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Isometric Uncertainty Relations

Hadrien Vroylandt · Karel Proesmans ·
Todd R. Gingrich

Abstract We generalize the link between fluctuation theorems and thermody-
namic uncertainty relations by deriving a bound on the variance of fluxes that
satisfy an isometric fluctuation theorem. The resulting bound, which depends on
the system’s dimension d, naturally interpolates between two known bounds. The
bound derived from the entropy production fluctuation theorem is recovered for
d = 1, and the original entropy production thermodynamic uncertainty relation is
obtained in the d→∞ limit. We show that our result can be generalized to order
parameters in equilibrium systems, and we illustrate the results on a Heisenberg
spin chain.

Keywords Isometric fluctuation theorem, nonequilibrium steady state, thermo-
dynamic uncertainty relation, broken symmetry.

PACS 05.70.Ln – 05.40.-a – 02.50.-r

1 Introduction

Current generation is central to nonequilibrium processes much like fluctuations
are central to microscopic dynamics. Consequently, when studying microscopic sys-
tems away from equilibrium, intense interest has focused on the overlap between
the two: fluctuations in currents. Those current fluctuations have been studied in
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explicit models to gain insight into the reliability of molecular motors [1, 2], the
behavior of exclusion processes [3], and fluxes in macroscopic systems [4]. Recently,
it has been demonstrated that under fairly broad conditions, and without reliance
on a particular model system, current fluctuations are constrained by thermody-
namic considerations. The first such demonstration, applying to Markovian jump
dynamics on finite state spaces, was a so-called Thermodynamic Uncertainty Re-
lation (TUR) which states that the relative size of current fluctuations compared
to their mean is constrained by the average rate that entropy is produced in the
nonequilibrium steady state [5]. Initial derivations of this TUR, hereafter referred
to as the original TUR, relied heavily on methods of large deviation theory to
explicitly bound the size of current fluctuations using the probability of jump
trajectories [6, 7]. Subsequent analyses used information geometry [8, 9] and the
entropy production fluctuation theorem (FT) [10–12] to derive related results.
One appeal of those alternate perspectives is that the resulting bounds on current
fluctuations, though typically weaker, can apply more broadly than the original
TUR [13]. For example, uncertainty relations derived from the FT can be applied
to classical systems with discrete timesteps, to time-dependent driving, or even to
quantum dynamics, all situations that can violate the original TUR [14–18].

The uncertainty relations derived from the FT can be seen as consequences of a
symmetry, or more precisely a broken symmetry. In the absence of dissipation, tra-
jectories and their time-reversals occur with equal probability. Dissipation skews
that balance—the greater the dissipation, the greater the broken time-reversal
symmetry, which directly impacts the distribution of currents. Consider, for ex-
ample, a particular trajectory which accumulates current J and its time-reversal
which must accumulate current −J . The relative probability of observing the two
trajectories is regulated by the dissipation, but that relative probability also im-
pacts the degree of uncertainty in measurements of current. Hence, there must exist
some inequalities which bound that uncertainty by a function of the dissipation.
Recently, Timpanaro et al. presented the particular function of dissipation that
gives the tightest possible TUR derivable solely from broken dynamical symmetry
of the FT [11]. That result is necessarily weaker than the original TUR, which
implicitly respects the FT symmetry but which also utilizes additional statistical
properties of Markovian jumps. Despite producing weaker bounds, we find it stim-
ulating to investigate what limitations on fluctuations can arise from symmetry
arguments alone. In this paper we consider extra broken symmetries beyond time
reversal and analyze how those additional symmetry relations strengthen uncer-
tainty bounds.

