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Abstract

This article surveys the most relevant kriging-based infill algorithms for multi-

objective simulation optimization. These algorithms perform a sequential search

of so-called infill points, used to update the kriging metamodel at each iteration.

An infill criterion helps to balance local exploitation and global exploration dur-

ing this search by using the information provided by the kriging metamodels.

Most research has been done on algorithms for deterministic problem settings;

only very recently, algorithms for noisy simulation outputs have been proposed.

Yet, none of these algorithms so far incorporates an effective way to deal with

heterogeneous noise, which remains a major challenge for future research.

Keywords: Kriging metamodeling, Multiobjective optimization, Simulation

optimization, Expected improvement, Infill criteria

1. Introduction1

The use of numerical models to simulate and analyze complex real world2

systems is now commonplace in many scientific and engineering domains (see3

e.g., Kleijnen (2015), Law (2015) and Rubinstein & Kroese (2016)). Depending4

on the system under study, and the assumptions of the modeler, the models can5

be deterministic (e.g., in the case of analytical functions) or stochastic (e.g.,6

when Monte Carlo simulation or discrete-event simulation is used). Often, the7
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goal of the modeler is to find the values of controllable parameters (i.e., decision8

variables) that optimize the performance measure(s) of interest.9

The evaluation of the primary numerical models can be computationally10

expensive; for this reason, different approaches have been developed to pro-11

vide less expensive metamodels, also referred to as surrogate models. The use12

of metamodels allows for a faster analysis than the primary source models,13

but introduces a new element of error that must be considered in order to al-14

low for valid results and accurate decision making (Meckesheimer et al., 2002).15

Substantial literature exists on the different metamodeling techniques, such as16

kriging (Matheron, 1963; Krige, 1951), radial basis functions (Broomhead &17

Lowe, 1988), polynomial response surface models (Box et al., 1987) and support18

vector regression (Vapnik, 2013). Metamodeling approaches have become in-19

creasingly popular also in the field of multiobjective optimization, in particular20

in combination with metaheuristics (such as evolutionary algorithms): see, e.g.,21

the recent surveys by Tabatabaei et al. (2015); Diaz-Manriquez et al. (2016);22

Chugh et al. (2017). The goal of the current article is to survey the state-of-the-23

art kriging-based infill algorithms for multiobjective optimization. This area24

has not been discussed in detail in the previous surveys, as these took a very25

broad perspective, allowing different metamodeling approaches. As such, they26

did not specifically zoom in on kriging-based algorithms, let alone kriging-based27

infill algorithms.28

Kriging metamodels, also referred to as Gaussian Process Regression (GPR)29

models (Sacks et al., 1989; Rasmussen, 2006) or Gaussian random field models,30

have been traditionally popular in engineering (see e.g., Forrester et al. (2008);31

Wang & Shan (2007); Emmerich et al. (2006); Dellino et al. (2007, 2009, 2012))32

and machine learning (see e.g., Rasmussen (2006); Koch et al. (2015); Zuluaga33

et al. (2016)); recently, they have gained increasing popularity also in the Op-34

erations Research and Management Science fields (see e.g., Kleijnen (2015); Fu35

(2014); Picheny et al. (2013)). Kriging metamodels allow for the approximation36

of outputs (obtained through, e.g., discrete-event simulation) over the entire37

search space through the kriging predictor (yielding a global metamodel); addi-38
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tionally, they quantify the uncertainty of the predictor through the mean square39

error (MSE), also known as kriging variance (Van Beers & Kleijnen, 2003).40

In recent years, various multiobjective algorithms have been developed that41

directly exploit this kriging information (i.e., the predictor and its variance)42

to sequentially search the input space for the best input combination(s). We43

refer to these as infill algorithms. Infill algorithms start by simulating a limited44

set of input combinations (referred to as the initial design), and iteratively45

select new input combinations to simulate by evaluating an infill criterion, also46

referred to as improvement function or acquisition function (Mockus, 2012), that47

reflects the kriging information. The kriging metamodel is then sequentially48

updated with the information obtained from the newly simulated infill points;49

the procedure repeats until the computational budget is depleted or a desired50

performance level is reached, and the estimated optimum is returned.51

Kriging-based infill algorithms are particularly useful in settings where the52

computational budget is limited, and the primary simulation model is time-53

consuming to run: in such settings, they may allow to search the decision space54

in an efficient way (i.e., limiting the number of simulations to be performed).55

Yet, there are some downsides too. Evidently, the metamodel outcome is vulner-56

able to misspecifications in the covariance structure of the random field and/or57

the covariance parameters, see Rasmussen (2006). The kriging metamodels58

themselves may be expensive to estimate in settings with a large number of59

decision variables (Kleijnen, 2015), so their use is primarily advocated in set-60

tings with a low-dimensional input space. Optimizing the infill criterion over61

a continuous domain can be quite challenging, as the criterion function itself62

contains many local optima (see e.g., Jones (2001); Forrester et al. (2008)).63

Hence, the analyst requires a heuristic approach, such as a genetic algorithm,64

to accomplish this. To avoid this issue, the search space is often discretized in65

articles to evaluate the performance of a newly proposed algorithm, or compare66

the performance of different methods (see, e.g., Picheny (2015); Feliot et al.67

(2017)). Enumeration, however, is less suited for problems with high dimen-68

sionality, as the number of design points becomes prohibitively high in order to69
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have a sufficient number of high quality solutions (Lemieux, 2009).70

We classify the surveyed algorithms as deterministic (i.e., aimed at deter-71

ministic problem settings) or stochastic (i.e., aimed at problems with noisy72

simulation outputs). We do not focus on algorithms that solve specific prob-73

lems in engineering (such as, e.g., Dellino et al. (2007, 2009, 2012)); rather, we74

focus on general purpose infill algorithms. We distinguish two major categories75

of infill criteria:76

1. Single-objective infill criteria: these have been initially developed for single-77

objective problems; yet, some multiobjective algorithms continue to use78

them. The improvement brought by an infill point is measured with re-79

spect to each individual objective, or with respect to a scalarized single-80

objective function.81

2. Multiobjective infill criteria: these measure the improvement brought by82

an infill point with respect to its contribution to the Pareto front. This83

contribution can be measured using a quality indicator for multiobjective84

optimizers (e.g., hypervolume), or by evaluating extensions of a single-85

objective criterion (e.g., multiobjective expected improvement).86

The remainder of this article is organized as follows. Section 2 discusses the87

basics of kriging ; Section 3 states the most important concepts in multiobjective88

optimization, Section 4 explains the main types of infill criteria found in the89

literature, Section 5 focuses on the most relevant kriging-based infill algorithms90

for deterministic problems, while Section 6 outlines the few infill algoithms for91

stochastic problems. We conclude the article in Section 7, and identify some92

promising directions for further research.93

2. Kriging metamodeling94

Let f(x) be an unknown deterministic function, where x = (x1, ..., xd)
T is a

vector of design variables of dimension d. Kriging (Sacks et al., 1989; Cressie,

1993), also referred to as Gaussian process regression (Rasmussen, 2006; Frazier,
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2018), assumes that the unknown response surface can be represented as:

f(x) = β +M(x) (1)

where β is a constant trend and M(x) is a realization of a mean zero covariance-95

stationary Gaussian random field. Instead of a constant trend term β (as in96

ordinary kriging, see Expression 1), a polynomial trend may also be used (i.e.,97

universal kriging): f(x)
T
β where f(x) then is a vector of known trend functions,98

and β is a vector of unknown parameters of compatible dimension. However, the99

use of a constant trend term is considered to be preferable (Sacks et al., 1989;100

Ankenman et al., 2010; Santner et al., 2013; Kleijnen, 2015); all algorithms101

surveyed in this article use a constant trend for the kriging metamodels.102

What relates one observation to another is the covariance function, denoted

k, also referred to as kernel. Multiple covariance functions exist in the field of

GPR; the most commonly used are the stationary squared exponential (i.e., the

Gaussian kernel, Eq. 2), and Matérn kernel (Eq. 3) (Rasmussen, 2006):

kG(xi,xj) = σ2 exp

[
−

d∑
k=1

(
θk|xik − x

j
k|
)2
]

(2)

kν=3/2(xi,xj) = σ2

[
1 +
√

3

d∑
k=1

|xik − x
j
k|

θk

]
× exp

[
−

d∑
k=1

|xik − x
j
k|

lk

]
(3)

(4)

where σ2, lk (k = 1, ..., d) are hyperparameters that usually need to be estimated,103

and that denote the process variance, resp. the length-scale of the process along104

dimension k. Eq. 3 is the Matérn kernel simplified for ν = 3/2, where ν is105

a hyperparameter that represents the shape (smoothness) of the approximated106

function (the lower the value of ν, the less smooth the function is). When the107

hyperparameters are unknown, they are commonly estimated using maximum108

likelihood estimation or cross validation. We refer the reader to Santner et al.109

(2013); Rasmussen (2006); Bachoc (2013) for further discussion of hyperparam-110
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eter estimation, as these are out of the scope if this survey.111

In view of predicting the response at an unsampled point x∗, kriging assumes112

that the n observations in the vector y = f(x) can be represented as a sample113

from a multivariate normal distribution; the conditional probability P (f(x∗)|y)114

then represents how likely the response f(x∗) is, given the observed data (Ebden,115

2015):116

 y

f(x∗)

 ∼ N
0,

K KT
∗

K∗ K∗∗

 (5)

P (f(x∗)|y) ∼ N (K∗K
−1y,K∗∗ −K∗K−1KT

∗ ) (6)

where

K =


k(x1,x1) k(x1,x2) . . . k(x1,xn)

k(x2,x1) k(x2,x2) . . . k(x2,xn)
...

