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Abstract

Public health and governmental organizations have acknowledged the importance of obtaining in-

formation of various characteristics for small areas, such as counties. Spatial smoothing models

have been developed to gain reliable information on the geographical distribution of the outcome

of interest. When the geographical analysis is based on survey data, two issues pose challenges: (1)

the complex design of the survey and (2) the presence of missing data due to non-response. We in-

vestigate the influence of missing data and the adjustment thereof in the context of the 2013 Florida

Behavioral Risk Factor Surveillance System (BRFSS) health survey. We focus on the application

and comparison of the Hajek ratio estimator and two model-based approaches for estimation of the

spatial trend of the prevalence of having no health insurance coverage. The model-based methods

are compared using the Deviance Information Criterion which show the benefits of modeling the

weights as flexibly as possible. Methods are extended towards subgroup analyses and the estima-

tion of area-specific standardized rates, where household incomes was identified as an important

factor to include in the analysis.
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1 Introduction

The geographical mapping of health outcomes is important to better identify risk factors for dis-

ease and targets for health care. Lots of efforts have been made in the development of hierarchical

spatial smoothing models for mapping the spatial distribution of health measures (See e.g. Elliott

et al., 2001; Walter and Gotway, 2004; Lawson, 2013). These methods are typically used to ob-

tain reliable estimates of local disease risk based on counts of observed cases within small areas,

accounting for population background information such as the regional age distribution. When in-

vestigating the geographic distribution of illnesses across areas, health surveys are an indispensable

source of information, but they give rise to additional challenges.

Surveys often have a complex design, resulting in differences between the population and sur-

vey distribution. Therefore, weighting of each individual (or unit) in the sample is commonly done

in survey sampling (Chambers and Skinner, 2003; Groves et al., 2004). Methods that account for

these weights can be subdivided into design-based, model-based and model-assisted approaches

(Rao, 2011). A well-known and commonly used design-based estimator is the Horvitz-Thompson

estimator (1952). This method makes use of the design weights in order to weigh each observa-

tion in the sample, where these weights are the reciprocal of the sampling probabilities. While

this estimator provides reliable inferences in large samples, it is ineffective when used in a setting

with sparse sample sizes (Rao, 2011). Model-based methods are essentially a prediction problem,

in which the prediction of non-sampled individuals takes into account variables used in the sam-

pling process and auxiliary variables (Brewer, 1963; Royall, 1970). However, these models could

become highly complex due to the inclusion of large numbers of variables. In addition, the key

variables for inclusion of individuals may not be available in public-use data sets. Alternatively,

the design weights themselves could be used as a proxy for these sampling variables (Gelman,

2007; Little, 2007; Chen et al, 2017). Beaumont (2008) proposed estimators which could improve

the efficiency of an estimator derived under the design-based framework by smoothing the design
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weights in an appropriate model. Vandendijck et al. (2016) extended this model to account for

spatial correlation. Chen et al. (2015), Mercer et al. (2014) and Vandendijck et al. (2016) compare

a series of methods which incorporate the design weights within a hierarchical spatial model. A

number of these models were selected for comparison within the framework of this paper. We

investigate the impact of the different methods in the setting of the BRFSS survey, accounting for

missingness in the data and with interest in a subgroup analysis.

Missing data occur commonly in health surveys (Little, 1982). Respondents often refuse to

answer a question or only answer it in part. The effect of non-response in the modeling process is

two-fold (Carpenter and Kenward, 2013). Firstly, the reduction in sample size lowers the precision

of the estimates and the amount of information in general. Secondly, when the population of the

people who did respond to the question of interest differs systematically from the population that

did not, statistical analyses may produce biased results if the missingness is unaccounted for. Over

the years, approaches have been developed in order to deal with incomplete data, depending on

the type of missingness (Rubin, 1976; Verbeke and Molenberghs, 2000; Little and Rubin, 2002;

Carpenter et al., 2006; Molenberghs and Verbeke, 2006; Molenberghs and Kenward, 2007). In

this paper, we assume the scenario of missing at random (MAR), i.e. when missingness does not

depend on unobserved data. The procedures that cope with MAR can be grouped under weighting

methods, maximum likelihood and imputation methods (Rubin, 1976). In the context of complex

surveys, weighting methods have been used most commonly, as this approach encompasses the

weighting of people which have responded in order to compensate for those participants which

did not. Imputation methods, while broadly applicable, have some difficulties when working with

the complex survey designs (Carpenter and Kenward, 2013). In this paper we investigate both

weighting and imputation methods to deal with the missingness and complex survey design using

data from the Behavioral Risk Factor Surveillance System (BRFSS).

