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Abstract

The purpose of this paper is to contrast the Mantel-Haenszel estimator with an optimal esti-

mator to better understand its specific nature, as well as some unique and interesting properties

of the data setting for which it was developed.

It is emphasized here that the Mantel-Haenszel estimator does not follow from optimality

considerations, but nevertheless has properties similar to and often better than the optimal

estimator, whose existence we demonstrate in spite of the absence of completeness. It is shown,

via simulations and data analysis, that the optimal estimator outperforms the Mantel-Haenszel

estimator only in certain settings with huge sample sizes.

Some Keywords: Pseudo-Likelihood; Split sampling; Unequal strata sizes.

1 Introduction

Categorical variables take on an a priori fixed and finite number of possible values, in particular,

two values for binary data. Investigators often want to examine associations between categorical

variables, for example, in a case-control study. In the past, the need grew to analyse the relation

between binary variables incorporating the classification due to other relevant confounders. Mantel
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& Haenszel (1959) published their view on the analysis of case-control studies more than half a

century ago. Their methodology has become ubiquitous in epidemiology and beyond.

The Mantel-Haenszel estimator (Mantel & Haenszel, 1959, MH) can be used in various contexts.

It serves as the estimator for the odds ratio in a series of 2 × 2 tables or in matched designs. In

general, a setting with stratified 2× 2 tables already exists when subpopulations within the overall

population vary. The resultant strata need not be of equal size. The simplest form of matching is

1:1, i.e., one control per case. This is effective when both are sufficiently prevalent in the population.

Often, cases are more scarce than controls, e.g., with rare diseases. It then makes sense to select

more controls per case. When a case is individually matched to a set of controls, having similar

values for some confounding variables, the most extreme form of stratified design is created. Each

case and corresponding control(s) can be seen as one stratum.

The MH is not fully parametric and serves to investigate the independence in a 2× 2×N con-

tingency table (Agresti, 2002, pp. 231). Typically strata are of varying sizes, naturally necessitating

the use of weights. Mantel & Haenszel (1959) proposed several weighting schemes to estimate

a common odds ratio. It is important to realize that these weighting schemes, even though they

have been of great use for decades, do not follow from formal optimality criteria. Interestingly, no

expression for the variance was available until the work of Robins et al. (1986b). With time, others

investigated the estimator and many extensions have been developed. Kuritz et al. (1988) reviewed

the MH and its variance formulas. At first, Hauck (1979) proposed an estimator of the variance using

a product binomial model, appropriate for large stratum samples. Woolf (1955) used a logarithmic

transformation of the odds ratio estimator, which makes the sampling variance simple and easy to

use as weights. From another point of view, Flanders (1985) proposed a variance estimator based

on a series of Monte Carlo experiments, leading to more accurate confidence intervals. Robins et al.

(1986a,b) proposed a new robust variance estimator based on the unconditional distribution of the

data. These last two are very similar and even identical for matched designs. Either is applicable in

both sparse data and large-strata limiting models and are easily computed. None of these estimators

had been formally shown to be “best,” but the latter two are preferred. Our goal is to place the

MH against the background of estimators that do follow from optimality considerations.

Hermans et al. (2018a,b) considered estimation in hierarchical data settings with unequal cluster

sizes with compound-symmetry (CS) and AR(1) covariance structures. When cluster sizes are not

of the same size, complete sufficient statistics typically fail to exist (Casella and Berger, 2001, pp.

285–286) and maximum likelihood estimators (MLEs) do not have closed-form solutions. This has
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Table 1: Contingency table for stratum i (i = 1, . . . , N)
Exposure + Exposure - Total

Case + ai bi n1i
Control - ci di n2i
Total m1i m2i ni

important implications for the analysis of very large sets of data for which efficient computation is

critical. We are therefore interested in performance comparisons under a wide range of settings,

from small and moderate sample sizes to big data settings. Molenberghs et al. (2011) proposed a

pseudo-likelihood split-sample based approach, where the original sample is divided into subsamples

within each of which MLEs are consistent estimators. Subsample-specific results are then combined

using appropriate optimal weights. This idea is closely related to the MH for grouped data, where

the group-specific odds ratios are combined using weights. Even though the idea is similar, there

are computational differences. For this reason the determination of the optimal weights could be

extended to these grouped data settings. All statistical procedures mentioned in this paper are

appropriate for data settings with binary responses, involving stratification, grouping, or matching

based on confounding variables.