...
. . .

...

k(xn,x1) k(xn,x2) . . . k(xn,xn)

 (7)

K∗ =
[
k(x∗,x1) k(x∗,x2) . . . k(x∗,xn)

]
(8)

K∗∗ =
[
k(x∗,x∗)

]
(9)

Consequently, the best estimate for f(x∗) is the mean of this distribution (Eq.

10), and the uncertainty of the estimate is given by the kriging variance (Eq.

11):

f̄(x∗) = K∗K
−1y (10)

var(f(x∗)) = K∗∗ −K∗K−1KT
∗ (11)

3. Multiobjective optimization117

This section briefly explains the important concepts and terminology in mul-118

tiobjective optimization (section 3.1), as well as the performance evaluation of119
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deterministic multiobjective optimizers and additional considerations for per-120

formance evaluation in stochastic settings (section 3.2).121

3.1. Concepts and terminology122

In general, a multiobjective optimization (hereafter referred to as MO) prob-123

lem can be formulated as follows (Deb et al., 2002): min[f1(x), ..., fm(x)] for124

m objectives and a vector of decision variables x = [x1, ..., xd]
T in the decision125

space D (usually D ⊂ Rd), with f : D → Rm the vector-valued function with126

coordinates f1, ..., fm in the objective space Θ ⊂ Rm.127

Usually, there are tradeoffs between the different objectives; the goal then128

is to find a set F of all vectors x∗ = [x∗1, ..., x
∗
d]
T where one objective cannot129

be improved without negatively affecting any other objective. The points in130

this solution set are referred to as non-dominated or Pareto-optimal points, and131

form the Pareto set (see definition 3.1 for a formal definition of the concept of132

(strict) dominance; throughout this survey we assume that all objectives have133

to be minimized).134

Definition 3.1. For x1 and x2 two vectors in D (Zitzler et al., 2003):135

• x1 ≺ x2 means x1 dominates x2 iff fj(x1) ≤ fj(x2),∀j ∈ {1, ..,m}, and136

∃j ∈ {1, ..,m} such that fj(x1) < fj(x2)137

• x1 ≺≺ x2 means x1 strictly dominates x2 iff fj(x1) < fj(x2),∀j ∈138

{1, ..,m}139

The evaluation of these solutions in the objective space corresponds to the140

Pareto front, denoted PΘ. Mathematically, all Pareto-optimal points are equally141

acceptable solutions (Miettinen, 1999); the final solution preferred by the deci-142

sion maker then depends on his/her preferences. A common approach to search143

for Pareto-optimal points is to scalarize the objectives into one performance144

function, by assigning weights (preferences) to each objective. By varying the145

set of weight values uniformly, we can obtain points that fall between the ob-146

jectives’ extremes, and thus construct the Pareto front (Das & Dennis, 1997).147
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Numerous scalarization functions/methods have been put forward in the lit-148

erature, and the choice depends mainly on the geometrical properties of the149

problem (Miettinen, 1999). The following functions, and their variations, are150

most commonly used (Miettinen & Mäkelä, 2002):151

1. Weighted Tchebycheff scalarization function:

max
j=1,..,m

λj(fj(x)− z∗j ) (12)

2. Augmented Tchebycheff scalarization function:

max
j=1,..,m

λj(fj(x)− z∗j ) + ρ

m∑
j=1

λjfj(x) (13)

3. Weighted sum scalarization function:

m∑
j=1

λjfj(x) (14)

with λj ≥ 0,
∑m
j=1 λj = 1, ∀j ∈ {1, ..,m}. The result is thus a single-objective152

problem. In equations 12 and 13, z∗j represents the ideal value for objective j,153

and thus provides a lower bound for each objective function in the Pareto set;154

and ρ is a small positive value.155

Literature is extensive in the field of multiobjective optimization, with im-156

portant advances in metaheuristic-based methods (see, e.g., Abraham et al.157

(2005); Zhou et al. (2011); Emmerich & Deutz (2018), analytical methods (see,158

e.g., Miettinen (1999); Giagkiozis & Fleming (2015)), and scalarization meth-159

ods, which are commonly used in the literature to transform the problem into a160

single-objective problem (see e.g., Miettinen & Mäkelä (2002); Knowles (2006)).161

The interested reader is referred to Marler & Arora (2004) for a comprehensive162

survey on MO in deterministic engineering problems, and to Gutjahr & Pichler163

(2016) for a recent review on non-scalarizing methods for stochastic MO.164
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3.2. Performance evaluation of multiobjective optimizers165

Measuring the quality of such a Pareto front approximation is a non-trivial166

task (Zitzler et al., 2002), as the so-called “true” Pareto front is usually un-167

known. Intuitively, a good Pareto front is characterized by richness (i.e., the168

Pareto front needs to be well populated) and diversity (i.e., the Pareto optimal169

points should be well spread with respect to all the objectives).170

Numerous quantitative performance indicators have been developed for as-171

sessing the quality of the Pareto front in deterministic problem settings (see172

Riquelme et al. (2015) for a recent review); some of the most widely used qual-173

ity indicators are the hypervolume (Zitzler et al., 2007), the inverted genera-174

tional distance (Coello & Sierra, 2004), and the R indicator family (Hansen &175

Jaszkiewicz, 1998). The hypervolume is particulary popular, as it is the only176

indicator that is strictly monotonic (i.e., an increase in the hypervolume value177

immediately implies an improvement in the Pareto front approximation). How-178

ever, the runtime complexity of the hypervolume is exponential in the number179

of objectives (Bader & Zitzler, 2011).180

In multiobjective stochastic simulation optimization, the problem is more181

complex as the objectives are not only in conflict, but also perturbed by noise.182

In general, relying on the observed mean objective values to determine the non-183

dominated points (as in Definition 3.1) may lead to two possible errors due184

to sampling variability: designs that actually belong to the non-dominated set185

can be wrongly considered dominated, or vice versa. The algorithm needs to186

take into account the noise disturbing the observations during the optimization187

process, otherwise the model may lead to incorrect inference about the system’s188

performance (see, e.g., Knowles et al. (2009), who applied ParEGO to noisy189

problems, showing the detrimental effect of the noise on the results).190

The most commonly used method for handling noise during optimization is191

to evaluate the same point a number of times and use the mean of these repli-192

cations as the response value. However, when the noise is high and/or strongly193

heterogeneous, this method may fail to provide accurate approximations with194

limited computational budget (Jin & Branke, 2005). It is thus necessary to195
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use more advanced procedures that aim to correctly identify the systems with196

the true best expected performance, such as dynamic resampling, probabilistic197

dominance or multiobjective ranking and selection (MORS).198

In Syberfeldt et al. (2010), the authors propose to dynamically vary the199

additional number of samples based on the estimated variance of the observed200

objectives’ values. The technique, called confidence-based dynamic resampling,201

allows for the assessment of the observed responses at a particular confidence202

level before determining determining dominance, and aims to avoid unnecessary203

resampling (i.e., when it provides little benefit). Another example is the RTEA204

algorithm of Fieldsend & Everson (2015). Instead of using variance learning205

techniques, it is done during the evolutionary phase of the algorithm, by tracking206

the improvement on the Pareto set (as opposed to the Pareto front). Their207

algorithm focuses on the observation that the best estimate for the noise-free208

objectives associated with a design improves with the number of samples taken.209