2 BRFSS Data

We investigate data from the Florida State 2013 BRFSS survey. BRFSS collects data from adult

U.S. citizens on their risk behaviors and health practices that may affect their general health, and
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general demographic information, such as gender, age, race, income and the county in which they

reside.

In this paper, we focus on studying possible geographical differences in the proportion of adults

that did not have any health insurance or coverage in 2013. Although efforts have been made to

improve health care for all Americans, in recent years Florida has been one of the states with

the lowest insurance coverage percentage. According to the U.S. Census Bureau, Florida had an

uninsured rate of more than 19.1% in 2013, which is well above the national average of 13.4%

(Smith and Medalia, 2014). We investigate whether there are differences within Florida, focusing

on the population aged 18 - 64. American residents aged 65 and older are generally eligible to

enroll into the national Medicare health insurance program, and is therefore not considered in

the population. As there might be a relationship between having insurance coverage and family

income, a subgroup analysis based on the income level is conducted. Seven household income

levels are used in the analysis (Table 1).

Category Annual household income
1 < $10,000
2 $10,000−$15,000
3 $15,000−$25,000
4 $25,000−$35,000
5 $35,000−$50,000
6 $50,000−$75,000
7 > $75,000

Table 1: Categorization of the annual household income variable in the 2013 BRFSS data set

A first complication in the analysis is the amount of incomplete data. When we restrict the re-

sults of the BRFSS data set to the aforementioned age interval, 999 (6.1%) participants respondents

answered “Yes”, 10709 (65.1%) answered “No” and 4749 (28.9%) answered “Not Sure/Don’t

know/Refused” with respect to the question “In the past 12 months was there any time when you

did NOT have any health insurance or insurance coverage?”. This means that the overall percent-

age of adults who are uninsured is around 8.5%. This percentage however, does not take into

account the missingness, nor the sampling design. Figure 1 displays declines in both the pro-

portion of individuals without insurance coverage (blue line) and the nonresponse rate as income

increases (red line). The spatial distribution of the unweighted proportions of respondents who
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answered ”Yes” to the “no health insurance coverage”-variable are shown in Figure 2. The color

categorization in Figure 2 (and the rest of the paper) has been constructed using intervals of equal

widths , with darker colors corresponding to a higher proportion of respondents with lack of health

coverage. The average rate of no health coverage is 8.5% with a range of 2.8% to 13.7%. Though

the rates are stable for the counties, there is some heterogeneity present in the data which will be

investigated.
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Figure 1: Line plot showing the relation between the proportion of having no health insurance
coverage and the amount of missingess at each level of the income variable

A second complication in the analysis is that the observed sample sizes are small within the

subgroups. Planned sample sizes at the county level vary between 79 (Sumter County) and 637

(Duval County) and sum up to a total of 16457 in the original data set. This resulted in actual

sample sizes (complete cases) fluctuating between 59 and 473, summing up to a total of 11708.

Figure 3 shows the geographic distribution of both the planned sample sizes (left panel, darker

colors corresponding to larger sample size) and proportions of non-response (right panel, darker

colors corresponding to more missingness).
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Observed proportion ``no health coverage´´

[0,0.06)         (11)
[0.06,0.07)    (7)
[0.07,0.08)    (10)
[0.08,0.09)    (11)
[0.09,0.1)      (10)
[0.1,0.11)      (7)
[0.11,0.12)    (6)
[0.12,0.2]      (5)

Figure 2: Map of the observed county-specific proportions of the “no insurance coverage”-
variable. The number of counties in each category is denoted between brackets.

