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Abstract 

Investigating travel time distribution and associated variability is important for a variety of 

transport planning, traffic management and control projects. Studies that investigated travel time 

distribution tend to be limited to explore changes in characteristics of distribution with respect to 

space and time-of-day. Given the availability of big data set that contains seven different types of 

vehicle trajectories in the city of Athens for around 56,000 trips which are traversing on more than 

1.8 million road links, this study presents the detailed investigation of travel time distribution in 

different spatio-temporal settings. The study considered four different types of urban roads and six 

time intervals along with consideration of weekdays and weekends. The empirical investigation 

employed Kruskal-Wallis, Chi-square and Kolmogorov-Smirnov tests to fit travel time data into 

seven uni-modal statistical distributions that are found in the literature to describe travel time 

distribution. It is found that lognormal distribution outperformed other distribution, and all of the 

considered categories of travel time data are well-fitted to this distribution. Additionally, 

parameters of log-normal distribution for different categories of travel time data are not 

significantly different from each other, which led to the conclusion that travel time distribution is 

roughly independent of space and time, which is in agreement with a few earlier studies that are 

limited in their scope especially in relation with availability of data. With this important finding, 

this study estimate values of travel time variability for different classes of individuals employing 

a standard approach that requires time-of-day independent standardized distribution of travel time. 

It is estimated that for Athens population value of travel time variability is approximately half of 

the value of travel time. This is useful to carry out cost-benefit analyses for mobility-related 

projects in Athens, Greece. 
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1. Introduction 

Travel time is an important measure for travelers which affects their choice of mode, route, 

departure time and other decisions related to trip planning (Beaud et al., 2016, Adnan et al., 2009, 

Rui et al. 2015, Baqueri et al. 2019, Petrik et al. 2018). To address urban mobility, travel times on 

the road network and its reliability are used as key indicators. This information is being 

disseminated to the users regularly to make informed trip decisions (Ma et al., 2017, Khun et al 

2013). It becomes essentially important for traffic engineers and planners to have in-depth 

knowledge of network-wide travel times as it provides inputs for transportation planning and 

management at many levels. Some of the important applications of travel time include traffic 

assignment models (Chen and Zhou, 2010), microscopic simulation models (Pel et al., 2012) and 

economic analysis of highway facilities (Peer et al., 2012). 

Studies have also shown that travelers value travel time variability (VTTV) significantly, which is 

the results of inherent randomness in demand, supply and network performance (Jenelius 2012). 

Therefore, many recent travel decision models (mode, route and departure time choice) incorporate 

TTV. Recently, it is emphasized and recommended to include the cost of TTV into the cost-benefit 

analysis (CBA) for transportation projects (Eliasson 2019, Fosgerau 2017, NZTA 2016, OECD 

2016). Fosgerau (2017) developed a method for estimating the ratio of the value of travel time 

(VTT) and the value of travel time variability (VTTV), which is termed as travel time reliability 

ratio (TTRR). Zang et al. (2018) stated that TTRR is a dimensionless quantity and can be used in 

CBA application as recommended by the Organization of Economic Cooperation and 

Development (OECD, 2016). The calculation of TTRR requires knowledge of standardized travel 

time distribution function. Therefore, a well-fitted theoretical probability distribution can provide 

a reasonable estimate of TTRR. Exploration and understanding of travel time distribution 

characteristics are therefore crucial. 

A significant amount of studies exists that analyses and fitted various available statistical 

distributions onto travel time datasets. Single-mode distribution (one kind of standard distribution) 

are found more commonly in the literature, such as Lognormal (Emam and Al-Deek, 2006, 

Kaparias et al, 2008, Rakha et al, 2010, Arezoumandi 2011, Lie et al 2014, Chen et al 2018), 

Gamma (Polus, 1979, Nie et al 2012, Lie et al 2014, Chen et al 2018), Weibull (Emam and Al-

Deek 2006, Lie et al 2014, Chen et al 2018), Burr (Susilawati et al 2013, Lie et al 2014, Kieu et al 

2015) and Stable (Fosgerau and Fukuda, 2012) distributions. Multi-mode distributions are also 

fitted in some studies as this approach provides much improved model fitting in comparison to 

single-mode models by considering travel times dataset comprising from two (or more) 

populations. Within this approach; normal mixture model (Guo et al 2010, Yang and Wu 2016), 

Lognormal mixture model (Kazagali and Koustopoulos 2012, Yang and Wu 2016), Gamma 

mixture model (Yang and Wu 2016) and a finite mixture of the regression model (Chen et al 2014) 
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are investigated. Maximum likelihood estimation and expectation-maximization algorithms were 

used to fit multi-mode distribution, which require more computational resources in comparison 

with single-mode distribution fitting.  