Another approach is to use the concept of probabilistic dominance: the prob-210

ability that one solution dominates another needs to be higher than some speci-211

fied degree of confidence to determine domination (Fieldsend & Everson, 2005).212

For example, da Fonseca et al. (2001) (see also Zitzler et al. (2008)) propose to213

use the expected values of any deterministic indicator to compare the quality214

of different Pareto fronts with a certain confidence level, using non-parametric215

statistical tests. Similarly, in Gong et al. (2010), the probabilistic dominance216

is defined by comparing the volume in the objective space enclosed by a given217

point using confidence intervals, and uses the center point of these volumes to218

determine the dominance relationship. In Basseur & Zitzler (2006), each solu-219

tion is inherently associated with a probability distribution over the objective220

space; a probabilistic model that combines quality indicators and uncertainty221

is created and then used to calculate the expected value for each solution. An-222

other approach is presented in Trautmann et al. (2009) and Voß et al. (2010),223

where Pareto dominance is defined using the standard deviations of the observed224

mean approximations: the standard deviation is added to the mean such that225

dominance is defined with the worst case objective values.226
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A more advanced alternative is to use MORS methods; these, however,227

are very scarce in the literature (Hunter et al., 2019). MORS procedures aim228

to ensure a high probability of correctly selecting a non-dominated design, by229

smartly distributing the available computational budget between the search of230

infill points and replicating on critically competitive designs, in order to achieve231

sufficient accuracy. Analogously, they avoid spending budget on those designs232

that are clearly dominated and are, thus, not interesting to the decision-maker.233

Some of the most relevant works in MORS include Lee et al. (2010), Bonnel &234

Collonge (2014, 2015), Li et al. (2015), Feldman et al. (2015) and Branke et al.235

(2016), but substantial work remains to be done in this regard.236

4. Infill criteria237

As mentioned in the Introduction, the infill criterion is a key concept for any238

kriging-based algorithm: it estimates the improvement brought by each given239

non-simulated point to the solution of the problem by exploiting the metamodel240

information. Substantial research has been done on infill criteria for determin-241

istic single and multiobjective problems (see e.g., Jones (2001); Wagner et al.242

(2010); Parr et al. (2012)); we refer the interested reader to Hoffman et al.243

(2011); Brochu et al. (2010) for how to select an infill criterion.244

In this survey, we categorize papers based on the type of infill criterion used.245

We distinguish between single-objective infill criteria and multi-objective in-246

fill criteria. Single-objective infill criteria are also used in multi-objective infill247

algorithms, either when the multiple objectives are scalarized into (one) ob-248

jective function (which basically reduces the MO problem to a single-objective249

problem), or when the improvement is being measured for each objective func-250

tion separately and used to determine the dominance relationship between the251

points. Multi-objective infill criteria, in contrast, measure the contribution of252

the infill point with respect to the Pareto front (e.g., by looking at the hyper-253

volume improvement brought by that point), or they consider an extension of a254

single-objective infill criterion.255
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4.1. Single-objective infill criteria256

We mainly distinguish six types of criteria in the literature:257

1. Mean and variance values (MI): The prediction values and uncertainties258

provided by the kriging metamodels are used directly in the search phase259

of the algorithms (Emmerich et al., 2006).260

2. Expected improvement (EI): The EI measures the expected value of im-261

provement relative to the currently found minimum goal value fmin at a262

certain point x, in view of improving the balance between local exploita-263

tion and global exploration of the kriging metamodel:264

E[I(x)] = (fmin − f̂(x))Φ

(
fmin − f̂(x)

ŝ

)
+ ŝφ

(
fmin − f̂(x)

ŝ

)
(15)

where Φ(·) denotes the normal cumulative distribution, φ denotes the265

normal probability density function, and f̂(x) and ŝ respectively refer to266

the predicted response and standard deviation. The EI was popularized267

through the well-known Efficient Global Optimization (EGO) algorithm268

(Jones et al., 1998), developed for deterministic single-objective black-box269

optimization problems. At each iteration, the EGO algorithm selects the270

solution that maximizes EI as the infill point. The pros and cons of the271

EI have been extensively studied (see Ponweiser et al. (2008b); Santner272

et al. (2013) for further details).273

3. Probability of improvement (PoI): PoI is defined as the probability that274

the output at x is at or below a target value T (with T ≤ fmin, Ulmer275

et al. (2003)):276

P [I(x)] = Φ

(
T − f̂(x)

ŝ

)
(16)

where Φ(·) denotes the standard normal cumulative distribution, and f̂(x)277
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and ŝ again refer to the predicted response and standard deviation respec-278

tively. Areas with high PoI are more promising to explore. We refer to279

Jones (2001) and Mockus (2012) for further details on the probability of280

improvement.281

4. Probability of feasibility (PoF): The PoF is used when expensive con-282

straint functions are present (Forrester et al., 2008; Singh et al., 2014). It283

measures the degree to which a sample satisfies the constraints; thus, it284

is normally used in conjunction with the PoI or EI. Let ĝ(x) be the con-285

straint function prediction and ŝ2(x) the prediction variance. Then the286

probability that a constraint is met, i.e., the probability of the prediction287

being greater than the constraint limit, P (G(x) > gmin), is defined as288

(Forrester & Keane, 2009):289

P (G(x) > gmin) = Φ

(
ĝ(x)− gmin

ŝi(x)

)
(17)

where Φ is the standard normal cumulative distribution, gmin the bound290

for the constraint value, and G(x) a is the normally distributed random291

variable with mean ĝ(x) and variance ŝ2(x). For several expensive con-292

straint functions modeled using kriging, the combined PoF is given by the293

product of all the individual probabilities (Singh et al., 2014).294

5. Lower confidence bound (LCB): The goal of the LCB is to increase the295

number of evaluations in promising regions in the design space that haven’t296

been explored yet, by directing the search using a user-defined confidence297

bound of the approximated response:298

flb(x) = f̂(x)− ωŝ (18)

where ω ∈ [0, 3]. By varying the value of ω, the user can focus the search299

on local areas or explore the design space more globally (Emmerich et al.,300

2006). We refer to MacKay (1998) and Auer (2002) for more discussion on301

the lower (minimization) and upper (maximization) confidence bounds.302

13



6. Entropy search (ES): An entropy-based search seeks to minimize the un-303

certainty in the location of the optimal value (Barber, 2012). As discussed304

in Section 2, we are interested in the conditional probability P (f(x∗)|y)305

(i.e., how likely the response of a new point x∗ is, given the observed data306

y = f(x)). An entropy-based criterion seeks for (infill) points that mini-307

mize the entropy H of the induced distribution P (f(x∗)|y). Derivation of308

entropy-based criteria is non-trivial and several assumptions on the nature309

of the distribution must be made (Barber, 2012) (see also Hernández L.310

et al. (2014) and Hennig & Schuler (2012)).311

4.2. Multiobjective infill criteria312

Using scalarization, in principle, any infill criterion developed for single-313

objective simulation optimization can be used to search and select candidate314

points. However, a disadvantage of the scalarization approach is that without315

further assumptions (e.g., convexity) on the objectives, some Pareto-optimal316

solutions may not be detected (Boyd & Vandenberghe, 2004). Fortunately, there317

has been important progress in developing multiobjective expected improvement318

criteria, where instead of measuring the improvement of each individual (or319

scalarized) objective, the improvement is an estimate of the progress brought320

by a new sampled point to the set of non-dominated points. We distinguish two321

different types of multiobjective criteria in the literature:322

1. Indicator-based: These approaches use quantitative performance indica-323

tors as infill criteria, reflecting how much the quality indicator improves324

if the corresponding individual is added to the current Pareto front (Zit-325

zler & Künzli, 2004). A specific quality indicator may be directly used326

to assign a fitness function to each solution (such as in Ponweiser et al.327

(2008a), which uses the hypervolume contributions). Alternatively, one328

estimates the expected improvement in the quality indicator for each so-329

lution, such as in Emmerich et al. (2006, 2011), which use the expected330

hypervolume improvement (EHI), or Couckuyt et al. (2014) who uses EHI331
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and hypervolume-based PoI. For constrained problems, the EHI is usually332