The motivating broken symmetry is that of the isometric fluctuation theorem[19–
22], which we briefly motivate for completeness. Imagine observing heat transfer
through a semi-infinite slab that is sandwiched between hot and cold thermal
reservoirs. On average, energy will transfer from hot to cold with no flow parallel
to the slab-reservoir surfaces, but if one considers fluctuations away from this av-
erage behavior, there is a distribution over the possible vectorial heat currents J.
Much like forward and reversed trajectories have different probability in the case
of broken time-reversal symmetry, all possible J with the same magnitude do not
have the same probability. In this standard example, the isometric FT requires
that various realizations of J with identical magnitudes have relative likelihoods
which are simply expressed in terms of a global symmetry-breaking field, in this
case the temperature gradient between the reservoirs[19, 20]. Our work here shows



Isometric Uncertainty Relations 3

how the isometric FT implies a stronger TUR than could be obtained solely on
the basis of the FT. The FT-based TURs depend only on the dissipation, and we
demonstrate that the stronger isometric TUR likewise depends only on physically
observable quantities related to the breaking of symmetry. We should be clear that
incorporating additional broken symmetries still does not constrain fluctuations
as strongly as the original TUR, so any benefit of this work appears greatest when
that original TUR breaks down, e.g., discrete time, time-dependent or quantum
dynamics.

By framing the arguments in terms of generic broken symmetries, our work
translates naturally to uncertainty relations on fluctuations which are not dynamic
in nature, i.e., not only fluctuations in currents. As an example, we illustrate the
impact of broken symmetries on fluctuations in the classical equilibrium statis-
tical mechanics of spin systems. By systematically increasing the dimensionality
of the spin space, we demonstrate how additional broken-symmetries tighten the
uncertainty relations.

The structure of the paper is as follows. We begin with a review of broken sym-
metries, the isometric FT, and the Von Mises-Fisher distribution in Sec. 2. Given
all of an order parameter’s broken symmetries, the Von Mises-Fisher distribution
is the distribution which maximizes that order parameter’s uncertainty. Using this
fact, we derive an isometric TUR from the isometric FT in Sec. 3. Section 4 maps
the isometric TUR for dynamical fluctuations into uncertainty relations for order
parameters of classical equilibrium statistical mechanical spin systems. In that
context, it is simple to tune the number of broken symmetries by changing the
dimensionality of the spin space, thereby allowing us to systematically reveal that
greater symmetry tightens the thermodynamics bounds. Finally, in Sec. 5 we close
with a discussion.

2 Setup

2.1 Broken time-reversal symmetry and the fluctuation theorem

Consider a Markovian system in a d-dimensional continuous space. At time t, the
state of the system is Xt ∈ Rd, and we denote a trajectory by {Xt}. The time-
reversal operator, TR, acts on the trajectory to return the time-reversed trajectory
that we denote by {X′t} = TR({Xt}). For an equilibrium dynamics, there is a
time-reversal symmetry such that the path probability of the two trajectories
are equal: P0({Xt}) = P0({X′t}). For nonequilibrium dynamics, that symmetry
is broken by some thermodynamic forces F which induce currents J conjugate
to the forces. The dot product between those forces and currents is the Radon-
Nikodym derivative of the path probability with respect to the path probability
of the time-reversed path [23]:

F · J = ln
dPF ({Xt})
dPF ({X′t})

. (1)

The current is an observable function of the trajectory, J({Xt}) that is inverted
upon time-reversal of the trajectory. With suitable marginalization, one can pass
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from the path probabilities to the probability P (J) of observing current J. Due to
Eq. (1), this distribution of currents must satisfy a FT:

P (J) =

∫
dPF ({Xt})δ(J({Xt})− J)

=

∫
dPF ({X′t})

dPF ({Xt})
dPF ({X′t})

δ(J({Xt})− J)

= eF ·J
∫

dPF ({X′
t})δ(J({X′

t}) + J)

= P (−J)eF ·J . (2)

Viewed in this way, the dot product between thermodynamic forces and conjugate
currents is the measure of the time-reversal symmetry breaking, but this dot prod-
uct also has a thermodynamic meaning: the dissipation Σ = F ·J. That connection
between time-reversal symmetry breaking and thermodynamics is the core feature
of the FT, and it is possible to carry out completely analogous mathematical steps
based upon other broken symmetries.