Sample size

[79,160)
[160,180)
[180,200)
[200,220)
[220,240)
[240,260)
[260,280)
[280,637]

Proportion missingness

[0.14,0.2)
[0.2,0.22)
[0.22,0.24)
[0.24,0.26)
[0.26,0.28)
[0.28,0.3)
[0.3,0.32)
[0.32,0.41]

Figure 3: Spatial distribution of the sample sizes in the original data set for the Florida counties in
the (left) and the missingness proportions for the “no insurance coverage”-variable in the BRFSS
study (right)

6



A third complication in the analysis is the complex sampling design that was used to collect

the data. In order to account for the sampling design, design weights were used in the estimation

process. These design weights, Design Wt are constructed as a product of five components:

Design Wt= Strat Wt× 1
Nr Telephones

×Nr Adults×Post Strat Wt×Raking Adjustment, (1)

where Strat Wt is calculated as the reciprocal of the probability of being sampled in a particular

stratum, Nr Telephones signifies the number of land-line telephones in the selected respondent’s

household, Nr Adults represents the number of adults in the household. and Post Strat Wt

is the post-stratification weight. Further details on the BRFSS questionnaire, sampling procedure

and definition of the sampling weights for the BRFSS data set can be found at https://www.

cdc.gov/brfss/annual_data/2013/pdf/overview_2013.pdf. No clustering was present for

the variable of interest in the study population.

3 Methodology

3.1 Prevalence estimation and definition of the design weights

Denote Yik as the binary outcome variable for the ith individual in county k (i = 1, ...,Nk and k =

1, ...,67). We want to estimate the county-specific prevalence, defined as

Pk =
1

Nk

Nk

∑
i=1

Yik, (2)

where Nk is the population size in county k for people aged 18 to 64, and N = ∑
67
k=1 Nk is the

overall population size in the state of Florida for the specified age group. We define nk as the

planned sample size of the BRFSS sample in county k, with n = ∑
67
k=1 nk denoting the total sample

size (n = 16457). Denote rik as the binary variable, which indicates whether the variable of interest

yik is observed (rik = 1) or is missing (rik = 0). Further, define sk as the set of individuals in county
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k which were sampled in the BRFSS study, with |sk|= nk, and s∗k as the set of individuals for which

the response variable was observed, where |s∗k | = mk represents the number of respondents which

answered the question of interest in county k.

In the BRFSS, each observation yik is accompanied by a design weight wd
ik, for which the cal-

culation is expressed by equation (1). Design weights need to be adjusted when some observations

are missing, in order to account for the reduction in sample size and any distributional imbalance

compared to the original sample and population. This can be remedied by defining a new weight

w∗ik, which is the product of the design weight wd
ik and a missingness weight wm

ik. The latter weight

wm
ik can be defined as the so-called inverse probability of a respondent to answer the question. We

model this probability by means of a logistic regression, taking into account the characteristics

which might have an influence on the missingness. We use the following bernoulli likelihood for

the missingness variable rik and model:

rik ∼ Bernoulli(P(rik = 1)) (3)

logit(P(rik = 1)) = α +βXi j +uk + vk, (4)

where Xi j is a vector containing information on the j covariates which have a significant effect on

the missingness process for individual i in area k, including age, race, gender, education, marital

status and income. Additionally, random effects for correlated (uk) and uncorrelated (vk) hetero-

geneity can be included to allow for spatial heterogeneity. We assume a normal distribution for the

uncorrelated random effects, i.e. vk ∼ N(0,σ2
v ), and an intrinsic conditional auto-regressive model

(ICAR) (Besag et al 1991, Rue et al. 2005) for the correlated heterogeneity:

uk|uk′ ,k 6=k′ ∼ N

 1
|ne(k)| ∑

k′∈ne(k)

u
′
k,

σ2
u

|ne(k)|

 , (5)

where ne(k) denotes the set of neighbors for a given county k and |ne(k)| is the number of neigh-

bors. Following common convention, we consider two counties to be neighbors if they share a

common boundary.
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Parameter estimation for this model can be easily conducted in a Bayesian framework. In this

case, priors need to be specified on all the parameters. We choose vague priors for all parameters.

For the precision parameters σ−2
u and σ−2

v , we assigned Gamma(0.05,0.008) priors, similar to

Mercer et al. (2014) and Chen et al. (2015).

