
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Online Analytical Processsing on Graph Data

Peer-reviewed author version

Gómez, Leticia; KUIJPERS, Bart & VAISMAN, Alejandro (2020) Online Analytical

Processsing on Graph Data. In: Intelligent Data Analysis, 24 (2), p. 515 - 541.

DOI: 10.3233/IDA-194576

Handle: http://hdl.handle.net/1942/30820

OLAPing Graph Data

Leticia Gómez1, Bart Kuijpers2, Alejandro Vaisman3

Abstract

Online Analytical Processing (OLAP) comprises tools and algo-
rithms that allow querying multidimensional databases. It is based on
the multidimensional model, where data can be seen as a cube such
that each cell contains one or more measures that can be aggregated
along dimensions. In a “Big Data” scenario, traditional data warehous-
ing and OLAP operations are clearly not sufficient to address current
data analysis requirements, for example, social network analysis. Fur-
thermore, OLAP operations and models can expand the possibilities
of graph analysis beyond the traditional graph-based computation. In
spite of this, there is not much work on the problem of taking OLAP
analysis to the graph data model.

This paper proposes a formal multidimensional model for graph
analysis, that considers the basic graph data, and also background in-
formation in the form of dimension hierarchies. The graphs in this
model are node- and edge-labelled directed multi-hypergraphs, called
graphoids, which can be defined at several different levels of granularity
using the dimensions associated with them. Operations analogous to
the ones used in typical OLAP over cubes are defined over graphoids.
Graphoids can express, in a natural way, situations than imply rela-
tions between a variable number of dimensions, which is not easily done
in the classical relational OLAP model. The paper presents a formal
definition of the graphoid model for OLAP, proves that the typical
OLAP operations on cubes can be expressed over the graphoid model,
and shows that the classic data cube model is a particular case of the
graphoid data model. Finally, a case study supports the claim that,
for many kinds of OLAP-like analysis on graphs, the graphoid model
works better than the typical relational OLAP alternative, and for the
classic OLAP queries remains competitive.

Keywords: OLAP, Data Warehousing, Graph Database, Big Data, Graph
Aggregation

1Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina; email: lgo-
mez@itba.edu.ar

2Hasselt University, Belgium; email: bart.kuijpers@uhasselt.edu
3Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina; email: avais-

man@itba.edu.ar (Corresponding author).

1

1 Introduction

Online Analytical Processing(OLAP) [14, 22] comprises a set of tools and
algorithms that allow querying multidimensional (MD) databases. In these
databases, data are modelled as data cubes, where each cell contains one or
more measures of interest, that quantify facts. Measure values can be aggre-
gated along dimensions, organized as sets of hierarchies. Traditional OLAP
queries are used to manipulate the data cube: aggregation and disaggrega-
tion of measure data along the dimensions; selection of a portion of the cube;
or projection of the data cube over a subset of its dimensions, are among the
most popular OLAP operations on cube data. The cube is computed after
a process called ETL, an acronym for Extract, Transform, and Load, which
requires a complex and expensive load of work to carry data from the sources
to the MD database, typically a data warehouse (DW). Although the use
of OLAP for social network analysis has been proposed [19, 15], in a “Big
Data” scenario, the classic OLAP process can still be useful, but other re-
quirements appear, as claimed in the classic paper by Cohen et al. [6], where
the so-called MAD skills (standing from Magnetic, Agile and Deep) required
for data analytics are described. This calls for a new vision of the data acqui-
sition problem in DW, normally denoted ELT (Extract, Load, Transform),
where data are first loaded, and then modelled, if required. In this scenario,
more complex analysis tools are required, that go beyond the data cube
model, for example, graph analytics. Graphs, and, particularly, property
graphs [20, 12], are becoming increasingly popular to model different kinds
of networks (for instance, social networks, sensor networks, and the kind) to
perform data analysis, and underlie the most popular graph databases [1].
Examples of graph databases and graph processing frameworks following
this model are Neo4j1, Janusgraph2 (previously called Titan), Sparksee3,
and GraphFrames4. In addition to traditional graph analytics, it is also in-
teresting for the data scientist to have the possibility of performing OLAP
on graphs. Thus, novel models and techniques are required for enabling MD
analysis of Big Data [7].