2.2 Broken rotational symmetry and the isometric fluctuation theorem

Rather than focusing on the action of time reversal on the trajectory’s probability,
one may consider the impact of a rotation R of the d−dimensional state space.
As in the preceding analysis, we write the transformed trajectory as {X′

t} =
R({Xt}) such that for all times t, X′

t = RXt, i.e., the trajectory under the
action of the rotation is {X′

t}. For an isometric (symmetric) system with path
probability P0({Xt}), this rotation should not have an effect; the probability to
observe a trajectory is the same as the probability to observe the transformed
trajectory P0({Xt}) = P0({X′

t}). In the presence of an external field F, this
rotational symmetry is broken, but a relation emerges between the probability of an
observable and the probability of the transformed observable[19, 21, 22]. Following
the example of time-reversal symmetry, the current-like observable, which we will
denote as Θ({Xt}), is the one conjugate to F. In analogy with (1), what we mean
by conjugacy is that Θ satisfies

1

2
F · (Θ({Xt})−RΘ({Xt})) = ln

dPF({Xt})
dPF({X′t})

. (3)

Like J above, Θ can be computed as a function of the trajectory {Xt} and is
thus an order parameter of the trajectory which characterizes the breaking of the
rotational symmetry by the external field. Under a rotation of the trajectory, the
order parameter Θ will also be transformed as Θ′ = RΘ. The analog of Eq. 2
yields the isometric fluctuation theorem that constrains the fluctuations of Θ by

P (Θ)

P (Θ′)
= e

1
2
F·(Θ−Θ′) (4)

where Θ and Θ′ are related by a rotation.
Because Eqs. (2) and (4) share the same structure, we should highlight the

distinctions. Principally, the FT of Eq. (2) compares the probability of only two
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possible values of an observable: J and −J which are related by a discrete trans-
formation (time-reversal). The isometric FT, by contrast, expresses a family of
comparisons between values Θ and Θ′ for all continuous rotations R. However,
among all the rotations, we always have the discrete parity operation1 that maps
Θ to −Θ. Applying this parity operation inverts spatial currents in the same man-
ner as the time-reversal operation. We deduce that Θ must therefore be like the
current, though it can actually differ from J by surface terms2. In the long-time
limit, those surface terms decay away to leave an asymptotic isometric FT in terms
of currents:

lim
t→∞

1

t
ln

P (J)

P (J′)
=

1

2
F · (J − J′), (5)

with J and J′ related by rotation [19]. We have retained the surface terms in our
presentation so that the isometric FT, Eq. (4), holds at all times.

2.3 Angular distributions

A strong consequence of the isometric FT is that the angular part of the dis-
tribution P (Θ) can be expressed in terms of the Von Mises-Fisher probability
distribution,

fvMF (x; re0) =
ere0·x

Zd(r)
for x ∈ Sd. (6)

The random variable x is confined to the (d− 1)-dimensional unit sphere Sd, with
the distribution parameterized by a radius r and a preferred direction e0. Notably,
the normalization factor Zd(r) can be explicitly integrated in terms of Iν(r), the
modified Bessel function of the first kind of order ν:

Zd(r) =

∫
x∈Sd

dxere0·x =
(2π)d/2Id/2−1(r)

rd/2−1
. (7)

We decompose Θ into a product of its norm |Θ| and its direction x ≡ Θ/ |Θ| to
express P (Θ) in terms of the Von Mises-Fisher distribution:

P (Θ) =
P (|Θ|x)

P (|Θ| eF)
P (|Θ| eF)

= P (|Θ| eF)e
1
2
|Θ||F|eF ·(x−eF )

= P (|Θ| eF)e−
1
2
|Θ||F|eF ·eFZd

(
|Θ| |F|

2

)
e

1
2
|Θ||F|eF ·x

Zd

(
|Θ| |F|

2

)
= Q(|Θ| |F|)fvMF

(
x;

1

2
|Θ| |F| eF

)
, (8)

where eF ≡ F/ |F| is a unit vector in the direction of the symmetry-breaking field.

Note that Q(r) = P

(
r

|F|eF
)
e−

r
2Zd(

r
2 ) is a normalized probability distribution

1 The Z2 group is always a subgroup of rotation groups.
2 These surface terms will depends of the chosen dynamics. See Ref. [22] for more details.

