

Fieldsend & Everson (2015), but we consider this issue as a main challenge for further

research.

Appendix A MOCBA allocation rules

The allocation rules for the simplified MOCBA algorithm Chen & Lee (2010) are

summarized below (the notation used in Section 2 is slightly modified for simplification

purposes):

f̄ij : The averaged observed performance of design i for objective j after a certain

number of replications.

pi : The design that dominates design i with the highest probability.

jipi : The objective j of pi that dominates the corresponding objective of design i

with the lowest probability.

τij : The observed intrinsic variance of design i for objective j after a certain number

of replications.

24

αi : The budget allocation for design i.

S: The entire set of sampled points.

SA: The subset of designs in S labeled as being dominated.

SB: The subset of designs in S labeled as being non-dominated.

For any given design g, h ∈ SA and d ∈ SB:

αh =

τ2hjhph/δhphjhph
τ2
gjgpg

/δgpgjgpg

2

(9)

αd =

√√√√∑
h∈Dd

τ2
djhd

τ2
hjhd

α2
h (10)

where

δipj = f̄ij − f̄pj (11)

jip = arg min
j∈{1,...,m}

P (X̄pj ≤ X̄ij) = arg max
j∈{1,...,m}

δipj |δipj |
τ2ij + τ2pj

(12)

pi = arg max
p∈S
p 6=i

m∏
j=1

P (f̄pj ≤ f̄ij) = arg min
p∈S
p 6=i

δipjip |δipj
i
p|

τ2
ijip

+ τ2
pjip

(13)

SA =

h|h ∈ S, δ2
hphjhph

τ2
hjhph

+ τ2
phjhph

< min
i∈Dh

δ2
ihjih

τ2
ijih

+ τ2
hjih

 (14)

SB = S \ SA (15)

Dh = {i|i ∈ S, pi = h} (16)

Dd = {h|h ∈ SA, ph = d} (17)

Acknowledgment

This research was supported by the Research Foundation-Flanders, grant number

G076815.

References

Ankenman, B., Nelson, B. L., & Staum, J. (2010). Stochastic kriging for simulation

metamodeling. Operations Research, 58 , 371–382.

Binois, M., Huang, J., Gramacy, R. B., & Ludkovski, M. (2018). Replication or explo-

ration? sequential design for stochastic simulation experiments. Technometrics, 0 ,

1–43.

25

Boesel, J., Nelson, B. L., & Kim, S.-H. (2003). Using ranking and selection to “clean up”

after simulation optimization. Operations Research, 51 , 814–825.

Chen, C.-h., & Lee, L. H. (2010). Stochastic simulation optimization: an optimal comput-

ing budget allocation volume 1. World Scientific.

Chen, X., Ankenman, B. E., & Nelson, B. L. (2012). The effects of common random

numbers on stochastic kriging metamodels. ACM Trans. Model. Comput. Simul., 22 ,

7:1–7:20.

Chen, X., & Kim, K.-K. (2014). Stochastic kriging with biased sample estimates. ACM

Transactions on Modeling and Computer Simulation, 24 , 8:1–8:23.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 , 182–

197.

Fieldsend, J. E., & Everson, R. M. (2015). The rolling tide evolutionary algorithm: A

multiobjective optimizer for noisy optimization problems. IEEE Transactions on Evo-

lutionary Computation, 19 , 103–117.

Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surrogate mod-

elling: a practical guide. Chichester: John Wiley & Sons.

Fu, M. C. (2015). Handbook of Simulation Optimization. New York, NY: Springer.

Gramacy, R. B., & Lee, H. K. (2012). Cases for the nugget in modeling computer experi-

ments. Statistics and Computing , 22 , 713–722.

Hernández L., D., Hernandez-Lobato, J., Shah, A., & Adams, R. (2016). Predictive

entropy search for multi-objective bayesian optimization. In International Conference

on Machine Learning (pp. 1492–1501).

Horn, D., Dagge, M., Sun, X., & Bischl, B. (2017). First investigations on noisy model-

based multi-objective optimization. In H. T. et al. (Ed.), International Conference on

Evolutionary Multi-Criterion Optimization (pp. 298–313). Springer.

Huang, D., Allen, T. T., Notz, W. I., & Zeng, N. (2006). Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimization,

34 , 441–466.

Huband, S., Hingston, P., Barone, L., & While, L. (2006). A review of multiobjective

test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary

Computation, 10 , 477–506.

Hunter, S. R., Applegate, E. A., Arora, V., Chong, B., Cooper, K., Rincón-Guevara, O., &

Vivas-Valencia, C. (2019). An introduction to multiobjective simulation optimization.

ACM Trans. Model. Comput. Simul., 29 , 7:1–7:36.

26

Jalali, H., Van Nieuwenhuyse, I., & Picheny, V. (2017). Comparison of kriging-based

algorithms for simulation optimization with heterogeneous noise. European Journal of

Operational Research, 261 , 279 – 301.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of

expensive black-box functions. Journal of Global Optimization, 13 , 455–492.