Chen et al (2018) mentioned that studies that explore travel time and their distributions used 

datasets that are collected mainly from one road type. A few studies have used datasets that are 

collected from different roads, however, in their analysis, they have treated different roads equally. 

Additionally, travel times can rapidly change due to changes in various circumstances, such as 

road types, their geometry, type of traffic control employed, presence of incidents and variation in 

demands. Travel time variability can also differ due to these circumstances, and to appropriately 

capture this, detailed spatial and temporal exploration of travel time distribution is required. On 

the other hand, empirical studies that are limited to one-single road and few links found that travel 

time distribution is roughly independent of time-of-day (Fosgerau and Fukuda 2012). To this end, 

we found only one single study (Chen et al 2018) that investigated four single-mode distributions 

such as normal, lognormal, gamma and Weibull, for different road types (Urban expressways, 

Auxiliary roads of urban expressways, Major roads and secondary roads) and at different time 

periods(peak hour and off-peak hour during weekdays and weekends) using vehicle GPS probe 

data of Beijing, China. They found out that lognormal distribution is superior over the other three 

distributions, however, differences exist in relation to time periods (especially in relation to peak 

periods) and road types. However, the study does not provide estimated parameters of the 

distributions, so that the actual magnitude of differences can be measured nor it is helpful to be 

applied to other similar cities like Beijing. Additionally, the dataset used was came from taxis, and 

therefore, cannot be generalized with higher confidence. Therefore, it is required to have further 

investigation to confirm the findings of earlier studies about the dependency of travel time 

distribution with respect to space and time. 

This study further extends the work carried out by Chen et al (2018) by using the similar 

methodological steps. It attempts to overcome a few shortcomings of the previous study, such as 

consideration of GPS probe data not just from taxis but from all vehicles in the traffic stream, 

investigating more distributions (in total seven) instead of only four, four road types with six-time 

periods along with consideration of weekdays and weekends and using a significantly large dataset 

available for Athens, Greece. Additionally, this study also provides the estimates of TTRR, and 

based on that VTTV is also estimated for various population classes and trip purposes utilizing 

earlier reported values of VTT for Athens, Greece, so that it can be applied in CBA. The remainder 

of the paper is structured as follows: Section 2 presents details of the methods and dataset 

employed in the study, section 4 presents results of fitted distributions, estimation of TTRR and 

VTTV and also discuss the results and compared the findings from previous literature followed by 

concluding section. 
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2. Data and Methods 

2.1 Data Characteristics and Preparation 

GPS trajectory data used in this study was provided by Vodafone Innovus S.A for the vehicles 

traveling in Athens, Greece. The data is collected at an average rate of 0.96 points per minute, and 

accommodates rich information such as GPS positioning, time, vehicle speeds, headings, engine 

status, driving events (e.g. brakes), and fuel levels. According to Vodafone Innovus S.A (a 

technology provider for fleet management) a device is installed in the vehicle, that include a SIM 

card and connect via GSM network to transmit the data to the server. While the vehicle in motion, 

the data was generated more frequently (i.e. for every 300m to 800m distance covered by the 

vehicle) and when certain event occur (i.e. lane changing etc.) it also generate a data. However, 

when the vehicle is in stopped condition it generates data with lesser frequency. This study only 

utilizes GPS positioning, vehicle speed and engine status, to find out trips of the vehicle and then 

estimated time consumed to travel on the specific type of roads in a trip. The dataset consists of 

data of 1585 vehicles of 7 different types (such as Passenger car, bus, minibus, taxi, minivans, 

vans, minitrucks) during 3 months of operation between September to November 2018. The total 

size of the data is 66.4GB. Usual cleaning methods were employed on the dataset, such as removal 

of a few outliers (GPS points) that correspond to extremely high instantaneous vehicle speed (i.e. 