In particular, Θ will not include currents generated by time-periodic driving.
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over the positive reals3. The distribution forΘ therefore decomposes into the prod-
uct of a known high-dimensional angular distribution fvMF and the single-variable
radial distribution Q(r). In fact, we have employed this decomposition precisely
because it highlights that the symmetry constraints affect the angular distribution
but do not restrict Q(r). As such, Q(r) can in principle be any normalized radial
distribution, even the delta function employed in the next section.

3 Derivation of Isometric Uncertainty Relations

An isometric uncertainty relation for Θ requires that we compute the first and
second moments of that vectorial order parameter. However, as in the original
TUR, it is simpler to study fluctuations in a scalar observable. In that context,
it is common to project high-dimensional currents onto a single scalar current,
and the TURs tend to yield particularly tight inequalities when the dissipation,
Σ = F · J, is chosen as the scalar current. The analog for the isometric case is to
study fluctuations in the scalar4 S = F ·Θ, whose moments are simply expressed
in terms of the moments of the von Mises-Fisher distribution via the change of
variables 〈

S n〉 =

∫
dΘ (F ·Θ)nQ(|Θ| |F|)fvMF

(
Θ

|Θ| ;
|Θ| |F|

2
eF

)
=

∫
dr Q(r)rn

∫
x∈Sd

dx(eF · x)nfvMF

(
x;

r

2
eF

)
. (9)

We highlight that by choosing to study fluctuations in S , we are drawing a par-
allel with TURs for entropy production fluctuations but not for fluctuations in
generalized currents.

From Eq. (9), the first and second moment of F ·Θ can be expressed as the
radial averages

〈S 〉 = 2

∫
dr Q(r)ed

(
r

2

)
, (10)

and 〈
S 2
〉

= 4

∫
dr Q(r)cd

(
r

2

)
. (11)

where the functions ed(r) and cd(r) are angular averages taken over the sphere
of radius r, which are computed by integrating the Von-Mises-Fisher distribution.
Specifically,

ed(r) = r

∫
x∈Sd

dxe0 · xfvMF (x; re0) = r

dZd
dr

(r)

Zd(r)
= r

Id/2(r)

Id/2−1(r)
(12)

and

cd(r) = r2
∫
x∈Sd

dx(e0 · x)2fvMF (x; re0) = r2
d2Zd
dr2

(r)

Zd(r)
= r2 − (d− 1)ed(r). (13)

3
∫+∞
0 dr P

(
r

|F|eF
)
e−

r
2
∫
x∈Sd

dxe
r
2
eF ·x =

∫+∞
0 dr

∫
x∈Sd

dxP

(
r

|F|x
)

= 1

4 This scalar is the analog as S equals the dissipation Σ in the long-time limit.
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Note that if one alters the stochastic dynamics, Q(r) will respond to the change
but ed(r) and cd(r) are completely fixed by the symmetry properties. As such, we
can deduce the minimum possible variance (at fixed 〈S 〉) by inserting in place of
Q(r) the narrowest possible radial distribution that fulfills the constraint on the
mean. This extremal distribution is given by

Q̃(r) = δ(r − r∗), (14)

with r∗ chosen such that 2
∫
Q̃(r)ed(r) = 〈S 〉, a choice directly inspired by Ref. [11].

As ed(r) is an invertible function (see App. A), we can obtain the extremal radius
r∗ by r∗ = e−1

d (〈S 〉 /2).

It remains to prove that Q̃(r) indeed yields the minimum variance. To do so
we show that the second moment for an arbitrary Q(r) is bounded from below by
the second moment of Q̃(r):〈

S 2
〉

= 4

∫
dr Q(r)cd

(
e−1
d

(
ed

(
r

2

)))
> 4cd

(
e−1
d

(∫
dr Q(r)ed

(
r

2

)))
= 4cd

(
e−1
d

(
〈S 〉

2

))
= 4

∫
drQ̃(r)cd(r).