When using these weights in the estimation process, it is often the case that one uses the

normalized version instead. The final weights w∗ik can be normalized in such a way that they sum

up to the number of non-missing observations:

w̃∗ik = mk ·
w∗ik

∑i∈s∗k
w∗ik

. (6)

In Section 3.2 and 3.3 we discuss area-specific methods which incorporate these weights. In

section 3.4, we review an individual-level method, as proposed by Watjou et al. (2017), and in

Section 3.5 an extension of this model towards a subgroup analysis is presented, as well as an

area-specific direct standardized rates based on survey data.

3.2 Model 1: Hajek ratio estimator

Since surveys are often complex by construction, the sampling design of the survey needs to be

taken into account in order to obtain valid estimators. Hajek (Hajek, 1971) introducing the Ha-

jek ratio estimator (HR) when estimating the population proportion. This method is design-based,

meaning that inference is performed based on the randomization distribution of all possible sam-

ples that could have been collected from the target population.

The county-specific HR estimator can be expressed as follows:

P̂HR
k =

∑i∈s∗k
w̃∗ikyik

∑i∈sk
w̃∗ik

=
1

mk
∑
i∈s∗k

w̃∗ikyik. (7)

The Hajek ratio estimator is a direct estimator, as it only uses the response values from the area

of interest (Rao 2003). This may have implications for the variance of the estimator, as P̂HR
k

can become unstable when the sample size in county k is sparse. In this scenario it is better to
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use methods which borrow information across different counties (see Models 2-3). Note that this

estimator can take into account both the design of the study and the missingness in the data via the

weights.

3.3 Model 2: Arcsine Root Normal estimator

Raghunathan et al. (2007) proposed to model the arcsine-square root normal (AN) transforma-

tion of the direct Hajek ratio estimator, yAN
k = sin−1

(√
P̂HR

k

)
, using a hierarchical model. The

advantage of the transformation is that it breaks the mean-variance relationship of the prevalence

and allows the variance to be stabilized approximately (Efron and Morris 1979). The likelihood is

based on the following approximate normal model (Mercer et al. 2014, Chen et al. 2014):

yAN
k |Pk ∼ N

(
sin−1

(√
Pk

)
,σ2

k

)
sin−1

(√
Pk

)
= β0 +uk + vk,

(8)

where the variance σ2
k = 1

4·mE
k

depends on the effective sample size mE
k = P̂HR

k (1−P̂HR
k )/ ˆvar

(
P̂HR

k

)
.

The resulting estimate of the prevalence is P̂k = (sin(β̂0 + ûk + v̂k))
2. The correlated and uncorre-

lated random effect, uk and vk, follow a N(0, σ2
v ) and ICAR(0, σ2

u ) distribution, respectively. Note

that, by including both spatially structured random effects (vk) and unstructured random effects

(uk), this model can borrow strength across neighboring areas, in addition to possible overdisper-

sion in the areas. When no spatial trend is present, the unstructured random effect will dominate

the analysis.

Inference is conducted in the Bayesian framework. We assigned a vague N(0,1) prior to the

intercept β0 and a Gamma(0.05, 0.008) distribution to the variance parameters σ−2
u and σ−2

v . Inte-

grated Nested Laplace Approximation (INLA, Rue et al. (2009)) was used in order to perform the

analysis using an accurate approximation of the posterior distribution.
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3.4 Model 3: Hierarchical weight-smoothing estimator

While previous methods are weighting-based methods, the last method is an imputation-based ap-

proach, combining ideas from imputation methods in missing data with weight-smoothing methods

for complex surveys. In this context we refer to imputation as the mechanism in which we ‘im-

pute’ or ‘predict’ values of the response outcome for individuals for which we have not observed

the response outcome (either because he was not sampled or because he did not respond to the

question).

Similar to the ideas from Royall (1970) in the context of complex sampling designs and ideas

from imputation methods for incomplete data, we first define the likelihood of the predictive model

for the non-sampled and non-observed individuals:

yik|Pik ∼ Bernoulli(Pik), (9)

where Pik is specified as a flexible function of all covariates that impact the design of the study and

missingness indicator. This can also be referred to as the imputation model. Second, the predictive

hierarchical estimator for the prevalence in area k is calculated as (Vandendijck et al, 2016)