speed more than 170km/hr) after examined its distribution as in this study we examine roads in 

Athens apart from freeways/motorways/expressways, where speeds limits are in the range of 20-

110 km/hr. In addition to this, duplicate points with identical point IDs and timestamp are also 

removed from the dataset. Furthermore, the distance between the two consecutive points is also 

examined, which is found in reasonable bounds (i.e. from 0 to 1960m, with a typical sampling rate 

of approximately 1 minute this corresponds to the speed of 0 and 117 km/hr respectively). 

After cleaning the dataset, the next step is to extract vehicle trips trajectories (i.e. from origin to 

destination), which then later provide travel time. There are a variety of approaches for separating 

trips: by positional attributes (e.g. taximeter being switched on or off), by temporal cycles (e.g. 

daily trips), by substantial displacement (e.g. if the next point is at least 5km away), and by 

temporal gaps between points (stop points) (e.g. no movement for at least 15min). For this study, 

the temporal gap between stop point (at least 15 minutes) is used for extracting trips from vehicle 

trajectory data. In addition to this, the trip extraction algorithm also ensures that when positions 

remained within a small area (instead of only at a stopping point) during a time interval of 15 

minutes, that small area is treated as a stopping point. This is adopted for toleration of position 

measurement errors. From the dataset, in total, we extracted 56,000 trips considering a rectangular 

area that include an urban area of Athens, Greece. 

The next step is to map match extracted trips so that links travel time can be determined. This is 

the travel time taken by the vehicle to go from start of the link till the end. We used an offline 
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algorithm proposed by Newson and Krumm (2009), which is implemented in the GraphHopper 

map-matching library (https://github.com/graphhopper/map-matching) that uses the road network 

extracted from the OpenStreetMap for matching trip trajectories. The algorithm employs a hidden 

Markov model (HMM) to find the edges in the road network that are more likely to characterize the 

route, given the locations of the individual GPS coordinates. It is used in many research studies 

and has shown reliable results (Maalleson et al 2018). Overall, 98% of extracted trips are 

successfully map-matched to the OpenStreetMap network. For a few random trips, we examine 

the paths/route obtained after map-matching by visualizing them in QGIS software, and the results 

seem appropriate. For each link/edge of the network for which we have trips map-matched, we 

estimated the average travel time. After which, the extreme values were omitted from the datasets 

to account for any errors in map-matching. 

2.2 Methodological Details 

Links of the considered road network were categorized into four categories, namely; primary, 

secondary, tertiary and residential roads. Each of these categories will have different geometric 

characteristics hence their travel time distribution can differ. The travel time was classified based 

on the type of link and time of the day. Time of the day variable was divided into six intervals, 

which are as; 12 midnight to 6:30 a.m., 6:30 to 10:00 a.m., 10:00 a.m. to 1:30 p.m., 1:30 to 5:00 

p.m., 5:00 to 8:30 p.m., and 8:30 p.m. to midnight. These classifications are taken from the 

previous study of Athens by Stathopoulos and Karlaftis (2001), which was the most relevant found 

for the study area. The temporal variations in traffic for an area can be considered constant over 

the years as it has been observed in other studies recently (Batterman et al., 2015). Moreover, travel 

time on weekdays and weekends were also recorded separately. It should be noted at this stage 

that we did not find any study in which such detailed classification of travel time has been 

considered. Each link will have a different length which would affect its travel time, therefore, the 

travel time was converted to a scale of time required to travel a distance of 100m on that link 

similar to the study conducted by Chen et al (2018).  