(15)

The inequality step of this algebra results from a convexity argument since cd(e
−1
d (u))

is a convex function of u (see App. A). Having bounded the second moment, we
derive a d−dimensional lower bound on the variance:

Var(S ) > Vd(〈S 〉). (16)

A straightforward calculation gives this bound in terms of the inverse function e−1
d

(which does not have a simple analytic form):

Vd(〈S 〉) = 〈S 〉2


cd

(
e−1
d

(
〈S 〉

2

))
ed

(
e−1
d

(
〈S 〉

2

))2
− 1

 (17)

= 4e−1
d

(
〈S 〉

2

)2

− 2(d− 1) 〈S 〉 − 〈S 〉2 . (18)

The final equality of Eq. (15) emphasizes that the lower bound is associated
with our extremal distribution (14). This bound will therefore be sharp when the
dynamics yields a peaked Q(r) which resembles the delta function Q̃(r). In most
cases that will not be the case, but in the symmetric case where F = 0, we will
have Q(r) = δ(r) leading to a saturating bound in the limit of 〈S 〉 → 0, as usual
for uncertainty relations.

Finally, we are able to inspect the isometric thermodynamic uncertainty bound,
Vd(〈S 〉)/ 〈S 〉2 as a function of the mean symmetry breaking 〈S 〉 = F · Θ and
the dimensionality of the symmetry, d. The plot in Fig. 1 demonstrates that the
isometric TUR improves with increasing d since higher-dimensional symmetries
impose more constraints on the distribution of the order parameter5. In the d = 1

5 The monotonic tightening follows from the fact that an order parmameter distribution
obeying a d dimensional symmetry must also obey a d− 1 dimensional symmetry.
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d→∞

Vd(〈S 〉)/〈S 〉2 = 2/〈S 〉

Fig. 1 Plot of the symmetry-dependent lower bound (16) on the uncertainty ratio

Var(S )/ 〈S 〉2 of the symmetry breaking order parameter as a function of the mean value
of that order parameter. If the broken symmetry were the time reversal symmetry, then the
plot would be that of the TUR bounds versus the dissipation, in which case the symmetry-
derived bounds are known: the exponential bound (dot-dashed) from Ref. [10] and the d = 1
bound (yellow) from Ref. [11]. As the symmetry dimensionality increases, the bound tightens,
reaching the original TUR (dotted) in the d→∞ limit.

limit, the rotation group is Z2, so the symmetry constraint on the order parameter
is actually the exact same as that imposed by the discrete time-reversal symmetry.
Thus it should be no surprise that the results collapse onto the known FT bounds
from Refs. [10, 11]:

Var(S ) > V1(〈S 〉) =
〈S 〉2

sinh2
(
e−1
1 (〈S 〉 /2)

) >
2 〈S 〉2

e〈S 〉 − 1
(19)

where e−1
1 (x) is the inverse function of x tanhx from Eq. (12).

Interestingly, the d → ∞ limit also returns a known bound, in this case the
original TUR. To see this, we use the large-d expansion (see also App. A)

e−1
d

(
〈S 〉

2

)
=

√
d
〈S 〉

2
+
〈S 〉3/2

4
√

2d
+O

(
1

d

)
. (20)

to compute the limiting behavior of Vd(〈S 〉) = 4cd(e
−1
d (〈S 〉 /2)−〈S 〉2. Recalling,

Eq. (13), we get

lim
d→∞

Vd(〈S 〉) = lim
d→∞

(√
d
〈S 〉

2
+
〈S 〉3/2

4
√

2d

)2

− (d− 1)
〈S 〉

2
− 〈S 〉2 +O

(
1

d

)
= 2 〈S 〉 , (21)

which leads to the uncertainty bound of 2/ 〈S 〉. The d → ∞ limit is particularly
simple because the minimum-variance order parameter distribution must become
Gaussian in this limit, which is essentially the same reason the O(N) model be-
comes solvable in infinite dimensions. Gaussian current fluctuations also underpin
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the original TUR for Markov jump processes, though the Gaussian nature of the
d → ∞ limit emerges for a different reason. In the former case Gaussians emerge
from a linear response bound whereas in the latter case they come from the large
dimensionality limit.