From the discussion above, the following challenges arise: on the one
hand, traditional data warehousing and OLAP operations on cubes are
clearly not sufficient to address the current data analysis requirements; on
the other hand, OLAP operations and models can expand the possibili-
ties of graph analysis beyond the traditional graph-based computation, like
shortest-path, centrality analysis and so on. In spite of these challenges, not

1http://www.neo4j.com
2http://janusgraph.org/
3http://www.sparsity-technologies.com/#sparksee
4https://graphframes.github.io/

2

http://www.neo4j.com
http://janusgraph.org/
http://www.sparsity-technologies.com/#sparksee
https://graphframes.github.io/

many proposals so far have been presented in this sense, e.g. [5, 10, 24, 26].
Most of these address homogeneous graphs (that is, graphs where all nodes
are of the same type), and OLAP analysis focus mainly on the graph topol-
ogy as the measure of interest [5, 24, 26]. In such cases, all the attributes
of the graph elements are considered as the dimensions, and are used for
aggregating the graph and performing its multi-perspective analysis. How-
ever, real-world graphs are complex and often heterogeneous, that is, graphs
where nodes and edges could be of different types to represent different
real-world entities, and the different relationships between them. In [10], a
technique for building OLAP cubes on (possibly heterogeneous) graphs is
proposed. These works will be discussed in more detail in Section 2, and
compared against the approach introduced in the present paper.

This paper proposes a MD data model for graph analysis, that considers
not only the basic graph data, but background information in the form of
dimension hierarchies as well. The graphs in this model are node- and edge-
labelled directed multi-hypergraphs, called graphoids. In essence, these can
be denoted “property hypergraphs”. A graphoid can be defined at several
different levels of granularity, using the dimensions associated with them.
For this, the Climb operation is available. Over this model, operations like
the ones used in typical OLAP on cubes are defined, namely Roll-Up, Drill-
Down, Slice, and Dice, as well as other operations for graphoid manipulation,
e.g., n-delete (which deletes nodes). Unlike relational OLAP, the hypergraph
model makes it natural the representation of facts with different dimensions,
since hyperedges can connect a variable number of nodes of different types.
A typical example is the analysis of phone calls, the running example that
will be used throughout this paper. Here, not only point-to-point calls be-
tween two partners can be represented, but also “group calls” between any
number of participants. In a typical “Star” or “Snowflake” representation
schema [14] a group call must be represented by means of a fact table con-
taining a fixed number of columns (e.g., caller, callee, and the corresponding
measures). Therefore, when the OLAP analysis for telecommunication in-
formation concerns point-to-point calls, the relational representation (i.e.,
ROLAP) works fine, but when this is not the case, modelling and querying
issues appear, which call for a more natural representation, closer to the
original data format. And here is where the hypergraph model comes to the
rescue, as this paper shows.5 As an additional feature, the graph approach
can adapt to many different analysis settings. That is, graphoids can be

5An extended abstract of this paper has been presented in [11]. The present works
substantially extends such abstract, with a completely different running example and case
study, the proof of the main theorem, and the implementation of the proposal together
with experimental results that shows its plausibility. All in all, it can be seen that the
published abstract has less than a 20% overlap with the work presented here.

3

used on an ETL scenario, where data are carefully modelled and cleaned,
and directly exported from a DW to a graph. Or they could be applied on
an ELT scenario, where, for instance, data are loaded into so-called “data
lakes”6, with minimum preparation. In summary, the main contributions of
the paper are:

1. A graph data model based on the notion of graphoids;

2. The definition of a collection of OLAP operations over these graphoids;

3. A proof that the classical OLAP operations on cubes can be simulated
by the OLAP operations defined in the graphoid model and, therefore,
that these graphoid-based operations are at least as powerful as the
classical OLAP operations on cubes;

4. A case study and a series of experiments, that give the intuition of
a class of problems where the graphoid model works clearly better
than relational OLAP, whereas for classic OLAP queries, the graph
representation is still competitive with the relational alternative.

In addition to the above, of course all the classic analysis tools from
graph theory are supported by the model, although this topic is beyond the
scope of this paper.

Remark 1 This paper does not claim that the graphoid model is always
more appropriate than the classic relational OLAP representation. Instead,
the proposal aims at showing that when a more flexible model is needed,
where n-ary relationships between instances are present (and n is variable),
the model allows not only for a more natural representation, but also can
deliver better performance for some critical queries. ut

The remainder of this paper is organized as follows: in Section 2 we
discuss related work. Section 3 presents the graphoid data model. Section 4
presents the OLAP operations on graphoids, while the main contribution of
Section 5 consists in showing that the graphoid OLAP operations capture
the classic OLAP operations on cubes. Section 6 discusses a case study
and presents an experimental analysis. Section 7 concludes the paper and
discusses open problems.