Once the travel time for considered road categories is spatially and temporally classified, each 

category was compared with others to investigate whether certain categories can be merged. It was 

done using a Kruskal Wallis test, which has been recommended as a non-parametric test for 

comparing 3 or more distributions (McKight and Najab, 2010). The categories, after going through 

the merging wherever required, were compared with standard distributions using chi-square and 

Kolmogorov-Smirnov (KS) tests. The following distributions were compared in this study for 

goodness-of-fit with the travel time data; Normal, Exponential, Gamma, Log-normal, Chi-square, 

Weibull and Rayleigh. All these distributions include the range of data from zero to infinity and 

are commonly used statistical distributions. Among the tests for goodness of fit, the Chi-square 

test is a non-parametric test normally used for estimating the dependence of a variable to specific 
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distributions (McHugh, 2013; Sharpe, 2015). KS test is also a non-parametric test which is 

advocated for examining asymmetric distributions (Razali and Wah, 2011). The reason for 

employing two tests for goodness-of-fit is the fact that each of them has its own limitations. Chi-

square test is influenced largely by the number and size of bins (intervals) of frequency distribution 

while the KS test is affected by the sample size. Hence, it seemed appropriate to use both tests to 

get concrete results. 

In order to estimate the value of travel time variability, with the available dataset, we followed the 

procedure described in Fosgerau (2017) and Zang et al (2019). This requires the distribution of 

standard travel time to estimate TTRR using the following equations.  

𝑇𝑇𝑅𝑅 = 𝑥 ∫ 𝐹−1(𝑇𝑇)𝑑𝑝
1

𝑦
  (1) 

𝑥 =  
𝛽+𝛾

𝛼
    (2) 

𝑦 =  
𝛾

𝛽+𝛾
    (3) 

Wherein F-1(TT) is the inverse of the cumulative distribution function for standardized travel time, 

α is the value of travel time, while β and γ are the delay parameters. The values for these parameters 

have been set as α = 2, β = 1, and γ = 4, in this study which has been the observed in a number of 

previous studies such as Fosgerau and Karlström (2010), Taylor (2017) and Zang et al. (2018). 

These values yield x to be 2.5 and y to be 0.80. Based on the obtained value of TTRR and using 

the already available value of travel time for Athens, Greece, we estimate the value of travel time 

variability. Results are described in the next section.    

3. Results and Discussion 

The first step was to classify the travel time data on the basis of time of day and type of link. Table 

1 presents the descriptive statistics for each category of travel time data. These statistics show that 

average travel time is higher on residential highways which could be attributed to the slower design 

speeds on these links. Average travel times were also found to be relatively higher on weekdays 

and in the evening peak hours (5:00 to 8:30 pm). This could be attributed to higher traffic demand 

on these days and times.  

Table 1. Descriptive Statistics for Travel Time Categories 

Categories 
Number of 

links 

Minimum 

travel time 

/100m (sec) 

Maximum 

travel time 

/100 m 

(sec) 

Average 

travel time 

/100m (sec) 

Standard 

deviation 

(sec) 

Road Types 

Primary 259851 2.53 107.55 22.40 24.41 

Secondary 540074 2.29 157.75 16.69 18.28 

Tertiary 472005 5.12 74.24 16.88 12.64 
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Residential 556472 7.24 181.30 26.36 29.96 

Time-of-day 

12:00am-06:30am 208167 2.52 52.94 15.93 11.96 

06:30am-10:00am 287964 2.53 68.97 15.78 10.16 

10:00am-01:30pm 65923 6.25 34.13 17.30 6.43 

01:30pm-05:00pm 166534 5.73 78.43 18.46 17.90 

05:00pm-08:30pm 735523 2.29 181.30 21.28 23.04 

08:30pm-12:00am 364292 2.29 166.04 19.84 23.21 

Days of Week 
Weekdays 1320090 2.29 181.30 21.05 21.36 

Weekends 508311 2.53 166.04 18.20 18.35 

3.1 Kruskal Wallis Test 

Each classification of travel time (mentioned in Table 1) was tested through Kruskal Wallis to 

check whether some categories could be merged if they have the same distribution. The results are 

shown in Table 2. Firstly, the Kruskal Wallis test was performed on different types of roads. The 

test statistic (H) was found to be significantly higher which meant that all types of roads do not 

have the same travel time distribution. After which different combinations were tried and it was 

found that primary and secondary roads have the same distribution at a significance level of 5% 

for (H) while others have different distributions. The test statistics for secondary and primary roads 

are shown in Table 2 while combinations, in which the test statistic was significantly higher, are 

not shown for conciseness. Histograms of travel time distribution categories, on the basis of 

remaining classes of roads, are shown in figure 1. This figure shows some visual evidence of 

change in distribution between the different types of highways. 