combined with the multiobjective PoF (e.g., Martinez F. & Herrero P.333

(2016); Feliot et al. (2017)).334

2. Extensions of single objective criteria: These approaches devise closed-335

form extensions to the single-objective criteria; examples are the Maximin336

EI (Svenson & Santner, 2016), Euclidean-based EI (Keane, 2006; Forrester337

et al., 2008), multiobjective PoI and ES (Picheny, 2015), and Desirability-338

based EI (Henkenjohann et al., 2005, 2007). In Chugh et al. (2016), the339

MI values for each objective are used in combination with the so-called340

angle penalized distance (APD) to select infill points.341

Further details on these criteria and their respective algorithms are discussed342

in Section 5.2.343

5. Kriging-based multiobjective infill algorithms for deterministic prob-344

lems345

This section discusses infill algorithms developed for deterministic MO prob-346

lems. Section 5.1 focuses on algorithms using single-objective infill criteria (see347

section 4.1), while section 5.2 discusses algorithms that apply multiobjective348

infill criteria (as discussed in section 4.2).349

5.1. Algorithms with single-objective infill criteria350

The multiobjective kriging-based optimization algorithms surveyed in this351

section are summarized in Table 1. As illustrated in Figure 1, to search for352

infill points, they either scalarize the objectives into one before fitting a (single)353

kriging model, or they fit separate models to each individual objective. In354

the latter case, the improvement is measured with respect to each separate355

objective, but the selection of infill points is based on the optimal tradeoff356

between the objectives (i.e., a non-dominated sort is run based on the metamodel357

predictions).358
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Step 1: Sample initial points 

using  a space filling design. 

Compute the response of the 

expensive functions. 

Step 2.1: Select a weight 

vector and scalarize the 

objectives into one

Step 2.2: Fit a kriging 

metamodel to the   

scalarized function

Step 3: Search and select 

the point(s) with highest 

improvement (infill points)

Step 6: Return the 

observed non-dominated 

set (Pareto optimal points) 

Stopping 

criterion met?

No

Yes
Step 4: Evaluate the infill 

point(s) on the expensive 

functions and add it to the 

current solution set.

Uses 

scalarization?

Step 2: Fit a kriging 

metamodel to each  

objective

Yes

No

Figure 1: Generic structure of a kriging-based MO algorithm with single-objective infill crite-
rion.

As is common in kriging-based sequential algorithms, a latin hypercube sam-359

ple (LHS) is used for the initial design in the first step. Jones et al. (1998) sug-360

gests to fix the number of initial design points to 11d− 1, with d the dimension361

of the search space. In further works, such as Jones (2001); Knowles (2006),362

the number of points is recommended to be at least 10 times the number of363

dimensions, based on extensive empirical knowledge. In the second step, before364

fitting one or several metamodels, the objectives are normalized with respect to365

their known (or estimated) ranges so that each objective function lies between366

[0, 1]. Step 3 selects a point or a set of points with highest improvement (all367

algorithms in Table 1 use a genetic algorithm to that end); this infill point(s) are368

then evaluated using the expensive simulator in Step 4, after which the kriging369

model is updated with the new information, unless a stopping criterion is met.370

One of the first works extending EGO for MO of deterministic problems is371

the Multi-EGO algorithm of Jeong & Obayashi (2005). Multi-EGO exploits372

the advantages of the EI criterion for each of the objectives in the search of373

infill points. For a given population, the EIs for each objective are used to374

determine the non-dominated points, as opposed to using the kriging predictions375

directly. This means not necessarily the points the maximize the EI for each376

objective will be selected, as in the original EGO algorithm of Jones et al.377

(1998), but those with the optimal EI tradeoffs. The algorithm is evaluated on378
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Algorithm Reference
Uses Infill Search Numerical

scalarization criterion space experiments

Multi-EGO Jeong & Obayashi (2005) No EI Continuous

Problem: practical

Decision variables: 26

Objectives: 2

Constraints: Yes

ParEGO Knowles (2006) EI Continuous

Problem: analytical

Yes Decision variables: 2 ∼ 8

Eq. 13 Objectives: 2 ∼ 3

Constraints: No

MOEA/D-EGO Zhang et al. (2010) EI Continuous

Problem: analytical

Yes Decision variables: 2 ∼ 8

Eq. 12 and 14 Objectives: 2 ∼ 3

Constraints: No

KEEP Davins-Valldaura et al. (2017) EI Continuous

Problem: practical/analytical

Yes Decision variables: 12

Eq. 13 Objectives: 2

Constraints: No

No

MI Continuous
Problem: practical/analytical

K-MOGA Li et al. (2008)
and and

Decision variables: 2 ∼ 5

KD-MOGA Li et al. (2009)
LCB discretized

Objectives: 2

Constraints: Yes

Table 1: Overview of deterministic single-objective infill algorithms.

a biobjective engineering problem in the field of aerodynamic design, showing379

promising results.380

ParEGO (Knowles, 2006) and MOEA/D-EGO (Zhang et al., 2010) have381

become two popular algorithms that employ a kriging metamodel in the op-382

timization framework in order to speed up computations. In both cases, a383

scalarization function is used to aggregate the multiple criteria into one. The384

key difference between both approaches is that ParEGO optimizes the EI value385

of one single-objective subproblem per iteration, and thus can generate only386

one infill point to evaluate at each generation. By contrast, MOEA/D-EGO387

considers multiple scalarized subproblems simultaneously (based on the former388

algorithm MOEA/D of Zhang & Li (2007)), and thus produces several infill389

points in each iteration (see also Liu et al. (2007) for one of the first works390

that extended MOEA/D using GRF metamodels). Both algorithms use the EI391

criterion as defined in Jones et al. (1998) (see Equation 15).392

Knowles (2006) finds ParEGO to perform well on a series of benchmark393

problems with maximum 3 objectives and 8 decision variables. The hypervol-394

ume and epsilon indicators of the ParEGO solutions are compared against the395
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performance of the famous NSGA-II non-surrogate-assisted evolutionary algo-396

rithm (Deb et al., 2002), showing that ParEGO explores the objective space397

more efficiently, yielding better results than NSGA-II with a limited number of398

evaluations. However, NSGA-II outperforms ParEGO in some problems with399

high dimensionality; according to the authors of ParEGO, a sparser initial de-400

sign for higher dimensions (6-8 decision variables) may be worth considering to401

improve its performance.402

MOEA/D-EGO’s performance is evaluated in Zhang et al. (2010) against403

ParEGO and SMS-EGO (Ponweiser et al. (2008a), discussed in Section 5.2).404

The experimental study on several benchmark problems (see e.g., Huband et al.405

(2006)) showed that when the number of function evaluations allowed is limited,406

the performance of MOEA/D-EGO is at least as good as ParEGO and SMS-407

EGO. However, due to the parallel optimization of several scalarized functions408

in one iteration, MOEA/D-EGO has the advantage of proposing several infill409

points per iteration. This makes it more suitable for solving multiobjective410

problems in practice, as convergence to a front is faster than sampling a single411

point per iteration (Zhang et al., 2010).412

A recent extension of the ParEGO algorithm is presented in Davins-Valldaura413

et al. (2017), where the authors argue that ParEGO tends to favor solutions suit-414

able for the reduction of the surrogate model error, rather than for finding the415

best possible non-dominated solutions. The main feature of their proposed al-416

gorithm, referred to as KEEP (Kriging for Expensive Evaluation Pareto), is to417

enhance the convergence speed and thus to reduce the total number of function418

evaluations by means of a so-called double kriging strategy. A closed form of a419

modified version of the EI is presented, that jointly accounts for the objective420

function approximation error and the probability to find Pareto Set solutions.421

The proposed infill criterion uses the information of both kriging metamodels,422

where the first one is obtained as in ParEGO (steps 1-3 in Figure 1), in or-423

der to select the best infill point, whereas the second model aims to rapidly424

locate areas in the decision space with high probability of containing Pareto-425

optimal points. Experimental results on benchmark multiobjective functions426
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show a small improvement in the hypervolume indicator values of KEEP with427

respect to ParEGO and other non-kriging-assisted evolutionary multiobjective428

algorithms.429

Li et al. (2008) presents a kriging-based multiobjective genetic algorithm430

(K-MOGA), where the kriging variance is exploited as a measure of correctness431

of the predicted responses. At each generation, a kriging model is fitted to432

each objective and used to evaluate each point in the population. If the kriging433

variance (i.e., the prediction uncertainty) is higher than some defined threshold434

for any point in this population, the primary expensive simulation model is used435

on that point to yield the true response values. This way the algorithm only436

computes the expensive responses when the uncertainty of the predictor is high.437