Throughout the paper, we assume that the strata are mutually independent, in line with the

original formulation of the MH and its subsequent use (Agresti, 2002), and as such ensuring that

our focus is on a comparison with that original form.

The remainder of the paper is organised as follows. In Section 2, the general methodology of the

MH is given, together with the notation that will be used throughout the paper. In Section 3, pseudo-

likelihood methodology is applied and weighting schemes are explored. In Section 4, a simulation

study is described to compare the performance of the MH with one following from optimal weighting

considerations. An example is discussed in Section 5. The discussion and recommendations for

practice are offered in Section 6.

2 Mantel-Haenszel Estimator

The Mantel-Haenszel estimator (Mantel & Haenszel, 1959) is a useful and convenient estimator

for obtaining a common odds ratio, when there are one or more confounders. When the sample is

stratified by one or more variables, the subgroup-specific odds ratios are combined into a weighted

average. In the case of several, N say, 2× 2 tables or strata, the ith (i = 1, . . . , N) stratum takes

the form as presented in Table 1. The overall sample size is defined as n =
∑N

i=1 ni.
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As pointed out earlier, Mantel & Haenszel (1959) suggested various weighting schemes, but the

most widely accepted estimator of the common odds ratio is:

ψ̃MH =

∑N
i=1

aidi
ni∑N

i=1
bici
ni

=

∑N
i=1wi

aidi
bici∑N

i=1wi
, (1)

with wi =
bici
ni

.

The strata do not need to be of the same size and even if some cell counts are small or even

zero, the estimator remains well-defined, an important asset. Also, when bici equals zero a stratum

is omitted in the calculation of the common odds ratio as the weight becomes zero as well. This

estimator is very practical to use.

When originally formulated, no variance formula was available. Over time, proposals were de-

veloped and nowadays the variance formula of Robins et al. (1986b) is commonly used, particularly

in statistical software. It will be used later in this paper and takes the following form:

vR = var(log ψ̂MH) =

∑N
i=1

(ai+di)aidi
n2
i

2
(∑N

i=1
aidi
ni

)2 +

∑N
i=1

(ai+di)bici+(bi+ci)aidi
n2
i

2
(∑N

i=1
aidi
ni

)(∑N
i=1

bici
ni

) +

∑N
i=1

(bi+ci)bici
n2
i

2
(∑N

i=1
bici
ni

)2 . (2)

3 Optimal Weighted Estimation

Breslow and Day (1980) examined likelihood estimation to obtain an estimator for the common

odds ratios. However, they showed that there is no closed-form solution, except for the case where

there are only two strata. Numerical estimation techniques are necessary in pursuing an estimate.

In comparison with this, the MH is much simpler to use. Hermans et al. (2018a,b) use weighted

estimation for data settings with unequal cluster sizes. Based on the pseudo-likelihood split-sample

approach of Molenberghs et al. (2011), the sample is divided into subsamples, containing clusters

of equal size. For each subsample, maximum likelihood estimators were calculated and subsample-

specific results then combined using weights. The entire argument will not be reproduced, but these

same ideas can be used for the data settings discussed in this paper. The subsamples considered

here are naturally the various strata in the sample. The subsample or stratum-specific estimator is

the odds ratio, ψ, calculated as:

ψi =
ai · di
bi · ci

. (3)
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These can be combined into a common odds ratio using weights αi:

ψ̃ =

N∑
i=1

αiψi, (4)

with
∑N

i=1 αi = 1. It is natural and well known that optimal weights are inversely proportional to a

measure of variance (see the Appendix for a brief sketch of the argument). We will now investigate

this further, against the background of the lack of complete sufficient statistics.

3.1 (In)Complete Sufficient Statistics

Completeness means that any measurable function of a sufficient statistic, which has zero expectation

for every value of the parameter indexing the parametric model class, is the zero function almost

everywhere. The relevance of incompleteness can be found in two important theorems, the Lehman-

Scheffé theorem (Casella and Berger, 2001) and Basu’s theorem (Basu, 1955). In particular, the

first one leads to mean-unbiased estimators when the conditions are fulfilled.

Consider the weighted odds ratio estimator as in (4), and assume E[ψi] = ψ, then

E[ψ̃] =
N∑
i=1

αiE[ψi] = ψ
N∑
i=1

αi = ψ.