Table 2. Kruskal Wallis Test 

Category of Travel Time H D Adjusted H Df* P value 

All types of roads 50.529 0.999 50.529 3 6.16E-11 

Primary and secondary 3.356 0.999 3.356 1 0.067 

All times of day 12.105 0.999 12.106 5 0.033 

Times of day excluding 05:00pm-08:30pm 7.272 0.999 2.272 4 0.122 

Weekdays and Weekend  1.898 0.999 1.898 1 0.168 

  * Df = degrees of freedom 

Similarly, the test was also performed to check if all times of the day follow the same travel time 

distribution. Table 2 shows that all time intervals except 5:00 pm to 08:30 pm follow the same 

distribution. Figure 2 shows the histograms of travel time distributions in these time periods and 

the difference in distribution can be observed from it.  

Kruskal Wallis test performed for weekdays and weekend show that there is no difference in the 

distribution of travel time for these two categories. Therefore, on the basis of the above tests, travel 

time data was segregated into the following six categories: 

1) Pri+Sec_Eve_peak ,  

2) Pri+Sec_Other_time   
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3) Tertiary_Eve_peak,  

4) Tertiary_Other_time,  

5) Residential_Eve_peak, and 

6) Residential_Other_time  

It should be noted that Eve_peak time in the above categories entails the time interval of evening 

peak i.e. from 05:00 pm-08:30 pm and Other_time include all time intervals except the evening 

peak time. Further, the first two categories also combine Primary and Secondary roads. The 

estimation of travel time distributions is applied for the above six categories.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Travel time distribution of different types of roads 
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                      Figure 2. Travel time distributions of different times of day 

3.2 Chi-Square Test 

All the categories of travel time were tested using chi-square with the distributions mentioned in 

section 2, the results of the tests can be observed in table 2. Since the Chi-square test is greatly 

affected by degrees of freedom i.e. number of frequency intervals in the data, hence they were set 

through trial and error.  p-values coming out from this test should be as higher as possible to 

conclude that travel time data for a category is following a particular statistical distribution.  It can 

be seen from table 2 that normal distribution is significantly different from all categories of travel 

time. This was expected since the data in figures 1 and 2 shows skewness towards the left side. 

Exponential distribution was found to fit most of the categories at a significance level of 2.5% (i.e. 

p-value above 0.025), except for the case of Residential_Other_time. Gamma distribution was also 

found to fit all categories at a significance level of 2.5% except Pri+Sec_Other_time. Log-normal 

distribution was the only distribution which was found to fit all the categories without any 

exception at the same significance level. Weibull distribution was found to fit the travel time 

categories in the evening peak hours with all types of road categories. Chi-square and Rayleigh 

distributions were not found applicable to any categories of travel time.  

3.3 KS Test 

The results of the KS test for all categories of travel times are also shown in table 2. Similar to the 

Chi-square test, the p-value should be as higher as possible to suggest whether data is following a 

particular statistical distribution. Log-normal distribution was found to fit most of the data at 2.5% 

significance level, except for Pri+Sec_Other_time, for which the p-value is 0.01. Gamma 

distribution was also found to be applicable to tertiary roads in all times of the day. Interestingly, 

the KS test shows a similarity between tertiary peak travel times and normal distribution at 1% 

level of significance. However, the data shown in figure 1 shows a clearly visible skewness. 

Therefore, it could be said that results at 1% significance level or below should not be used to 

suggest for a particular statistical distribution. 
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Results from chi-square and KS tests have been combined in table 3. The distributions which were 

found to be significantly resembling the travel time data at a significance level of 2.5% are marked 

with ‘Yes’ otherwise ‘No’. 