It is appealing mathematically that degrees of symmetry provide a natural
interpolation between the FT TUR and the original entropy production TUR,
but this connection also demonstrates that all of the symmetry-driven TURs are
necessarily weaker than the original TUR. If, for example, one is interested in
studying the example of the introduction—heat currents through a slab between
two thermal reservoirs—the isometric TUR would apply, but so would the stronger
original TUR. The principal applicability of isometric TURs is therefore confined
to cases where the original TUR is known to break down. Even in those cases, the
inequalities weaken as the observation time increases, a phenomena similar to the
one discussed for d = 1 in Ref. [13].

4 Application to Broken Symmetry of Equilibrium Statistical Mechanical

Systems

4.1 Mapping to Equilibrium Problems

Broken symmetries and isometric fluctuation theorems have direct analogs in equi-
librium systems. As such, the bounds we have described can be mapped to equilib-
rium inequalities on fluctuations in the appropriate static order parameter[24–26].
To demonstrate the connection between nonequilibrium dynamical fluctuations
and equilibrium static fluctuations, it is useful to observe how the Boltzmann dis-
tribution for configurational fluctuations yields expressions that mirror Secs. 2.1
and 2.2. We focus our discussion around a 1d spin chain of length N with peri-
odic boundary conditions. As is standard, the spins can interact with one or more
neighbors with some potential V as well as with an external field B such that the
probability of spin configuration {σ} is

PB ({σ}) =
e−H({σ})

ZB
(22)

with Hamiltonian

H ({σ}) = V ({σ}) +
N∑
i=1

B · σi, (23)

inverse temperature β = 1, and partition function ZB . To match the notation of
Section 2, we have highlighted that the distribution over spins, PB , is a function
of the external field B. In the absence of an external field and with a rotationally
invariant V , the probability of a spin configuration {σ} is unaltered by a global
rotation of all spins. That is to say, for some rotated configuration

{
σ′
}

= R ({σ})
consisting of an identical rotation of each spin, P0 ({σ}) = P0

({
σ′
})

. The external
field will break the rotational symmetry, resulting in a relation between PB({σ})
and PB(

{
σ′
}

) that mirrors Eqs. (1) and (3). Because PB is simply given by the
Boltzmann distribution in Eq. (22), we have

ln
PB ({σ})
PB ({σ′})

= B · (RM −M), (24)
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where M is the net magnetization

M =
N∑
i=1

σi. (25)

Comparing Eqs. (3) and (24), the order parameter analogous to Θ is thus −2M,
yielding the equilibrium isometric fluctuation theorem [24, 25]:

PB(M)

PB(M′)
= eB·(M

′−M). (26)

Using the results from the previous sections, one can show that this implies a
bound on the variance of B ·M:

Var(B ·M) > cd

(
e−1
d (〈B ·M〉)

)
− 〈B ·M〉2 , (27)

where d is the dimension of the spin space. For the nonequilibrium fluctuations, we
focused on the variance of F ·Θ, a dissipative measure of the symmetry breaking.
Here, the observable B ·M also measures symmetry breaking, but it carries the
interpretation of the energy of coupling between the system and the external field.

4.2 Example

To evaluate the tightness of these uncertainty bounds, we turn to a Heisenberg spin
chain model with periodic boundary conditions and nearest-neighbor interactions
described by the Hamiltonian

H = −J
N∑
i=1

σi · σi+1 +
N∑
i=1

B · σi, (28)