Suppose that there is a non-zero function g((ψi)i) =
∑

i βiψi, such that E[g((ψi)i)] =
∑

i βiψ =

ψ
∑

i βi = 0. This is satisfied for all βi’s where
∑

i βi = 0. By this counterexample, incompleteness

holds. As a consequence, it is a priori not guaranteed that there is a uniformly optimal estimator.

However, it should be noted that the existence of a uniform optimum, while not guaranteed by the

theorem, is not necessarily excluded.

3.2 Optimal Weights

To obtain (potentially local) optimal weights, we seek to minimize the variance, var(ψ̃) =
∑N

i=1 α
2
i var(ψi),

under the constraint that
∑N

i=1 αi = 1 using the method of Lagrange multipliers. The calculations,

which are standard and applicable in a wide variety of settings, are briefly reviewed in Appendix A.

The weights are:

αi =
v−1i∑
j v
−1
j

. (5)

In the next step, the variance of a stratum-specific odds ratio will be expressed explicitly. We here

assume, in line with what was stated in the Introduction, that strata are mutually independent. When
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taking the natural logarithm of the odds ratio, the variance here equals var(log(ψi)) =
1
ai
+ 1
bi
+ 1
ci
+ 1
di

.

By using the delta method we find var(log(ψi)) ∼= 1
ψ2
i
· var(ψi) and now

var(ψi) = ψ2
i var(log(ψi))

= ψ2
i

(
1

ai
+

1

bi
+

1

ci
+

1

di

)
pop. value∼=

ψ2q

ni
, (6)

with q = 1
p11

+ 1
p10

+ 1
p01

+ 1
p00

, and p11, p10, p01 and p00 the 2×2 cell probabilities. Here, evidently,

it is assumed, in line with the original MH, that all strata are generated from the same underlying

contingency table, of which then the probabilities and functions thereof are constant, hence also

ψi = ψ. This situation arises when an unstratified analysis would lead to a confounded relationship

between row and column classification. Thus, we assume that the stratificiation undertaken is

sufficient to control for the confounding that might exist at population level, and that there is no

effect modification. Given this setting, the stratum-specific variance and its inverse equal:

var(ψi) ∼=
ψ2q

ni
= vi ⇒ v−1i =

ni
ψ2q

, (7)

resulting in the following formula for the weights:

αi =

ni
ψ2q∑
j
nj

ψ2q

=
ni
n
, (8)

with n =
∑N

i=1 ni. If all (ni)i would be fixed by design, this is a uniform minimal solution, in

spite of incompleteness. Using the above expressions, it follows that the uniformly optimal weighted

estimator satisfies:

ψ̃ =
N∑
i=1

ni
n
ψi. (9)

Equation (19) yields an expression for the overall variance of this common odds ratio:

var(ψ̃) =

∑N
i=1 v

−2
i vi

(
∑N

j=1 v
−1
j )2

=
1∑N

i=1 v
−1
i

. (10)

This scheme is more principled and enjoys minimum variance properties, in comparison to MH.

However, the estimator is undefined when there is at least one zero in one of the contingency tables.

It suggests that MH may well be superior in small samples. Also, because MH does not take the
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form of a conventional weighted estimator, with weights differing from the optimal ones, also the

behavior in large to very large samples should be investigated.

We can also use the observed rather than expected variances. Then, an alternative sub-optimal

form emerges:

˜̃
ψ =

N∑
i=1

αiψi =

∑M
i=1 v

−1
i ψi∑M

i=1 v
−1
i

. (11)

Now,

vi = ψ2
i

(
1

ai
+

1

bi
+

1

ci
+

1

di

)
(12)

v−1i = ψ−2i hi,

with

hi =

(
1

ai
+

1

bi
+

1

ci
+

1

di

)−1
=
aibicidi
ei

, (13)

with ei = aibici + aibidi + aicidi + bicidi. This leads to:

˜̃
ψ =

∑
i
(cibi)

2

ei∑
i

1
ψi

(cibi)2

ei

. (14)

Yet another sub-optimal estimator, based on MH ideas, would be:

˜̃
ψ′ =

∑
i aidi

(cibi)
2

ei∑
i cibi

(cibi)2

ei

. (15)

We choose not to present variance formulae for these alternative estimators (14) and (15)

because, as we see below, their relative performance is so poor as to obviate their use in practice.