The following observation can be drawn from table 3. Chi-square test is found to provide more 

conclusive results, in terms of providing goodness-of-fit as compared to KS tests. This is said 

because it is providing positive results for more distributions with higher chances of similarity, as 

shown by higher p-values in table 2, than those for KS tests. However, it should be noted that the 

Chi-square test requires some effort to find the optimum number of frequency intervals for the 

data. Moreover, KS test is not suggesting any significant resemblance in the data with most of the 

distributions, this could be that for some categories data may follow multi-modal distributions 

which are not examined in this study. Moreover, Normal, Rayleigh and Chi-square distribution 

did not fit the data for any category. Log-normal distribution stands out to be the single most 

applicable distribution for all cases in chi-square tests. It also shows significant resemblance in KS 

tests for most cases, for all times of the day. The only exclusion to this is the KS test for 

Pri+Sec_Other_time. This observation is consistent with another study done for urban roads in 

Beijing, China (Chen et al., 2018). It must be noted that our study provided a justification for 

categorization of travel time which is not done in the previous study. Furthermore, the present 

study covers more ground in the determination of travel time distribution by exploring more 

distributions and employing two different statistical tests. Other studies as reported in the 

introduction section also reached to the similar conclusions that travel time usually follows a 

lognormal distribution. It is evident from the investigation in this study that different categories of 

travel time follow the same distribution and parameters do not have significantly large differences 

in values. This confirmed the findings of Fosgerau and Fukuda (2012), where they have analyzed 

5 months data of travel time on one single road in Copenhagen, Denmark. The parameters for log-

normal distribution for all categories of travel time are given in Table 4.  

Table 2. Chi-Square and Kolmogrov-Smirnov Test results for statistical distributions 

Categories 

Considered 

Distribution Chi-square test results Kolmogorov-Smirnov 

test results 

Pri+Sec_Eve_peak  
 

Normal Chi = 39.81; df = 5; p = 0.000 D=0.233; p=0.000 

Exponential Chi = 8.81; df = 5; p = 0.117 D=0.224; p= 0.000 

Gamma Chi = 8.27; df = 3; p = 0.041 D=0.161; p= 0.009 

Log-normal Chi = 3.57; df = 3; p = 0.17 D= 0.130 ; p= 0.040 

Chi-square Chi = 39.94; df = 1; p = 0.000 D= 0.179 ; p= 0.001 

Weibull Chi = 2.71; df = 1; p = 0.100 D= 0.178 ; p= 0.002 

Rayleigh Chi = 19.51; df = 1; p = 0.000 D= 0.421 ; p= 0.000 

Pri+Sec_Other_time   
 

Normal Chi = 35.91; df = 1; p = 0.000 D= 0.264 ; p=0.000 

Exponential Chi = 8.10; df = 3; p = 0.044 D= 0.270 ; p=0.000 

Gamma Chi = 15.81; df = 2; p = 0.000 D = 0.182 ; p=0.000 

Log-normal Chi = 7.34; df = 2; p = 0.026 D = 0.128 ; p=0.010 

Chi-square Chi = 308.76; df = 1; p = 0.000 D= 0.153 ; p=0.000 
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Weibull Chi = 13.93; df = 2; p = 0.001 D = 0.197; p=0.000 