Closed forms for the threshold criteria are devised for the objective functions and438

constraints, if the latter are present. Using the true or approximated responses439

for all the points in the population, a non-dominated sort is used to determine440

the non-dominated points (i.e., the parents for the next evolutionary phase).441

K-MOGA is compared against the performance of the non-kriging-based442

version (MOGA) on several test functions. The results show that K-MOGA443

is able to achieve comparable convergence and diversity of the Pareto frontier444

with a substantial reduction of the computational effort relative to MOGA.445

The authors present an improvement to K-MOGA in Li et al. (2009), using446

an adaptive space-filling design (DOE) in each generation, in order to sample447

better points during reproduction. The authors conclude that the algorithm,448

referred to as KD-MOGA (kriging-DOE-MOGA), performs better than MOGA449

and K-MOGA on several test functions.450

A study presented in Voutchkov & Keane (2010) examines the use of MI451

and EI compared with different search strategies, also including pure random452

search. Experiments on the ZDT test functions reinforce the well-known result453

that the EI criterion performs best overall. The authors also observe that for454

high-dimensional problems (e.g., with 25 decision variables), surrogate-based455

strategies don’t perform as well as with e.g., 10 dimensions. In such cases,456

combinations with other techniques, such as genetic algorithms, are necessary457
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during the search phase of the algorithms.458

5.2. Algorithms with multiobjective infill criteria459

These approaches should balance the quality of the Pareto-front approxima-460

tion and the improvement of the global model quality. They use the kriging461

metamodels to compute an approximation of the responses for all the points462

in the search space, and these are evaluated in the multiobjective criterion to463

yield the best infill point(s). Depending on the algorithm, one or several points464

can be selected at the end of each iteration. As stated in the Introduction, we465

only consider algorithms where the kriging variance is exploited during opti-466

mization. Depending on the nature of the infill criterion used, evaluating the467

improvement of every point may incur very high computational costs due to468

multivariate piecewise integrations (Couckuyt et al., 2014). Figure 2 shows the469

general steps followed by these algorithms; Table 2 summarizes the surveyed470

algorithms.471

Step 1: Sample initial points 

using  a space filling design. 

Compute the response of the 

expensive functions. 

Step 3: Search and select 

the point(s) with highest 

multiobjective 

improvement

Step 5: Return the non-

dominated set (Pareto 

optimal points) 

Stopping 

criterion met?

No

Yes
Step 4: Evaluate the point(s) 

on the real, expensive 

functions and add it to the 

current solution set.

Step 2: Fit a deterministic 

kriging model to each 

objective

Figure 2: Generic structure of a kriging-based MO algorithm with multiobjective infill crite-
rion.

Methods that employ multiobjective infill criteria normally assume that each472

of the objective functions fj(x),∀j ∈ {1, ..,m} is a sample path of a random473

field Mj (see Eq. 1), and that the responses are independent (Wagner et al.,474

2010). Though it is possible to account for correlation between the multiple475

objectives, for instance by using co-kriging models (see Kleijnen & Mehdad476

(2014)), recent research shows that such models are more complex and don’t477
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significantly outperform independent models in the search for solutions (Fricker478

et al., 2013).479

Algorithm References
Infill Search Computational Numerical

criterion space cost experiments

SExI-EGO EHI Continuous High

Problem: analytical

Emmerich et al. (2006) Decision variables: 2 ∼ 10

Emmerich et al. (2011) Objectives: 2

Constraints: No

SMS-EGO LCB and EHI Continuous High

Problem: analytical

Ponweiser et al. (2008a) Decision variables: 3 ∼ 6

Emmerich et al. (2006) Objectives: 2 ∼ 5

Constraints: No

EMO Continuous Low

Problem: analytical

Couckuyt et al. (2012) EHI and Decision variables: 6

Couckuyt et al. (2014) Hypervolume-based PoI Objectives: 3 ∼ 6

Constraints: No

ECMO Continuous Low

Problem: practical/analytical

Couckuyt et al. (2014) Hypervolume-based PoI Decision variables: 2 ∼ 3

Singh et al. (2014) and PoF Objectives: 2 ∼ 7

Constraints: Yes

MEI-SPOT Continuous High

Problem: practical

Keane (2006) Euclidean-based EI Decision variables: 2

Forrester et al. (2008) and PoI Objectives: 2

Constraints: No

KEMOCO Martinez F. & Herrero P. (2016) EHI and PoF Discretized High

Problem: analytical

Decision variables: 2

Objectives: 2

Constraints: Yes

BMOO Feliot et al. (2017) EHI and PoF Discretized Low

Problem: analytical

Decision variables: 2 ∼ 6

Objectives: 2 ∼ 5

Constraints: Yes

Multi-EI Desirability-based EI Discretized High

Problem: practical

Henkenjohann et al. (2005) Decision variables: 3

Henkenjohann et al. (2007) Objectives: 3

Constraints: No

SUR Picheny (2015) PoI and ES

Discretized

High

Problem: practical/analytical

and
Decision variables: 1 ∼ 6

continuous
Objectives: 2

Constraints: No

EMmI Maximin EI Discretized Low

Problem: analytical

Svenson & Santner (2016) Decision variables: 2 ∼ 4

Bautista (2009) Objectives: 2 ∼ 4

Constraints: No

K-RVEA Chugh et al. (2016) MI and APD Continuous Low

Problem: analytical

Decision variables: 10

Objectives: 3 ∼ 10

Constraints: No

Table 2: Summary of multiobjective infill criteria and related algorithms.

The hypervolume (i.e., the volume of points in objective space between the480

Pareto front and a reference point) is commonly used in indicator-based al-481

gorithms (Zitzler et al., 2008). The best improvement is obtained with the482

point that maximizes this hypervolume. A drawback with this method is that483
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the indicator is computationally expensive due to piecewise integrations, so its484

evaluation becomes infeasible if the problem dimensionality is large (Emmerich485

et al., 2011; Auger et al., 2012). One of the early works that considered a486

hypervolume-based search in multiobjective optimization assisted by kriging487

metamodels appears in Emmerich et al. (2006). In this work, the most com-488

monly used infill criteria (i.e., MI, EI, PoI and LCB) are analyzed in detail489

for both the single- and bi-objective cases. The EI criterion performed best490

in terms of accuracy for the single-objective case, while MI performed badly.491

Thus, the authors propose to formalize the EI as a multiobjective infill criterion492

using hypervolume as a fitness indicator. The resulting criterion is referred to493

as Expected Hypervolume Improvement (EHI), and its calculation requires in-494

tegrating the improvement function over the entire non-dominated region A as:495

496

EHI(x) =

∫
P∈A

I(P)

m∏
j=1

1

ŝj
φ

(
yj − ŷj
ŝj

)
dyj (19)

where I(P) is the improvement function (i.e., hypervolume) of a given Pareto497

front.498

The EHI is used in the SExI-EGO algorithm later proposed by Emmerich499

et al. (2011). To speed up computations, the authors propose to divide the500

response space in a series of cells, such that the response value of a given x has501

an associated probability of belonging to a non-dominated cell. This, however,502

requires the algorithm to iterate over the total number of cells, which in turn503

grows exponentially with the number of objectives. There has been significant504

progress in increasing the speed of the EHI calculation (see e.g., Couckuyt et al.505

(2014); Hupkens et al. (2014); Zhan et al. (2017)); nevertheless, it has been506

claimed that EHI is feasible for 3 objectives at most (Hernández L. et al., 2016).507

The performance of SExI-EGO was recently compared against similar algo-508

rithms in Zaefferer et al. (2013) and Shimoyama et al. (2013), where it’s shown509

to be efficient in the search of solutions for unconstrained problems, but at a510

high computational cost. Its performance is significantly reduced for problems511

with constraints.512
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A similar idea to the SExI-EGO algorithm was earlier developed in Ponweiser513

et al. (2008a). The algorithm, referred to as SMS-EGO (S-Metric Selection514

EGO), uses the hypervolume improvement as an infill criterion, and the search515

is based on the LCB. The kriging responses are stored in vectors as ŷpot =516

ŷ − αŝ, where ŷpot is the vector containing the lower confidence bounds of the517

predicted outputs, for some constant α (see Equation 18). The hypervolume518

contribution is computed for all (non-dominated) points at each iteration; the519

best point is selected and added to the overall solution set to update the kriging520

metamodel. Experimental results in Ponweiser et al. (2008a) show that SMS-521

EGO outperforms ParEGO and Multi-EGO in terms of quality of the Pareto522

front; yet, as shown in the experiments of Zhang et al. (2010) and Chugh et al.523