P̂k =
1

∑
Lk
l=1 Ñlk

(
Lk

∑
l=1

nlkȳl +
Lk

∑
l=1

(
Ñlk−nlk

)
P̂lk

)
, (10)

where ȳl =
∑i∈l yik

nlk
is the sample average and Ñlk the estimated population size in post-stratification

cell l of area k. These poststratification cells l represent the set of units which have the same

normalized weight w̃∗ik. Since these weights are unique for each unit in the BRFSS data set, the

index i coincides with the index l: w̃∗ik ≡ w̃∗lk. Generally, an estimate for the prevalence Plk in each

post-stratification cell l and area k can be obtained from (11) using the unique normalized weights

w̃∗lk. Point estimates of this estimator P̂lk are obtained by calculation of the posterior predictive

mean, while the posterior standard deviations provide a measure of uncertainty. This estimator has

shown to have good performances by Vandendijck et al. (2016) and Watjou et al. (2017).
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Vandendijck et al. (2016) and Watjou et al. (2017) integrated this technique into the framework

of small area estimation. Two predictive models were proposed:

MB1 : logit(Pik) = β0 + f (w̃∗ik)+uk + vk, (11)

or

MB2 : logit(Pik) = β0 + f (π̃∗ik)+uk + vk, (12)

where f (.) is a non-parametric function, used for either the design weights w̃∗ik or the inclusion

probabilities π̃∗ik = 1/w̃∗ik. In this paper we specify this function either by a random walk model of

order one (RW1) or a penalized spline (SP). While these models have proven to work well in small

surveys (Vandendijck et al. 2016, Watjou et al 2017), we want to investigate their usefulness in the

context of the Florida BRFSS in this paper. In this model, the design weights incorporate both the

design of the study and probability to be observed.

Watjou et al. (2017) expanded this hierarchical weight-smoothing method by modeling the

design weights and the weights adjusting for non-response separately. As these two weights can

be included as distinct covariates, we can isolate their respective effects as follows:

MB3 : logit(Pik) = β0 + f1(w̃d
ik)+ f2(w̃m

ik)+uk + vk. (13)

In this formulation w̃m
ik is the normalized version of the missingness weights. The strength of this

model is that it can distinguish between the design variables and the variables which influence

non-response, as these two sets are not always identical.

As before, estimation is done in a Bayesian framework. Gamma(1,0.001)-distributions were

specified for the precision parameters. We refer to Vandendijck et al. (2016) and Watjou et al.

(2017) for additional details and specifications on this model.
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3.5 Impact of subgroups

A disadvantage of the presentation of area-specific prevalence rates, is that known risk-factors (sub-

groups) can have an impact on the spatial trend. For example, if the outcome of interest is impacted

by income, and the income distribution is different in different areas, than the difference we ob-

serve in the prevalence of the outcome of interest might be purely the effect of income. We address

two approaches that can be followed: one can either focus on subgroup analyses (subgroup-specific

prevalence) or work with a standardized rate. In the above example, in the subgroup analyses, the

area-specific prevalence rates would be estimated for each of the income groups separately. Alter-

natively, a direct standardized rate can be obtained per area, accounting for the underlying income

distribution. Both methods are based on the predictive models MB1−MB3.

In a similar way as in (10), the prevalence P̂gk for subgroup g in area k can be estimated as

P̂gk =
1

Ñgk

[
∑

l(k)∈g
nlkȳlk + ∑

l(k)∈g
(Ñlk−nlk)p̂lk

]
=

1

∑l(k)∈g Ñlk

[
∑

l(k)∈g
nlkȳlk + ∑

l(k)∈g
(Ñlk−nlk)p̂lk

]
(14)

in which the summation only goes over the strata within the subgroup and where p̂lk is obtained

from the assumed prediction model MB1−MB3. The summations over l(k) ∈ g stand for a sum-

mation of all the post-stratification cells in area k that correspond to subgroup g. As explained

in Section 3.4, since the the poststratification cells are the sampled units in the BRFSS data set it

holds that ylk ≡ yik. This gives rise to subgroup-specific estimates of the prevalence, and allows to

investigate whether there are differences among subgroups.

Alternatively, a direct standardized rate can be obtained by predicting the number of cases we

would observe in a standard population, if the observed group-specific rates (as in area k) applied

to the standard population. As standard population, we take the overall study population. The

direct standardized rate for area k is given by

DSRk =
1
N ∑

g
ÑgP̂gk =

1
N ∑

g

(
∑

l,k∈g
Ñlk

)
P̂gk (15)

with Ñg is the overall estimated population in group g and P̂gk is the predicted prevalence in group
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g, according to the risk in region k (and estimated as in equation (14)). This estimators also takes

into account the design of the study. This rate can be interpreted as the area-specific risk, taking

into account differences of the risk factor among areas.