Rayleigh Chi = 19.51; df = 1; p = 0.000 D= 0.409 ;  p=0.000 

Tertiary_Eve_peak Normal Chi = 7.92; df = 1; p = 0.005 D= 0.251; p=0.010 

Exponential Chi = 3.46; df = 1; p = 0.063 D= 0.307 ; p=0.001 

Gamma Chi = 7.84; df = 3; p = 0.049 D = 0.197; p =0.060 

Log-normal Chi = 2.41; df = 1; p = 0.120 D = 0.149 ; p =0.250 

Chi-square Chi = 75.96; df = 1; p = 0.000 D = 0.293 ; p =0.001 

Weibull Chi = 5.03; df = 1; p = 0.025 D = 0.197 ; p =0.060 

Rayleigh Chi = 19.51; df = 1; p = 0.000 D = 0.358 ; p =0.000 

Tertiary_Other_time Normal Chi = 11.77; df = 1; p = 0.001 D= 0.248 ; p =0.000 

Exponential Chi = 4.64; df = 2; p = 0.098 D= 0.274 ; p =0.000 

Gamma Chi = 12.34; df = 6; p = 0.054 D= 0.178 ; p = 0.040 

Log-normal Chi = 2.54; df = 1; p = 0.111 D= 0.129 ; p=0.200 

Chi-square Chi = 154.22; df = 1; p = 0.000 D= 0.238 ; p=0.001 

Weibull Chi = 5.61; df = 1; p = 0.018 D= 0.179 ; p=0.003 

Rayleigh Chi = 19.51; df = 1; p = 0.000 D = 0.296 ; p=0.000 

Residential_Eve_peak Normal Chi = 12.36; df = 2; p = 0.002 D= 0.277 ; p=0.000 

Exponential Chi = 1.86; df = 1; p = 0.172 D = 0.297 ; p=0.000 

Gamma Chi = 3.78; df = 2; p = 0.151 D = 0.219 ; p=0.009 

Log-normal Chi = 3.50; df = 1; p = 0.061 D = 0.171 ; p=0.075 

Chi-square Chi = 59.84; df = 1; p = 0.000 D = 0.257 ; p=0.001 

Weibull Chi = 2.04; df = 1; p = 0.154 D = 0.204 ; p=0.020 

Rayleigh Chi = 12.63; df = 1; p = 0.000 D = 0.411; p=0.000 

Residential_Other_time Normal Chi = 20.67; df = 2; p = 0.000 D = 0.298 ; p=0.000 

Exponential Chi = 5.83; df = 1; p = 0.016 D = 0.267 ; p=0.000 

Gamma Chi = 6.78; df = 2; p = 0.034 D =0.229 ; p=0.000 

Log-normal Chi = 0.92; df = 1; p = 0.338 D= 0.167 ; p=0.025 

Chi-square Chi = 78.08; df = 1; p = 0.000 D = 0.223 ; p=0.001 

Weibull Chi = 6.74; df = 1; p = 0.009 D = 0.212 ; p=0.009 

Rayleigh Chi = 12.63; df = 1; p = 0.000 D = 0.458 ; p=0.000 

 

Table 3. Summary of Statistical Tests 

Categories  Test Normal Exponential Gamma Log-

normal 

Chi-

square 

Weibull Rayleigh 

Pri+Sec_Eve_ 

Peak 

Chi-

square 

No Yes Yes Yes No Yes No 

KS No No No Yes No No No 

Pri+Sec_Other_time 

Off 

Chi-

square 

No Yes No Yes No No No 

KS No No No No No No No 

Tertiary_Eve_peak Chi-

square 

No Yes Yes Yes No Yes No 

KS No No Yes Yes No Yes No 

Tertiary_Other_time Chi-

square 

No Yes No Yes No No No 

KS No No Yes Yes No No No 

Residential_Eve_peak Chi-

square 

No Yes Yes Yes No Yes No 

KS No No No Yes No No No 
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Residential_Other_time Chi-

square 

No No Yes Yes No No No 

KS No No No Yes No No No 

 

Table 4. Log-normal Distribution Parameters  (location parameter = 0) 

Categories Scale Shape 

Pri+Sec_Eve_peak 2.69 0.76 

Pri+Sec_Other_time 2.47 0.68 

Tertiary_Eve_peak 2.68 0.59 

Tertiary_Other_time 2.60 0.56 

Residential_Eve_peak 3.02 0.59 

Residential_Other_time 3.02 0.56 

 

Other distributions which were found to be significant in few cases include Exponential, Gamma 

and Weibull. Travel times on tertiary roads were found to fit more distributions in chi-square as 

well as KS tests. On the other hand, travel times on primary and secondary roads in the other time 

only showed significant results for very few distributions and that was also at a lower confidence 

interval, this provides an indication that travel times in this category may follow the multi-modal 

distribution.  

3.4 Estimation of TTRR and value of travel time variability 

The analysis from the previous section established the fact that log-normal distribution fits the 

travel time distribution in all categories and the close examination of values mentioned in table 5 

indicates that for all categories values are more or less similar. In order to estimate TTRR, it is 

required to fulfil a few conditions such as 1) The travel time distribution needs to be formed based 

on standardized travel time (i.e. (travel time – mean travel time) / standard deviation of travel 

time), 2) the distribution needs to be independent of time of day as required by theory, i.e. the 

formulation shown in equation 1 is only applicable when this condition is roughly satisfied 

(Fosgerau and Fukuda 2012). Findings of our investigation suggest that all considered categories 

of travel time that also include different time-of-day followed lognormal distribution and for all 

categories, the parameters are roughly similar. So it is believed that standardized travel time will 

also follow a similar trend. Therefore, travel time data of all categories are pooled together and 

converted standardized travel time. The same 7 statistical distributions are then fitted to this data. 