with σi ∈ Sd and coupling constant J (not to be confused with the notation
for currents at the beginning of the paper). These spin chains provide a natural
means to tune the system size N and the dimensionality d. In Fig. 2a we plot
the bound on the variance in the energy of coupling between system and external
field, Eq. (27). This variance bound, plotted as a dashed line, notably does not
depend on the system size N . For comparison, we also plot the actual variance,
computed from the Boltzmann distribution, Eq. (22). For N = 1, the Boltzmann
distribution for the spin corresponds to the Von Mises-Fisher distribution, Eq. (6)
and therefore, the variance saturates the theoretical bound. For N > 1 variance
exceeds the bound, but the tightness of the bound depends sensitively on the
system size. Specifically, larger systems exhibit larger fluctuations. If the spins
were all statistically independent (J = 0), the fluctuations in B ·M would simply
be proportional to N . With coupled spins, the variance still grows with N while
the symmetry-derived bound does not. Consequently, the symmetry-derived bound
becomes insignificant in the large-system-size limit, analogous to the problem with
long-time limits of FT bounds [13]. Fig. 2a also illustrates that, independent of
N , the bound is saturated for 〈B ·M〉 . kBT = 1. This saturation is a general
prediction from linear-response theory [5, 27].
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Fig. 2 (a) Comparison of the bound (dashed line) and the variance (full line, obtained by
Monte Carlo simulations) for a Heisenberg spin chain with spin dimension d = 2 and chain
length N = 2, 3, and 4. (b) Ratio between the variance and the bound for a chain of length
N = 2, for d = 3 to d = 6. For both figures, we set J = 0.1 and converged the values by
attempting 4 · 107 Monte Carlo single-spin moves per data point.

As d increases, the bound improves, though the large N problem dominates
unless the system size is very small. Nevertheless, we illustrate the d-dependence
of the bound using a tiny N = 2 spin chain. The ratio between the variance and
the bound is pictured in Fig. 2b for increasing d, showing two principle features.
First, the variance of the N = 2 spin chain cannot exceed twice the bound. This
restriction has a simple origin. For large values of 〈B ·M〉, the spins becomes
effectively independent, causing the ratio between the variance and the bounds to
converge to N . More interestingly, as d increases, the ratio of variance to bound
moves closer to unity. Indeed, for higher dimensional spin spaces, a higher number
of degrees of freedom are constrained by the isometric fluctuation theorem and
therefore the bound is tighter. In fact, we expect the d→∞ case would result in a
saturated bound since the spin chain becomes the O(N) model (see the discussion
of the d→∞ limit in Section 3).

5 Discussion and future directions

In this article, we have studied the effects of broken symmetry on fluctuations.
We have shown that the isometric fluctuation theorem allows the decomposition
of an order parameter’s probability distribution into an angular part subject to
a fluctuation theorem and an independent radial part. This decomposition then
leads to dimensionality-dependent lower bounds on the variance, that originate
exclusively from the isometric fluctuation theorem. We have studied those bounds
both for nonequilibrium dynamical systems and equilibrium systems. The bounds
are shown to be effective for small values of the order parameter due to linear
response. However, the order parameter will grow extensively when one considers
either long trajectories or large system sizes, and the bounds become arbitrarily
weak in either of those limits.
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It is natural to wonder if extensive systems could be usefully bounded by split-
ting the system into effectively independent components, each of which could be
bounded by the symmetry-derived bounds. To do so, one might imagine cutting
the trajectories (or systems) into small blocks with size equal to the correlation
time (length) so that all blocks behave statistically independently. Such a pro-
cedure would produce bounds which scale with system size in the same manner
as the actual fluctuations scale, though we think it is nontrivial to make such a
procedure rigorous.

Though they would suffer from the same extensive scaling problem, we antici-
pate additional symmetry-derived bounds that rely on fluctuation relations other
than the isometric FT. For example, observables satisfying the anisotropic fluc-
tuation theorem [21, 22] should have similar bounds that now require angular
distributions over an ellipse rather than a sphere. Such an extension is conceptu-
ally similar, though the computations would become more complicated. It may also
be possible to utilize additional discrete broken symmetries [28, 29], though the
strategy could not be copied directly since the analog of ed(r) would not generally
be invertible. Whether that problem can be circumvented to give a general frame-
work for calculating fluctuation constraints from (broken) symmetries remains an
interesting question for future research.