The data analyses were performed on a HP Probook 650 G1. The time needed for a single data

analysis varies between 1 and 3 hours, depending on the model. The simulations were done using

the Flemish Super Computer, which allowed us to run simulations in parallel, reducing the com-

putation time. All analyses were conducted in the free statistical program R, using primarily the

libraries “INLA” and “survey”.

4 Application to BRFSS data

4.1 Overall rate of no insurance coverage

All proposed methods are applied to the Florida BRFSS data to estimate the county-specific pro-

portion of adults with no health insurance coverage. The top left panel in Figure 4 shows the

geographical distribution of the estimated rate of no insurance coverage based on Model 1 (the

HR estimator), while the top right shows the estimated rates based on Model 2 (the AN estima-

tor). Note that darker colors correspond to a larger proportion of individuals in the population

with a lack of health coverage. This map can be compared with Figure 2, showing the observed

proportion of respondents with a lack of health coverage.

Note that the spatial trend of the model-assisted AN estimates is smoothed compared to the

design-based HR estimator, due to the inclusion of the spatial random effect in the modeling pro-

cess. Indeed, while the HR estimator is highly variable due to small sample sizes in some areas,

the AN estimate better acknowledges for the heterogeneity, sharing knowledge across boundaries.

Two clusters can be distinguished, exhibiting higher rates of adults with no health coverage: (i)

in the north-central counties, close to the city of Gainesville and (ii) the counties surrounding

Lake Okeechobee along with the neighboring counties on the east coast, such as Palm Beach and

Miami-Dade (see Figure 8 and Table 4 in the Appendix).

The weight-smoothing estimator is based on a predictive model, and different underlying mod-
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Estimated proportion ``no health coverage´´

[0,0.06)
[0.06,0.07)
[0.07,0.08)
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[0.11,0.12)
[0.12,0.2]

Figure 4: Map of the estimated proportions of having no insurance coverage yielded by the HR
estimator using adjusted weights (top left), the AR estimator using adjusted weights (top right) and
the MB3 model (SP) (bottom left).

els can be suggested (such as those given by MB1−MB3). The best model can however be selected

via the Deviance Information Criterion (DIC) (Spiegelhalter, 2002). In Table 2, DIC values for the

different weight-smoothing approaches are presented.

It is apparent that the methods which model the normalized design weights and missingness

weights separately perform best in terms of goodness-of-fit; showing that the design characteristics

and missingness characteristics have a different impact. In particular, the model which utilizes a

spline specification for the design and missingness weights (MB3), performs best in terms of DIC.

Note that the same comparison with the design-based, model-assisted and model-based methods
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MB1 (RW1) MB1 (SP) MB2 (RW1) MB2 (SP)
Adjusted weights 6747.50 6801.30 6683.27 6764.20

MB3 (RW1) MB3 (SP)
Separate weights 6341.19 6328.08

Table 2: DIC values of the hierarchical weight-smoothing estimators for the ”no insurance
coverage”- variable with uk

cannot be made, as they each model a different response.

Results of the best fitting model, namely MB3 (SP) is presented in Figure 4 (bottom left panel).

As can be observed, further smoothing to take out uncertainty can be observed as we allow the

weights to be modeled flexibly. The clusters close to the city of Gainesville and surrounding

Lake Okeechobee are still visible, but are less extreme. Some other outlying counties with high or

lower insurance coverage become more clearly visible based on this model. The counties Calhoun,

Suwannee and Hernando, amongst others, have lower insurance coverage. The counties Nassau

and Monroe, amongst others, have higher insurance coverage. Figure 5 shows the standard errors

of the estimators provided in Figure 4. As expected, the standard errors of the HR estimator

exhibits higher variability as compared to the AN and MB estimators. No major differences are

seen for methods which use the adjusted weights or semi-adjusted weights however. The smallest

variability is observed for the hierarchical weight-smoothing estimator.