Based on our examination, lognormal distribution again provides appropriate results of KS and 

chi-square tests. The parameters of the distribution are as follows: Scale parameter = 0.68, Shape 

parameter = 0.70 and Location parameter = -0.89. This distribution will be used for further 

calculations of TTRR as per equation (1) that yields value of TTRR as 0.495. We used a numerical 

approximation to obtain the integral of inverse cumulative distribution. Using a previous study 

(Wardman et al 2016) that provided a meta-analysis of values of travel time in Europe, the value 
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of travel time (VTT) was taken for different groups of travelers for Greece. We then obtained 

VTTV by simply dividing the estimated TTRR with VTT. The values of VTTV are shown in Table 

5. 

Table 5. VTT and estimated VTTV for Athens, Greece in €/hour  

(based on 2010 incomes and prices) 

 Car Commute Car Other Car Business Travel 

Public 

Transport 

Commute 

 
Urban 

Free Flow 

Urban 

Congested 

Urban 

Free Flow 

Urban 

Congested 

Urban 

Free Flow 

Urban 

Congested 
Urban 

VTT 
(Wardman et al, 2016) 

5.60 7.96 4.93 7.01 14.72 20.93 5.68 

VTTV 2.77 3.94 2.44 3.47 7.29 10.36 2.81 

 

It can be observed from table 5 that travelers value travel time differently in free flow and 

congested situation and for business travel, these values are quite high compared to usual 

commuting and travelling for other purposes. Based on our investigation, VTTV  is approximately 

half of the VTT, this also confirms results of other studies where TTRR values are estimated to be 

around this range such as 0.5 to 0.8 (Taylor 2017, Fosgerau 2016, Zang et al 2018). Table 5 is 

useful to carry out a cost-benefit analysis of mobility projects. An example illustration of this as 

follows: Suppose that introduction of project A (a new road/bridges etc) in the urban area of Athens 

improve mean travel time of commuters (i.e. from 60 minutes to 45 minutes) and also improve 

travel time variability (i.e. standard deviation of travel time is improved from 15 minutes to 10 

minutes). Therefore, by simply following the procedure indicated in OECD (2016) and values 

mentioned in table 5, travel time savings for a single car-based business traveler during free flow 

would be around (14.72*(60-45)/60 = 3.7€) and variability savings would be around (7.29*(15-

10)/60 = 0.6 €) after introduction of project A.  

4. Conclusions 

This study was aimed at investigating frequency distribution functions of travel times on urban 

highways. GPS trace data for vehicles traveling in Greece, Athens was used for estimating travel 

times. Travel times were categorized on the basis, time and day of the trip as well as types of urban 

roads under the hypothesis that travel time distribution would be different in different space and 

time settings. Kruskal Wallis test was used to justify the categories for which travel time 

distribution are estimated. Seven different types of uni-modal statistical distributions were 

investigated to fit the travel time data of identified categories using non-parametric chi-square and 

KS tests. It was found that lognormal distribution fitted well with all categories of data, however, 

there are only slight variations in distribution parameters. This finding provided the evidence to 

conclude that travel time distribution of links is roughly similar in space and time, that contradicts 

the findings of the recent study in Beijing, however, in agreement with other previous studies. This 
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conclusion helps in applying the method to estimate TTRR, that in theory requires time-of-day 

independent travel time distribution. Based on the application of this method, TTRR was estimated 

and using the available values of travel time, values of travel time variability are estimated for 

various classes of individuals. These values are helpful to carry out a cost-benefit analysis of 

transport-related infrastructure projects specifically in Athens. Further research could be carried 

out to investigate multi-modal distributions in fitting travel time data to further confirm the 

independency of travel time distribution with time and space. Furthermore, the travel time 

prediction problem can be researched given the availability of rich data of vehicle trajectories.    
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