(2016), the computational cost of SMS-EGO is quite high, as it evaluates the524

(expensive) hypervolume indicator at all potential members of the Pareto front.525

An alternative approach to using quality indicators, is to derive an exten-526

sion of a single-objective criterion, such as EI or PoI, to multiobjective settings.527

Keane (2006) (see also Forrester et al. (2008)) derive a multiobjective EI cri-528

terion using the Euclidean distance between a given objective vector and its529

nearest non-dominated point, and the probability that the new point is not530

dominated by any point in the current front. Thus, the corresponding algo-531

rithm, referred to as MEI-SPOT in the literature, only selects infill points that532

dominate current Pareto-optimal points. Closed form expressions of the crite-533

rion are devised for the biobjective case. Moreover, the computational cost of534

this criterion grows exponentially with the number of objectives (Keane, 2006).535

The experiments carried out in Wagner et al. (2010) and Zaefferer et al.536

(2013) compare MEI-SPOT with other similar approaches, such as SExI-EGO,537

SMS-EGO and MSPOT (Zaefferer et al., 2013). These algorithms where tested538

under the same conditions (i.e., bi-dimensional decision and objective space,539

one infill point sampled per iteration and maximum 80 evaluations). The results540

show that no particular algorithm performs best in terms of quality of solutions,541

with the exception of MEI-SPOT, which performed significantly worse than the542

rest.543
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Couckuyt et al. (2012) and Couckuyt et al. (2014) propose more efficient544

methods to calculate the multiobjective Euclidean-based EI and hypervolume-545

based PoI, as well as a fast method to calculate the EHI. An algorithm is546

developed to evaluate the efficiency of these infill criteria, referred to as Efficient547

Multiobjective Optimization (EMO). The proposed methods seem to be among548

the most competitive in the literature for the calculation of these criteria, as549

shown in the experimental results. The performance of EMO is at least as good550

as the performance of state-of-the-art evolutionary multiobjective algorithms,551

for benchmark problems having up to 6 objectives. Moreover, the proposed EHI552

criterion delivers competitive results for a significantly lower cost. Furthermore,553

an extension of the EMO algorithm is proposed in Singh et al. (2014) which554

considers expensive constraints, referred to as ECMO (Efficient Constrained555

Multiobjective Optimization). The key contribution of ECMO is to combine a556

criterion for improvement of the current Pareto front (i.e., hypervolume-based557

PoI), and a criterion for only considering feasible solutions (i.e., PoF). The558

proposed algorithm outperforms the (non-kriging-based) NSGAII (Deb et al.,559

2002) for up to 7 objectives with expensive constraints.560

Analogous to ECMO, the Kriging-based Efficient Multi-Objective Constrained561

Optimization (KEMOCO) algorithm developed in Martinez F. & Herrero P.562

(2016) also considers fitting kriging metamodels to expensive constraints, and563

combines the EHI with the PoF to search for infill points. The proposed se-564

quential procedure is divided in two phases. The first one is used to generate565

an initial feasible approximation of the Pareto front by sampling points in re-566

gions of the design space with high PoF. When a user-defined target number567

of feasible designs is reached, a first Pareto front approximation is computed568

and the second phase is initialized. To improve the current front, the standard569

EHI is used to select the points that contribute the most to the current hyper-570

volume, subject to the respective constraints. A stopping criterion is devised571

based on the average EHI at each iteration. KEMOCO is evaluated against572

NSGAII using standard performance indicators, showing good performance in573

approximating the fronts subject to expensive constraints.574
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More recently, Feliot et al. (2017) put forward a comprehensive kriging-based575

Bayesian framework for single and multiobjective optimization with constraints.576

The approach is referred to as Bayesian multiobjective optimization (BMOO),577

and uses the EHI and PoF as infill criteria. The EHI is computed and opti-578

mized using sequential Monte Carlo simulations. The dominated hypervolume579

is defined using an extended domination rule, which handles objectives and con-580

straints in a unified way. BMOO is intended to be used in problems for 3 or581

more objectives, as several algorithms for the exact bi-objective EHI contribu-582

tions already exist. The computational cost is significantly reduced by using583

approximations instead of exact EHI contributions. Experimental results show584

that BMOO is able to find solutions efficiently on multiple benchmark prob-585

lems, outperforming EMO, MEI-SPOT and EMmI (the latter is discussed later586

in this section). The authors mainly attribute this good performance to the587

fact that BMOO is designed to handle non-linear constraints, whereas the other588

algorithms were adapted to do so.589

Henkenjohann et al. (2007) (see also Henkenjohann et al. (2005)) propose590

an approach, here referred to as Multi-EI, where the sequential search is guided591

using the preferences of the decision-maker during the optimization process, by592

defining desirable regions in the response space. They argue that with multiple593

responses, the scaling and the demands on quality for the responses often differ.594

The algorithm does not aim to approximate the entire Pareto front, but to yield595

the subset of Pareto points that are most valuable for the decision-maker. This596

is done by evaluating desirability functions that quantify the decision-maker’s597

preferences for each response, such that the larger the desirability, the better598

the quality of the outcome for that response. The individual desirabilities are599

then combined into the desirability index (DI) of a given decision vector xi as600

the geometric mean of the desirability function (d) values for all m responses:601

DI[f(xi)] =

m∏
j=1

[d(fj(xi))]
wj (20)

subject to
∑m
j=1 wj = 1, where wj represents the weight (preference) of a par-602

25



ticular response j = 1, ...,m. These indices are used to derive a multivariate603

expected improvement, which is used as the infill criterion. As discussed in604

Svenson (2011), this method is vulnerable to the choice of preferences, and not605

suitable for more than 3-4 objectives.606

An alternative to computing the improvement in the objective space, is to607

consider the progress in the design space. An example of this approach appears608

in the stepwise uncertainty reduction (SUR) algorithm of Picheny (2015). The609

SUR criterion selects the point with the lowest uncertainty in the multiobjective610

PoI. The measure of uncertainty as defined in SUR is similar to the entropy611

measure used in Villemonteix et al. (2009) and Chevalier et al. (2014). The main612

advantage of the SUR algorithm is that it is scale-invariant since it does not focus613

on progress in terms of objective values, which can be of great advantage when614

dealing with objectives of different nature (Picheny, 2015). On the other hand,615

it is computationally expensive as it requires numerical integration embedded in616

the optimization loop. According to Hernández L. et al. (2016), SUR is feasible617

for 3 objectives at most.618

Svenson & Santner (2016) proposes a multiobjective improvement function619

based on the modified maximin fitness function (referred to as EMmI), and620

additionally outlines a general approach for modeling multiple responses through621

a multivariate kriging model that allows for dependent as well as independent622

response functions. The proposed model assumes that the objective vector623

f(x) = {f1(x), ..., fm(x)} at a solution x is an observation from an m-variate624

Gaussian process F (x):625

F (x) = β +AM(x) (21)

where A = ai,j is a symmetric m ×m positive definite matrix containing the626

covariances between each couple of objectives i, j ∈ {1, ..,m}, β = (β1, ..., βm)T627

and M(x) = [M1(x), ...,Mm(x)]T is an m × 1 vector of mutually independent628

stationary Gaussian processes with mean zero and unit variance. Dependencies629

between response functions can be captured by an A matrix having a non-630
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diagonal form.631

The infill criterion is based on the following generalization of the maximin632

fitness function (Balling, 2003):633

IM[f(x)] =

[
− max

xi∈PD
n

min
j=1,...,m

[fj(x)− fj(xi)]
]
× 1E (22)

where PDn = {x1, ...,xp} is the current Pareto set for n computed responses634

so far. Thus, p ≤ n and PΘ
n = {f(x1), ..., f(xp)} are the respective response635

vectors. The indicator function 1E is a binary operator which equals 1 when636

−maxxi∈PD
n

minj=1,...,m[fj(x) − fj(xi)] < 0, and 0 otherwise (see Bautista637

(2009) for more details on the non-truncated version of this function). As shown638

in Svenson & Santner (2016), using Eq. 22 as an infill criterion in the search639

for the Pareto front is essentially equivalent to using the additive binary ε in-640

dicator (Zitzler et al., 2003). The experimental performance of the proposed641

criterion is comparable to the EHI and outperforms MEI-SPOT; yet, it is clear642

the implementation and computation of IM is significantly less complex and643

expensive than EHI, as it does not require any piecewise integrations and its644

implementation is just three nested loops. The results also show that the inde-645

pendent model in general outperforms the dependent model when there is no646

prior information on potential dependencies among the objectives.647

Chugh et al. (2016) presents a kriging-assisted reference vector guided evolu-648

tionary algorithm (K-RVEA), which is the kriging-assisted version of the RVEA649

algorithm of Cheng et al. (2016). It is capable of dealing with as many as 10 ob-650

jectives and 10 dimensions (as opposed to the previously discussed approaches,651

which are limited to 2-3 objectives). Populations are sequentially updated with652

points that are selected either because they have maximum kriging variance or653

mimimum Angle Penalized Distance (APD); the latter indicator is designed to654

dynamically balance the convergence (by measuring the distance between the655

candidate solutions), and diversity (by measuring the angle between the candi-656

date solutions and a number of reference vectors) of the Pareto frontier (Cheng657

et al., 2016). Choosing infill points based on maximum variance prioritizes di-658
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versity, while minimum APD focuses more convergence. The performance of659