A Analytical properties of the Fisher-Von Mises distribution

A.1 Properties of Bessel functions

To derive the main properties of ed(r) and cd(r), we first state some well-known properties of
the modified Bessel function of the first order, Iν(r), then show their direct consequences for
ed(r) and cd(r) [30–33]. Firstly, the recurrence relation,

Iν(r) = Iν−2(r)− 2(ν − 1)

r
Iν−1(r), (29)

is equivalent to

ed(r) =
r2

ed−2(r)
− (d− 2). (30)

The derivative of the Bessel function can be written as

d

dr
Iν(r) = Iν−1(r)− ν

r
Iν(r), (31)

which, after some algebra, leads to

r
d

dr
ed(r) = r2 − ed(r)2 + (2− d)ed(r). (32)

Furthermore, the inequality

1− 2ν

r

Iν(r)

Iν−1(r)
<

Iν(r)2

Iν−1(r)2
, (33)

gives an inequality for ed(r)
r2 − ded(r)− ed(r)2 < 0. (34)

Another useful inequality is
Iν(r) 6 Iν−1(r), (35)

or
ed(r) 6 r. (36)
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Finally, we mention a large-ν expansion of Iν(r):

Iν(r) ≈ rν

2νΓ (ν + 1)

(
1 +

r2

4(ν + 1)

)
, (37)

where Γ (r) is the Gamma-function. This implies

ed(r) ≈ r2

d
− r4

d2(d+ 2)
, (38)

for large d.

A.2 Invertibility of ed(r)

The invertibility of ed(r) on [0,+∞) simply follows from the positivity of its derivative over
[0,+∞). That derivative is simplified using the relations from A.1:

r
d

dr
ed(r) = r2 − ed(r)2 + (2− d)ed(r)

= r2(ed−2(r)2 + (d− 2)ed−2(r)− r2 > 0. (39)

The first equality follows from Eq. (32), the second equality follows from Eq. (30), and the
inequality follows from Eq. (34). This demonstration of positivity completes the proof for the
invertibility of ed(r).

A.3 Convexity of cd(e
−1
d (u))

We shall now prove the convexity of cd(e−1
d (u)). First we note that

cd(e−1
d (u)) =

(
e−1
d (u)

)2
− (d− 1)u. (40)

By taking two derivatives, we obtain

d2

du2
cd(e−1

d (u)) =
2(

e′d(e−1
d (u))

)3 (e′d(e−1
d (u))− e−1

d (u)e′′d (e−1
d (u))

)
, (41)

where ′ denotes a derivative. Therefore the function is convex if and only if,

d

dr
ed(r) > r

d2

dr2
ed(r), (42)

where r = e−1
d (u). We prove this relation via an induction-like argument: first we show that

Eq. (42) holds for large d and subsequently, we will prove that if the relation holds for dimension
d+2, it should also hold for dimension d−2. The fact that Eq. (42) holds for large d immediately
follows from Eq. (38). Therefore, we should just prove that the relation holds for dimension
d− 2, given that it holds for d+ 2. To see this, we first start from Eq. (30), which can be used
to relate ed−2(r) to ed+2(r):

ed−2(r) =
r2

ed(r) + d− 2
(43)

=
r2(ed+2(r) + d)

r2 + (d− 2)(ed+2(r) + d)
. (44)

Our goal of the inductive step is to demonstrate that

d

dr
ed−2(r) > r

d2

dr2
ed−2(r), (45)
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but the relation between d−2 and d+2 in Eq. 44 allows us to rexpress this target as a slightly
complicated inequality involving ed+2(r) instead of ed−2(r):

(
(d− 2)ed+2(r) + d(d− 2) + r2

)
r2

d2

dr2
ed+2(r)− 2(d− 2)r2

(
d

dr
ed+2(r)

)2

+
(
7(ed+2(r) + d)(d− 2)− r2

)
r
d

dr
ed+2(r)− (8d− 16) (ed+2(r) + d)2 6 0. (46)

Using the inductive hypothesis,

r2
d2

dr2
ed+2(r) 6 r

d

dr
ed+2, (47)

we prove Eq. (46). To do so, we recognize that Eq. (36) requires the coefficient of the e′′d+2(r)

term in (46) to be positive:

(d− 2)ed+2(r) + d(d− 2) + r2 > 0, (48)

provided d > 2. As a consequence, the left hand side of Eq. (46) is upper bounded by

−2(d− 2)

(
r
d

dr
ed+2(r)− 2 (ed+2(r) + d)

)2

, (49)

which is strictly negative. Thus the d − 2 concavity follows from d + 2 concavity, completing
the proof.
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