Furthermore, the necessity of including a spatial random effect into the predictive model for the

model-based estimators was also investigated by means of the DIC. These results can be consulted

in Table 3 (in comparison to Table 2). In general it can be noticed, especially for the models which

use the RW1 specification, that the inclusion of the spatial random effect does benefit the model.

In the other scenarios, the benefit seems more moderate.

MB1 (RW1) MB1 (SP) MB2 (RW1) MB2 (SP)
Adjusted weights 6824.24 6812.19 6795.80 6681.91

MB3 (RW1) MB3 (SP)
Separate weights / 6327.28

Table 3: DIC values of the hierarchical weight-smoothing estimators for the ”no insurance
coverage”- variable without uk
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Estimated standard error

[0,0.01)
[0.01,0.02)
[0.02,0.03)
[0.03,0.04)
[0.04,0.05)
[0.05,0.22]

Figure 5: Map of the estimated standard errors of the estimates for having no insurance coverage
yielded by the HR estimator using adjusted weights (top left), the AR estimator using adjusted
weights (top right) and the MB3 model (SP) (bottom left).

4.2 Rate of insurance coverage by income

In the previous analysis, focus was on the overall rate of adults with no insurance coverage. How-

ever, as the income distribution is not the same in all counties, the geographical trend could possibly

be affected by this factor. Indeed, individuals with lower household incomes, have lower probabil-

ity to have insurance coverage (see Figure 1). One of the strengths of the weight-smoothing models

is that they are able to provide estimates for different subgroups, here for the income-specific strata.
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Figure 6 illustrates the estimated proportion of having no insurance coverage at each of the seven

levels of annual household income, based on model MB3 (SP). First of all, one could observe an

important trend of the rate of insurance coverage with income, as the magnitude of the estimated

proportion of having no insurance coverage declines when the income level increases. This is not

unexpected, since unemployed people or people with low income have more difficulties covering

the rising insurance costs. Focusing on income groups 1-3, individuals which can likely be clas-

sified as ‘poor’, the rate of no insurance coverage varies among counties between 13% and 25%.

In income groups 4-5, the rate of no insurance coverage decreases to a range between 6% and

19%. In the highest income groups, which are the ‘not poor’ individuals, the uninsurance rates

vary between 0% and 11%.

Second, geographical differences among the counties are less visible, although there are some

differences between counties for the middle income groups. Model MB3 shows large variability

between the counties for income groups 3 and 4. For these income groups, the high non-insurance

coverage rate cluster around Lake Okeechobee, as observed before, is visible.

4.3 Standardized Rate of insurance coverage

While the subgroup analysis already gives a clear indication on the geographic distribution of

having no health insurance coverage, this can be further investigated using the direct standardized

rate. Figure 7 provides us with a map of the direct standardized rate estimates, produced by the

best model (MB3 (SP)). These are the rates of no insurance coverage if the income-specific rates

would apply on the Florida population. The rates over the different counties are comparable, in

the sense that they are standardized for the income distribution. As with the subgroup analysis, it

could be observed that the cluster in the northern part of Florida has been smoothed out, whereas

the cluster of counties with higher rates of no insurance coverage along the southeast coast is still

apparent. The counties with the worst insurance coverage are Palm Beach and Hendry.

While counties such as Calhoun, Suwannee and Hernando were presented as areas of lower

insurance coverage rate (based on the overall rate), it can be observed in this plot that these areas

do not have an elevated standardized rate. This shows that income is the main reason for higher

rates of no insurance coverage in these areas. Similarly, the counties Nassau and Monroe were
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Estimated proportion ``no health coverage´´

[0,0.07)
[0.07,0.09)
[0.09,0.11)
[0.11,0.13)
[0.13,0.15)
[0.15,0.17)
[0.17,0.19)
[0.19,0.35]

Figure 6: Geographical distribution of the estimated prevalence of having no insurance coverage,
produced by model MB3 (SP), for Income equal to 1 till 7, going from left to right, top to bottom.

previously categorized as counties with higher insurance coverage, but the direct standardized

rate is higher for these areas as compared to other areas. This difference stresses the discrepancy

between low- and high-income individuals in these counties.
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Estimated DSR ``no health coverage´´

[0.03,0.04)
[0.04,0.05)
[0.05,0.06)
[0.06,0.07)
[0.07,0.08]

Figure 7: Geographical distribution of the Direct Standardized Rate of having no insurance cov-
erage, produced by model MB3 (SP).