K-RVEA is compared to MOEA/D-EGO, SMS-EGO, ParEGO and its non-660

kriging-based version RVEA. On average, K-RVEA outperforms all the other661

algorithms when dimensionality is high (e.g., 10 in the experiments), for up662

to 10 objectives, in terms of computational time, hypervolume and inverted663

generational distance.664

6. Kriging-based multiobjective optimization algorithms for stochas-665

tic problems666

Very few articles in the literature have made an attempt at noisy multi-667

objective simulation optimization. In general, all the algorithms surveyed in668

this section follow a sequential procedure as depicted in Figure 2. In addi-669

tion to the noisy outputs, the distribution of the finite computational budget670

now becomes a crucial issue, as the evaluation of candidate points normally671

requires multiple replications in order to achieve sufficient accuracy. For a fixed672

replication budget, this results in a lower number of infill points that can be673

sampled, which may have an important impact on the overall performance of674

the algorithm.675

We summarize the kriging-based algorithms surveyed in Table 3. All these676

algorithms assume homogeneous simulation noise, meaning that the variance677

of the noise does not depend on x, as opposed to heterogeneous noise (see678

Picheny et al. (2013) for a review and performance evaluation of kriging-based679

methods for single-objective problems with homogeneous noise; for problems680

with heterogeneous noise see Jalali et al. (2017)). We identify the following681

noise handling strategies among the surveyed algorithms:682

1. Static resampling (SR): Replicate the objective values for each design a683

fixed number of times and take the average. This method reduces the684

variance of the objective estimate by a factor of
√
b, where b is the fixed685

number of replications, but increases the computational cost by a factor b686

(Jin & Branke, 2005).687
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2. Kriging with nugget effect (KNE): The term “nugget” refers to a variation688

or error in the measurement (Kleijnen, 2015). This nugget is often used to689

model the effect of white noise in the observations, under the assumption690

that the variance of the noise is homogeneous; thus this variance is a con-691

stant. The nugget effect is introduced in the kernel structure by adding a692

hyperparameter that models the variability in the observations; the krig-693

ing metamodel then loses its interpolating nature (see Cressie (1993), Ras-694

mussen (2006) and Gramacy & Lee (2012) for further details).695

3. Re-interpolation (RI): The RI method was introduced in Forrester et al.696

(2006). It first fits an initial kriging metamodel with nugget effect (i.e.,697

a non-interpolating metamodel) to the observations, and then fits an in-698

terpolating metamodel to the predictions of the first KNE metamodel.699

The second kriging metamodel is then used to make predictions during700

optimization.701

4. Rolling Tide Evolutionary Algorithm (RTEA): This algorithm was pre-702

sented in Fieldsend & Everson (2015), and uses evolutionary operators to703

assign re-evaluations only on promising points; bad solutions are evaluated704

only once. The selection of promising candidates is based on their current705

dominance relation and the number of prior replications. An interesting706

feature in RTEA is that only during the first phase of the algorithm new707

points are sampled; the second phase is for improving the accuracy of the708

sampled solutions.709

Horn et al. (2017) apply the SMS-EGO algorithm to noisy settings, using two710

naive and two advanced noise handling strategies. The first naive strategy is to711

ignore the effect of noise and treat the problem as deterministic. Replications are712

simply omitted, so more points in the design space can be sampled. The other713

naive strategy is static resampling. The two more advanced strategies are the714

one used in the RTEA algorithm of Fieldsend & Everson (2015), and a reinforced715

strategy, which simply treats the problem as deterministic at the beginning to716
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Algorithm Reference
Infill

Noise
Search Numerical

criterion
handling

space experiments
strategy

Noisy SMS-EGO Horn et al. (2017)

LCB Discretized
Problem: practical/analytical

and
SR, KNE

and
Decision variables: 5

EHI
and RTEA

continuous
Objectives: 2 ∼ 3

Constraints: No

Koch et al. (2015)

LCB

SR and RI Discretized

Problem: practical/analytical

Noisy SMS-EGO
and

Decision variables: 2 ∼ 8

Noisy SExI-EGO
EHI

Objectives: 2

Constraints: No

PESMO KNE Discretized

Problem: practical/analytical

Hernández L. et al. (2016) Predictive Decision variables: 3 ∼ 6

Hernández L. et al. (2014) ES Objectives: 2 ∼ 4

Constraints: No

ε-PAL ε-Pareto KNE Discretized

Problem: practical

Zuluaga et al. (2016) Decision variables: 3 ∼ 11

Zuluaga et al. (2013) Objectives: 2

Constraints: No

Table 3: Summary of kriging-based algorithms for stochastic multiobjective problems.

collect a set of candidate points; it then performs extra replications on this717

candidate set to determine the non-dominated points with reduced variance.718

However, it is clear that with the latter method, due to sampling variability,719

superior solutions may be ignored and inferior solutions may be selected during720

the search.721

The experimental setting consists of a few analytical test functions and a722

practical machine learning problem. The test functions are contaminated with723

homogeneous Gaussian noise, and the practical problem is known to be affected724

by heterogeneous noise; yet this noise is treated as homogeneous, which in turn725

yield bad results in performance. On average, the RTEA algorithm was able to726

outperform the other noise handling strategies. Moreover, the authors analyze727

the effect of using a nugget when fitting the metamodels and conclude that728

not ignoring the effect of the noise by characterizing it during optimization is729

fundamental to obtain reliable Pareto-optimal solutions. It is also emphasized730

the importance of considering heterogeneous noise in practice.731

Koch et al. (2015) adapts SMS-EGO (Ponweiser et al., 2008a) and SExI-EGO732

(Emmerich et al., 2011) for noisy evaluations. The RI method of Forrester et al.733

(2006) is employed to deal with the inherent simulation noise and compared734
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to using static resampling; thus, KNE metamodels are also used. Extensive735

experiments were carried out on a set of biobjective test functions with a max-736

imum of 8 dimensions, and on two practical problems. Results show that these737

noisy variants of SMS-EGO and SExI-EGO perform relatively well with the RI738

method; RI is found to be crucial in order to obtain reliable results. However,739

the performance on the practical problems was significantly worse due to the740

higher noise levels. The authors emphasize that ignoring the noise level during741

the optimization process results in considerably worse approximations; the re-742

quirement of replicating on the same point significantly reduces the number of743

optimal solutions sampled, and thus the overall performance of the algorithms.744

The Predictive Entropy Search for Multiobjective Optimization (PESMO)745

algorithm is developed in Hernández L. et al. (2016). PESMO selects as infill746

point the one that is expected to yield the largest decrease in the entropy of the747

predictions that belong to the current Pareto front. This approach is referred748

to as predictive entropy search (Hernández L. et al., 2014). To handle the noise,749

KNE metamodels are fitted to the different responses, and instead of resampling750

the objectives through the expensive simulator, samples are taken from these751

KNE metamodels. This technique is widely used in single-objective Bayesian752

optimization (see e.g., Frazier et al. (2009)). As the reduction in entropy is753

formulated as a sum across the objectives, PESMO allows for the evaluation of754

new design points on subsets of objectives, instead of requiring a value for all the755

responses in each iteration. This results in a computational cost that is linear756

in the number of objectives, and thus is relatively cheap. Another advantage757

is that, analogous to SUR (discussed in Section 5.2), PESMO measures the758

progress in the design space (i.e., the Pareto set), as opposed to measure it in the759

objective space with standard quality indicators that rely on noisy observations.760