Kim, S.-H., & Nelson, B. L. (2006). Chapter 17: Selecting the Best System. In S. G.

Henderson, & B. L. Nelson (Eds.), Simulation (pp. 501 – 534). Elsevier volume 13 of

Handbooks in Operations Research and Management Science.

Kleijnen, J. P., & Van Beers, W. C. (2005). Robustness of kriging when interpolating in

random simulation with heterogeneous variances: some experiments. European Journal

of Operational Research, 165 , 826–834.

Kleijnen, J. P. C. (2015). Design and Analysis of Simulation Experiments. (2nd ed.). NY:

Springer.

Knowles, J. (2006). ParEGO: a hybrid algorithm with on-line landscape approximation

for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput., 10 ,

50–66.

Koch, P., Wagner, T., Emmerich, M. T., Bäck, T., & Konen, W. (2015). Efficient multi-

criteria optimization on noisy machine learning problems. Applied Soft Computing , 29 ,

357–370.

Lee, L. H., Chew, E. P., Teng, S., & Goldsman, D. (2010). Finding the non-dominated

pareto set for multi-objective simulation models. IIE Transactions, 42 , 656–674.

Lemieux, C. (2009). Monte carlo and quasi-monte carlo sampling . Springer Science &

Business Media.

Miettinen, K. (1999). Nonlinear multiobjective optimization volume 12. Springer Science

& Business Media.

Miettinen, K., & Mäkelä, M. M. (2002). On scalarizing functions in multiobjective opti-

mization. OR spectrum, 24 , 193–213.

Picheny, V. (2015). Multiobjective optimization using gaussian process emulators via

stepwise uncertainty reduction. Statistics and Computing , 25 , 1265–1280.

Picheny, V., Wagner, T., & Ginsbourger, D. (2013). A benchmark of kriging-based infill

criteria for noisy optimization. Structural and Multidisciplinary Optimization, 48 , 607–

626.

Quan, N., Yin, J., Ng, S. H., & Lee, L. H. (2013). Simulation optimization via kriging: a

sequential search using expected improvement with computing budget constraints. IIE

Transactions, 45 , 763–780.

27

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning

(Adaptive computation and machine learning). (1st ed.). Cambridge, Massachusetts,

USA: The MIT Press.

Rojas-Gonzalez, S., Jalali, H., & Van Nieuwenhuyse, I. (2018). A stochastic-kriging-based

multiobjective simulation optimization algorithm. In M. e. a. Rabe (Ed.), Proceedings

of the 2018 Winter Simulation Conference (pp. 2155–2166). Piscataway, New Jersey,

USA: IEEE.

Rojas-Gonzalez, S., & Van Nieuwenhuyse, I. (2019). A survey on kriging-based infill algo-

rithms for multiobjective simulation optimization. Computers and Operations Research,

In press.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of

computer experiments. Statistical Science, (pp. 409–423).

Santner, T. J., Williams, B. J., & Notz, W. I. (2013). The design and analysis of computer

experiments. Springer Science & Business Media.

Scott, W., Frazier, P., & Powell, W. (2011). The correlated knowledge gradient for simu-

lation optimization of continuous parameters using gaussian process regression. SIAM

Journal on Optimization, 21 , 996–1026.

Syberfeldt, A., Ng, A., John, R. I., & Moore, P. (2010). Evolutionary optimisation of

noisy multi-objective problems using confidence-based dynamic resampling. European

Journal of Operational Research, 204 , 533–544.

Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A matlab platform for

evolutionary multi-objective optimization. IEEE Computational Intelligence Magazine,

12 , 73–87.

Van Beers, W. C., & Kleijnen, J. P. C. (2003). Kriging for interpolation in random

simulation. Journal of the Operational Research Society , 54 , 255–262.

Wagner, T., Emmerich, M., Deutz, A., & Ponweiser, W. (2010). On expected-improvement

criteria for model-based multi-objective optimization. Parallel Problem Solving from

Nature, PPSN XI , (pp. 718–727).

Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of

engineering design optimization. Journal of Mechanical design, 129 , 370–380.

Zhang, Q., Liu, W., Tsang, E., & Virginas, B. (2010). Expensive multiobjective optimiza-

tion by MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary

Computation, 14 , 456–474.

Zitzler, E., Knowles, J., & Thiele, L. (2008). Quality assessment of pareto set approx-

imations. In J. Branke, K. Deb, K. Miettinen, & R. S lowiński (Eds.), Multiobjective

28

Optimization: Interactive and Evolutionary Approaches (pp. 373–404). Berlin, Heidel-

berg: Springer Berlin Heidelberg.

Zuluaga, M., Krause, A., & Püschel, M. (2016). e-pal: An active learning approach to

the multi-objective optimization problem. Journal of Machine Learning Research, 17 ,

1–32.

29