This underscores that the choice of weights should be done very judiciously and consequently that

a given choice should be investigated carefully, in theoretical terms and/or using simulations. The

demonstration of poor perfomance with slightly deviating weights can still motivate further research.

4 Simulation Study

In the following simulation study, carried out in R, the performance of the derived estimators is

compared with the conventional MH.

To start, a sample with five strata and stratum sizes 900, 500, 200, 600, and 300 is considered.

For each stratum, random numbers following a uniform distribution are generated, as many as the
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Table 2: The underlying 2× 2 probability table used in the simulation study
p00 =0.2 p01 =0.1

p10 =0.4 p11 =0.3

stratum size requires. These numbers are classified according to the cumulative probabilities (0,

p00 =0.2, p00 + p01 =0.3, p00 + p01 + p10 =0.7, p00 + p01 + p10 + p11 =1) from the underlying

contingency table (Table 2) to then yield the frequencies for a new stratum-specific 2 × 2 table.

For example, the sampled number 0.4 will contribute to the count in cell (1,0) as it lies between

0.3 and 0.7. This results in five new 2 × 2 tables. To these tables, the MH and estimators (9),

(14), and (15) are applied. In this scenario there were 5 strata with mean stratum size 500. In

further samples, both the number of strata and mean stratum size are multiplied by a factor of

ten. All values for numbers of strata (5; 50; 500; 5,000; and 50,000) and mean stratum sizes (500;

5,000; 50,000; 500,000; and 5,000,000) are combined into 25 scenarios. Recall that the very large

sizes are considered to examine performance in big-data settings. Each scenario was sampled 500

times, leading to 500 estimates of the common odds ratio for each estimator. By doing this we can

explore the estimators’ performance under varying designs. As an aside, when the mean stratum

size and number of strata get large, there simulation is time-consuming. As the performance of the

estimators is already proven in the middle of the table, some of the bottom cells in the upcoming

tables are left blank.

4.1 Relative Efficiency

As an important evaluation criterion, we consider the relative efficiency of the proposed estimators

to the MH. First, we calculate the simulation-based variances of our estimators over the sample of

500 odds ratios. Second, the model-based variances are used. For the Mantel-Haenszel estimator

the variance formula (2) is used, and (10) is used as our estimator. This choice is motivated by the

fact that we aim to compare the true variances of these estimators; simulation-based variances are

a fair way to do so, especially if sample sizes and numbers of strata are sufficiently large.

The results based on the simulation-based variances are presented in Tables 3–5. The results

based on the model-based variances are reproduced in Table 6. These are for estimator (9), given

the relatively poor performance of estimators (14) and (15). The relative efficiencies are presented

as percentages.

Considering Tables 3–5, the MH is slightly more efficient for large samples but not for huge

samples. Only at the right bottom corner of the table the relative efficiency nears 100%. For
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Table 3: Simulation: Relative efficiency of estimator (9) w.r.t. Mantel-Haenzel estimator. (Simula-
tion based.)

Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 90.51 98.62 100.12 100.02 100.00

50 90.42 98.71 99.52 100.03 99.96

500 89.61 99.12 99.51 99.96 100.02

5 000 90.93 99.19 100.17 99.92

50 000 92.41 99.38 99.79

Table 4: Simulation: Relative efficiency of estimator (14) w.r.t. Mantel-Haenszel estimator. (Simu-
lation based.)

Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 97.65 101.44 99.57 99.92 99.99

50 94.08 100.35 100.86 99.86 100.07

500 90.30 99.17 100.77 100.06 100.01

5 000 90.14 98.97 99.25 100.20

50 000 90.95 98.44 99.94

Table 5: Simulation: Relative efficiency of estimator (15) w.r.t. Mantel-Haenszel estimator. (Simu-
lation based.)

Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 69.65 75.31 65.65 72.73 73.28

50 66.07 71.80 64.36 68.85 72.04

500 67.04 73.18 72.28 64.97 69.57

5 000 70.98 66.53 70.02 66.33

50 000 71.02 68.67 67.58

Table 6: Simulation: Relative efficiency of (9) w.r.t. Mantel-Haenszel estimator. (Model based)
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 106.58 100.65 100.06 100.01 100.00

50 108.50 100.80 100.08 100.01 100.00

500 108.63 100.83 100.08 100.01 100.00

5 000 107.66 100.83 100.08 100.01

50 000 107.66 100.83 100.08
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extremely large overall sample sizes, the alternative estimators (9) and (14) are performing equally

well as the MH. The opposite is found in Table 6. In the left top corner, relative efficiency exceeds

100%. The variance estimator (10) turns out to be smaller, and hence more precise, than the

asymptotic variance of Robins et al. (1986b); at the same time it is easier to compute. Pattanayak

et al. (2012) also showed in their simulation study that the variance estimator of Robins et al.

(1986b) is conservative, producing unnecessarily wide confidence intervals. This simulation study

confirms this. However, when the mean stratum sizes become very large, this issue goes away.

Turning to Table 5, estimator (15) is an ad hoc modification of (14) by using, at face value, MH

ideas. However, while maybe a natural estimator to consider, the simulation study gives evidence

that its performance is poor, evidently without given a precise mathematical explanation, other than

that it is not following optimality arguments.

Note that the relative efficiency of (9) is different than that of (14). We should note, though,

that both efficiencies are relative to the MH estimator. Neither MH nor (14) are optimal by any

formal criterion, whereas (9) is. It is therefore to be expected that the relative efficiency of (9) is

very good especially for large to huge sample sizes.

4.2 Coverage Probabilities, Bias, and Mean Squared Error

Next, the coverage probabilities, bias, and mean squared error (MSE) of the estimators are examined.

Table 7 shows the coverage probabilities for estimator (9), where the 95% confidence interval is

calculated using the proposed variance estimator (10) and normal quantiles. The use of the normal

quantiles is supported by the Gaussian shape of the density plots in Figure 1. For comparison,

Tables 9 and 10 give the coverage probabilities for the MH. Where Table 10, like Table 7, displays

simulation-based coverage, in Table 9 the coverage is based on model-based confidence intervals;

these are calculated for the log odds ratio first and then backtransformed to the original scale.

These tables suggest that the proposed estimator is performing badly in the left bottom corner of

the tables, as the coverage probabilities become small and even zero. The same phenomena can be

observed in Tables 8 and 11 where the confidence intervals are calculated with the sample variance.

The latter is done to make sure that there is no over-coverage, which does not seem to be the case.

Tables 12–15 show, respectively, the bias and MSE of the alternative estimator and the MH. Here,

the bias and MSE are larger in the same part of the tables.

Figure 1 supports earlier conclusions. In general, the plots reflect the poor behaviour of estimators

(14) and (15). In relationship to Tables 7–15, the density plots in the left bottom corner are getting
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Table 7: Simulation: Coverage Probabilities for estimator (9)
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.940 0.950 0.950 0.930 0.950

50 0.816 0.932 0.946 0.936 0.942

500 0.186 0.846 0.940 0.964 0.932

5 000 0.000 0.204 0.868 0.948

50 000 0.000 0.000 0.204

Table 8: Simulation: Coverage Probabilities for estimator (9) with sample variance
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.938 0.940 0.946 0.938 0.956

50 0.862 0.946 0.944 0.940 0.954

500 0.198 0.848 0.944 0.956 0.930

5 000 0.000 0.212 0.832 0.948

50 000 0.000 0.000 0.200

worse.

It is hard to say exactly why. We do note that (9) is optimal among the weighted estimators,

that (14) and (15) are not, and that MH does not even belong to the class of weighted estimators.

Therefore, we cannot easily explain the relative behaviour of (9), (14), and (15) relative to MH. The

only evident statement is that (9) is supposed to outperform the other two weight-based estimators.

5 Analysis of Case Study

Intego is a Belgian general practice-based morbidity registration network at the Department of

General Practice of the University of Leuven, Belgium. They built a large database as a result of

continual recording of data in general practices since 1994. It holds over 4 million diagnoses, 44

million laboratory results and 17 million medication prescriptions and 700,000 vaccination data.