The authors compared the performance of PESMO against ParEGO, SMS-761

EGO, SExI-EGO, SUR, and an expensive non-kriging-assisted version of itself.762

The performance metric used is based on the relative difference between the763

hypervolume of the Pareto front of the actual objectives and the Pareto front764

obtained by the algorithm. Results show that PESMO outperforms all other al-765
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gorithms significantly, for both the noisy and noiseless cases. For the biobjective766

case, SExI-EGO performs worst in average, followed by ParEGO, SMS-EGO and767

SUR (the performance of SUR, though, is significantly worse in the noisy case).768

However, ParEGO is at least 3 times faster than PESMO, and 56 times faster769

than SUR on average. Results with a 4-objective function show that PESMO770

yields nearly 35% better quality Pareto fronts than ParEGO, and 20% better771

than SMS-EGO. The superior performance of PESMO is attributed to its abil-772

ity to identify the most noisy areas in the response surface of the objectives, in773

order to evaluate those observations with extra replications.774

Zuluaga et al. (2016) propose the ε-Pareto Active Learning algorithm (ε-775

PAL), an adaptive learning technique, regulated by the parameter ε, to predict a776

set of Pareto optimal solutions that cover the true Pareto front with ε tolerance.777

The algorithm is an extension of the PAL algorithm of Zuluaga et al. (2013),778

and predicts an ε-accurate Pareto set by training multiple KNE metamodels779

with subsets of points in the decision space. The kriging predictions of each780

point x are used to maintain an uncertainty region around the objective values781

associated with x, allowing to make statistical inferences about the Pareto-782

optimality of every point in the decision space. ε-PAL selects as infill point the783

one with the highest uncertainty region around it, as these are the points that784

require more replications.785

The experimental results show that ε-PAL outperforms PAL based on the786

percentage of the true Pareto set found by the algorithm, and requires shorter787

runtimes. In addition, ε-PAL returns an ε-accurate Pareto front instead of a788

dense approximation of it. It is often the case that small differences in per-789

formance are not significant to the decision-maker, and thus not worth the790

substantial extra computational effort to determine the true best. This is con-791

veyed with the parameter ε in the proposed algorithm, analogous to defining792

a so-called indifference zone, a well-known procedure in ranking and selection793

(Boesel et al., 2003). In general, ε-PAL also outperforms ParEGO both in terms794

of function evaluations required (being 30-70% lower than with ParEGO), and795

in terms of computation times (reduced by a factor of up to 420).796
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7. Conclusion797

In this article, we surveyed the most relevant kriging-based MO algorithms798

for deterministic and stochastic problems, in the context of numerically ex-799

pensive simulators. It is clear that kriging-based algorithms for deterministic800

problems are at a more advanced stage: here, important progress has been made801

in developing multiobjective infill criteria, and algorithms that exploit such cri-802

teria. Yet, most of these criteria remain very expensive to calculate, limiting803

the suitability of the algorithms to problems with at most 2-4 objectives. An804

exception is the K-RVEA algorithm, which has been shown to outperform other805

algorithms both in terms of computational time and quality of the Pareto front806

obtained for problems with up to 10 objectives.807

The development of kriging-based MO algorithms for stochastic problems is808

still in its infancy. The main issue is how to handle the noise; only two very809

recent algorithms (PESMO by Hernández L. et al. (2016) and ε-PAL by Zuluaga810

et al. (2016)) take the noise into account in the kriging model itself and repli-811

cate only on competitive designs, both showing promising results. Yet, their812

approach implicitly assumes that the noise is homogeneous. Strikingly, none813

of the algorithms so far incorporates a kriging approach that can deal with814

heterogeneous noise. The powerful stochastic kriging approach, developed by815

Ankenman et al. (2010), the variational heteroscedastic gaussian process regres-816

sion developed by Lázaro-Gredilla & Titsias (2011), or the kriging with modified817

nugget effect by Yin et al. (2011) can be used in this case. The use of any of these818

methods during optimization remains a major opportunity for future research.819

Surprisingly none of the algorithms surveyed for stochastic problems use820

probabilistic dominance or a MORS procedure in order to asses the dominance821

relationship between the points and/or allocate computational budget propor-822

tional to the noise affecting the outputs. While PESMO and ε-PAL make a first823

effort to distribute budget based on noise, a substantial amount of work remains824

to be done in this regard. In addition, given the scarce research on the topic,825

the further development of MORS procedures could provide an important step826
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forward (see Section 3.2).827

Finally, another important challenge for the multiobjective community in828

general is the modeling of the preferences of the decision-maker (see e.g., Branke829

et al. (2017) and Pedro & Takahashi (2013)). Finding an entire approximation830

of the Pareto front is not always in the interest of the decision-maker. Instead,831

some areas of the objective space (e.g., so-called “knees” (Branke et al., 2004))832

might be more interesting. Computational budget should be allocated to search833

solutions on areas of the Pareto front that are interesting to the decision-maker,834

especially when the evaluation of solutions is expensive and we need to rely on835

surrogate approximations. Kriging metamodels can be exploited to model the836

decision-maker preferences, as discussed in the Multi-EI algorithm (Henkenjo-837

hann et al., 2007), and more recently proposed in Hakanen & Knowles (2017)838

using the ParEGO algorithm, but extensive further work can be done in this839

direction.840
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Koch, P., Wagner, T., Emmerich, M. T., Bäck, T., & Konen, W. (2015). Efficient1061

multi-criteria optimization on noisy machine learning problems. Applied Soft1062

Computing , 29 , 357–370.1063

Krige, D. G. (1951). A statistical approach to some basic mine valuation prob-1064

lems on the witwatersrand. Journal of the Southern African Institute of Min-1065

ing and Metallurgy , 52 , 119–139.1066

Law, A. M. (2015). Simulation Modeling and Analysis. McGraw-Hill, New York.1067

42



Lázaro-Gredilla, M., & Titsias, M. K. (2011). Variational heteroscedastic gaus-1068

sian process regression. In Proceedings of the 28th International Conference1069

on International Conference on Machine Learning ICML’11 (pp. 841–848).1070

USA.1071

Lee, L. H., Chew, E. P., Teng, S., & Goldsman, D. (2010). Finding the non-1072

dominated pareto set for multi-objective simulation models. IIE Transactions,1073

42 , 656–674.1074

Lemieux, C. (2009). Monte carlo and quasi-monte carlo sampling . Springer1075

Science & Business Media.1076

Li, G., Li, M., Azarm, S., Al Hashimi, S., Al Ameri, T., & Al Qasas, N. (2009).1077

Improving multi-objective genetic algorithms with adaptive design of experi-1078

ments and online metamodeling. Structural and Multidisciplinary Optimiza-1079

tion, 37 , 447–461.1080

Li, H., Lee, L. H., Chew, E. P., & Lendermann, P. (2015). MO-COMPASS: a1081

fast convergent search algorithm for multi-objective discrete optimization via1082

simulation. IIE Transactions, 47 , 1153–1169.1083

Li, M., Li, G., & Azarm, S. (2008). A kriging metamodel assisted multi-objective1084

genetic algorithm for design optimization. Journal of Mechanical Design, 130 ,1085

031401.1086

Liu, W., Zhang, Q., Tsang, E., Liu, C., & Virginas, B. (2007). On the per-1087

formance of metamodel assisted moea/d. In International Symposium on1088

Intelligence Computation and Applications (pp. 547–557). Springer.1089

MacKay, D. J. (1998). Introduction to gaussian processes. NATO ASI Series F1090

Computer and Systems Sciences, 168 , 133–166.1091

Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization1092

methods for engineering. Structural and Multidisciplinary Optimization, 26 ,1093

369–395.1094

43



Martinez F., J., & Herrero P., D. (2016). Kriging-based infill sampling1095

criterion for constraint handling in multi-objective optimization. Jour-1096

nal of Global Optimization, 64 , 97–115. URL: https://doi.org/10.1007/1097

s10898-015-0370-8. doi:10.1007/s10898-015-0370-8.1098

Matheron, G. (1963). Principles of geostatistics. Economic Geology , 58 , 1246–1099

1266.1100

Meckesheimer, M., Booker, A. J., Barton, R. R., & Simpson, T. W. (2002).1101

Computationally inexpensive metamodel assessment strategies. AIAA jour-1102

nal , 40 , 2053–2060.1103

Miettinen, K. (1999). Nonlinear multiobjective optimization, volume 12 of in-1104

ternational series in operations research and management science.1105
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for multi-objective optimization. In International Conference on Machine1225

Learning (pp. 462–470).1226

48