5 Discussion and Conclusions

Missing data has gained a lot of attention over the last decades, resulting in a wide range of method-

ologies. A variety of methodologies have been developed in the context of missing data in survey

samples under the missing at random (MAR) assumption, such as imputation approaches, full in-

formation direct likelihood and weighting methods (Rubin, 1987; Little and Rubin, 1987). In this

paper, we adjusted for non-response by recalibrating the design weights, in order to counteract

any distributional shift the missing data may have caused. When applying this to the 2013 Florida

BRFSS sample, we compared the impact of this adjustment on the design-based HR estimator,

the model-assisted AN estimator and several weight-smoothing models, where the latter methods

modeled the design weight directly as a covariate into the model. For the county-specific preva-

lences of ”no insurance coverage”, this resulted in a decrease for both the HR and AN estimators.

For the hierarchical weight-smoothing models, the effect of the adjustment was illustrated in a de-

crease of the DIC values. We showed the flexibility of the weight-smoothing model, by extending

it to a subgroup analysis. Further, it allows us to calculate a directly standardized rate, to correct
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for known risk factors in the analysis, and make areas comparable.

In Section 4.1, the model-based models were compared by means of the DIC values. However,

the results have to be interpreted with caution since the DIC introduced by Spiegelhalter (2002) is

valid under random sampling. Thus it is advisable that other model selection tools are investigated.

In the context of complex survey Lumley and Scott (2015) introduced an adjustment to the classical

AIC and BIC. The adjustment for DIC will be a topic for further research. Watjou et al (2017)

performed a simulation study to compare the performances of the design-based, model-assisted

and model-based methods described in Section 3 based on summary statistics such as the mean

squared error and the bias squared. From their results it could be concluded that the model-based

estimators generally perform better than their design-based and model-assisted counterparts.

The use of a flexible model is crucial in the analysis, allowing for possible non-linearity of the

sampling weights. While both random-walk models and spline models allow for flexible trend, the

spline model was preferred in this context. Due to the complex sampling design, a large amount of

different sampling weights results, leading to instability in the estimation of this model. A possible

way to mitigate these issues is to reduce the number of unique values for the weights by means of

grouping the weights. As this could have an impact of the performance of the model, this should

be investigated carefully.

The model-assisted AN estimator and the weight-smoothing models borrow information across

neighboring counties. However, problems can arise when working with sparsely populated areas.

Alternative models have been proposed to account for this. Goovaerts (2010, 2017) proposed a

geostatistical model whereby rate data was estimated using poisson kriging.

A drawback of the proposed predictive model, is that the predictive model does not incorporate

the uncertainty in the missingness weights. As an alternative, a spatial joint estimation model in

which a measurement model is linked to a missingness model, accounting for the design aspects

in the survey, is a topic of further research.
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Figure 8: Map of indices for counties in the state of Florida.
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Index County Index County Index County Index County
1 Alachua 18 Franklin 35 Lee 52 Pinellas
2 Baker 19 Gadsden 36 Leon 53 Polk
3 Bay 20 Gilchrist 37 Levy 54 Putnam
4 Bradford 21 Glades 38 Liberty 55 St. Johns
5 Brevard 22 Gulf 39 Madison 56 St. Lucie
6 Broward 23 Hamilton 40 Manatee 57 Santa Rosa
7 Calhoun 24 Hardee 41 Marion 58 Sarasota
8 Charlotte 25 Hendry 42 Martin 59 Seminole
9 Citrus 26 Hernando 43 Miami-Dade 60 Sumter

10 Clay 27 Highlands 44 Monroe 61 Suwannee
11 Collier 28 Hillsborough 45 Nassau 62 Taylor
12 Columbia 29 Holmes 46 Okaloosa 63 Union
13 DeSoto 30 Indian River 47 Okeechobee 64 Volusia
14 Dixie 31 Jackson 48 Orange 65 Wakulla
15 Duval 32 Jefferson 49 Osceola 66 Walton
16 Escambia 33 Lafayette 50 Palm Beach 67 Washington
17 Flagler 34 Lake 51 Pasco

Table 4: Counties in the state of Florida in alphabetical order and the associated index corre-
sponding to Figure 8 .
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