Table 9: Simulation: Coverage Probabilities for Mantel-Haenszel estimator (log oddsratio)
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.962 0.950 0.950 0.930 0.950

50 0.948 0.942 0.946 0.936 0.942

500 0.960 0.958 0.944 0.960 0.932

5 000 0.954 0.954 0.966 0.942

50 000 0.954 0.940 0.958
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Table 10: Simulation: Coverage Probabilities for Mantel-Haenszel estimator
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.952 0.952 0.952 0.930 0.950

50 0.958 0.940 0.946 0.938 0.942

500 0.960 0.958 0.944 0.960 0.932

5 000 0.954 0.954 0.966 0.942

50 000 0.954 0.940 0.958

Table 11: Simulation: Coverage Probabilities for Mantel-Haenszel estimator with sample variance
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.954 0.948 0.950 0.938 0.956

50 0.956 0.954 0.946 0.942 0.958

500 0.956 0.956 0.948 0.956 0.932

5 000 0.948 0.954 0.952 0.942

50 000 0.956 0.940 0.954

Table 12: Simulation: Bias for estimator (9)
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.045 487 0.006 383 -0.000 194 -0.000 174 0.000 067

50 0.039 827 0.004 114 0.000 356 -0.000 001 0.000 018

500 0.040 240 0.003 951 0.000 404 0.000 019 9.580e-07

5 000 0.039 646 0.003 817 0.000 400 0.000 025

50 000 0.039 552 0.003 840 0.000 386

Table 13: Simulation: MSE for estimator (9)
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.022 471 0.001 935 0.000 190 0.000 020 0.000 002

50 0.003 755 0.000 225 0.000 019 0.000 002 2.016e-07

500 0.001 819 0.000 034 0.000 002 1.762-e07 1.851e-08

5 000 0.001 591 0.000 016 3.248e-07 1.939e-08

50 000 0.001 566 0.000 015 1.674e-07

Table 14: Simulation: Bias for Mantel-Haenszel estimator
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.013 178 0.003 413 -0.000 491 -0.000 204 0.000 064

50 0.001 020 0.000 444 -0.000 012 -0.000 038 0.000 015

500 0.000 849 0.000 181 0.000 028 -0.000 018 -0.000 003

5 000 0.000 180 0.000 053 0.000 025 -0.000 013

50 000 0.000 104 0.000 072 0.000 010
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Table 15: Simulation: MSE for Mantel-Haenszel estimator
Number Mean stratum size
of strata 500 5 000 50 000 500 000 5 000 000

5 0.018 639 0.001 880 0.000 191 0.000 020 0.000 002

50 0.001 962 0.000 205 0.000 018 0.000 002 2.014e-07

500 0.000 180 0.000 019 0.000 002 1.762e-07 1.852-e08

5 000 0.000 017 0.000 002 1.657e-07 1.894-e08

50 000 0.000 002 1.929e-07 1.864e-08

Figure 1: Simulation: Density plots for the Mantel-Haenszel estimator and estimators (9), (14) and
(15). (MSS = Mean Stratum Size)
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Table 16: Case Study: General 2× 2 table
Diabetes + Diabetes - Total

Female ai bi n1i
Male ci di n2i
Total m1i m2i ni

Intego procedures were approved by the ethical review board of the Medical School of the Uni-

versity of Leuven (ML 1723) and by the Belgian Privacy Commission (SCSZG/13/079). Many

general practices applied for inclusion in the registry. Before approval, the registration performance

was checked using algorithms between all participants. Only those with an optimal performance

were included. All participating general practices need to routinely record all new diagnoses, drug

prescriptions, laboratory results and patient information. They use universal codes; diagnoses are

classified using ICPC 2 codes (International Classification of Primary Care) and the WHO’s Anatom-

ical Therapeutic Chemical (ATC) classification system for drugs. See also Truyers et al. (2014) and

the Intego website (http://www.intego.be).

The data set analysed contains information about 338,581 patients, listing their gender, year of

birth, the general practices, and diagnosis recorded with the correct ICPC Code. We chose to make

several 2× 2 tables with the binary variables diabetes and gender (Table 16). General practices and

the year of birth can serve as stratification variables. There are 75 different general practices. The

years of birth vary from 1898 to 2015. Table 17 presents the estimates for the common odds ratio

and variance according to different stratification variables. In the first row general practices (GP)

divided the sample in different strata. For the second row, year of birth (YB) was split into two

groups, those who where born before 1950 and those born in 1950 and later. In further rows more

splits were made.

The differences between MH and (9) is negligible when there is a large number of strata, but

that is not the case otherwise. All estimators are equally easily computed, no matter the number

of strata. In the last line of the table, the stratum with people born before 1900 has one zero in

its 2 × 2 table. As we stated earlier and now can see here: the MH is well-defined and gives an

estimate, however due to a zero weight this specific stratum is omitted in the calculation. On the

other hand, the formally optimal estimator does not yield a well-defined estimate.
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Table 17: Intego Data: Common odds ratio and variance estimates: (a) ψMH : Mantel-Haenszel
odds ratio estimate, for which also the 95% C.I. is given; (b) ψ̃: odds ratio estimate with (9); (c)
˜̃
ψ: odds ratio estimate with (14); (d) ˜̃

ψ′: odds ratio estimate with (15); (e) vR: variance estimate
according to Robins et al. (1986b) (2); (f) v: variance estimate with (10)

Stratification # strata ψMH ψ̃
˜̃
ψ

˜̃
ψ′ vR v

GP 75 0.967[0.938;0.997] 0.937 0.904 0.944 2.330×10−4 2.524×10−4
YB1 2 0.921[0.892;0.951] 0.954 0.916 0.951 2.303×10−4 2.286 ×10−4
YB2 4 0.930[0.901;0.960] 1.108 0.907 0.895 2.294×10−4 2.367×10−4
YB3 8 0.928[0.899;0.958] - - - 2.305×10−4 -
1 split by 1950
2 split by 1920, 1950, 1980
3 split by 1900, 1920, 1935, 1950, 1965, 1980, 2000

6 Ramifications and Concluding Remarks

To study associations between binary variables, incorporating classification, the common odds ratio is

often used. The odds ratio estimator of Mantel & Haenszel (1959) well established in epidemiology.

It is a weighted estimator, combining information across strata, that need not be of the same size.

It follows neither from the likelihood principle, nor from optimally weighted considerations. We

therefore studied it against the background of an optimally weighted estimator and two variations

thereof. We noted that, while there is no complete sufficient statistic, there nevertheless is a

uniformly optimal weighted estimator. Unlike a full likelihood estimator, both the MH as well as the

optimal estimator, and the variance thereof, are easy to calculate.

The MH, in spite of its somewhat ad hoc nature is very efficient for large datasets, and in more

cases well-defined when cell counts are small or even zero. It is fair to say the the optimal estimator

has a somewhat easier and more intuitive variance expression but, as we have already seen, both are

easy to compute.

In some cases when datasets are huge, the optimal estimator is somewhat more efficient. How-

ever, we should bring forward two reservations. First, this is not the case when the number of strata

becomes equal to or larger than the mean stratum size the estimator fails. Second, with really huge

samples, a slight amount of efficiency loss is usually not an issue.

Categorical variables may take on more than 2 levels and also here associations can be of scientific

interest. This suggests that one might also consider a possible extension to I × J ×K tables as is

done for the MH (Agresti, 2002, pp. 295).

In conclusion, the MH retains its practical and theoretical attraction, even when compared with

formally optimal estimators, and for a large class of settings it will remain the estimator of choice.
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For very large datasets, which are increasingly prevalent nowadays, the optimally weighted estimator

has some advantages, namely smaller MSE whilst retaining computational efficiency. The study of

the weighted estimators helps us understand better the unique position of the MH among statistical

estimators.
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A Calculations of the Optimal Weights

Obtaining optimal weights is standard, but nevertheless useful to briefly review here for our purposes.

We seek to minimize the variance, var(ψ̃) =
∑N

i=1 α
2
i var(ψi). Write vi = var(ψi) so var(ψ̃) =∑N

i=1 α
2
i vi, and define the objective function:

Q =

N∑
i=1

α2
i vi − λ

(
N∑
i=1

αi − 1

)
, (16)

with λ a Lagrange multiplier.

To properly calculate the weights, the first derivative of Q with respect to weights αi are taken

and equated to zero:

∂Q

∂αi
= 2αivi − λ = 0,

2αivi = λ ⇒ αi = λ
1

2vi
. (17)

By summing both sides, the left hand side is equal to 1 and an expression for λ is obtained:

1 =
∑
i

αi =
λ

2

N∑
i=1

1

vi
⇒ λ =

2∑N
i=1

1
vi

. (18)

Plugging (18) into (17), the weights are:

αi =
v−1i∑
j v
−1
j

. (19)
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