6https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

4

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

2 Related Work

The model described in the next sections is based on the notion of prop-
erty graphs [2]. In this model, nodes and edges (hyperdeges, as will be
explained later) are labelled with a sequence of attribute-value pairs. It will
be assumed that the values of the attributes represent members of dimen-
sion levels (each attribute value is an element in the domain of a dimension
level), and thus nodes and edges can be aggregated, provided an attribute
hierarchy is defined over those dimensions. Property graphs are the usual
choice in modern graph database models used in practical implementations.
Attributes are included in nodes and edges mainly aimed at improving the
speed of retrieval of the data directly related to a given node. Here, these
attributes are also used to perform OLAP operations.

Graph Database Modelling Graph database modelling and querying
are the foundations for the graphoid OLAP model. There is an exten-
sive bibliography on graph database models, comprehensively studied in [3].
Therefore, the interested reader is referred to this work. Multiple native
graph indexing and query languages (e.g. GraphQL [13]) were developed to
efficiently answer graph-oriented queries. More recently, Angles [1] compares
modern graph database models underlying the most used graph databases.
Such study is based on the data models (that is, data structure, query
language, and integrity constraints), leaving out physical implementation
issues. The study also shows that summarization is not considered a native
property of these databases.

Two graph database models are used in practice:

(a) Models based on RDF7, oriented to the Semantic Web. This is the
case of AllegroGraph.8 Given this characteristic, this is the only graph
database which supports reasoning.

(b) Models based on property graphs, introduced above.

Models of type (a) represent data as sets of triples where each triple
consists of three elements that are referred to as the subject, the predicate,
and the object of the triple. These triples allow describing arbitrary objects
in terms of their attributes and their relationships to other objects. Infor-
mally, a collection of RDF triples is an RDF graph. Although the models
in (a) have a general scope, the structure of RDF makes them not as effi-
cient as the other models, which are aimed at reaching a local scope. An

7https://www.w3.org/RDF/
8http://franz.com/agraph/allegrograph/

5

https://www.w3.org/RDF/
http://franz.com/agraph/allegrograph/

important feature of RDF-base graph models, however, is that they follow
a standard, which is not yet the case for the other graph databases. Har-
tig [12] proposes a formal way of reconciling both models formally, through
a collection of well-defined transformations between property graphs and
RDF graphs. He shows that property graphs could, in the end, be queried
using SPARQL9, the standard query language for the Semantic Web.

In [4], the authors introduced a framework for OLAP on RDF data. They
proposed GOLAP, a graph model for OLAP on graphs, and FSPARQL an
extension to SPARQL for OLAP querying of RDF data. GOLAP has the
particularity of supporting implicit relationships between nodes and different
partitioning types of graph elements. Other solutions for OLAP modelling
and querying on RDF and the Semantic Web can be found in [9, 23], where
the QB4OLAP vocabulary is the basis for defining the OLAP operations on
RDF graphs.

The present paper works with models based on property graphs.

Graph Summarization and OLAP Graph summarization is a critical
operation for multi-level analysis of graph data. Tian et al. [21] proposed
the SNAP operation (standing for Summarization by Grouping Nodes on
Attributes and Pairwise Relationships) to produce a summary graph by
grouping nodes based on node attributes and relationships selected by the
user. The authors introduce the k-SNAP operation, which allows drilling-
down and rolling-up at different aggregation levels. The work also presents
an algorithm to evaluate the SNAP operation, and shows that the k-SNAP
computation is NP-complete, proposing two heuristic methods to approxi-
mate the k-SNAP results. The main difference with OLAP-style aggregation
is that SNAP does not take into account rollup functions, but aggregates
nodes based on the strength of the relationships between them. Therefore,
although along the lines of graph summarization, this work does not strictly
fit into what is typically denoted graph OLAP.

GraphOLAP [5] is a conceptual framework for performing OLAP over
a collection of homogeneous graphs. Attributes of the snapshots are con-
sidered as the dimensions, and aggregations of the graph are performed by
overlaying a collection of graph snapshots. Further, dimensions are classified
as topological and informational. Informational OLAP aggregations consist
in edge-centric snapshot overlaying. Thus, only edges change whereas no
changes to the nodes are made. Topological OLAP aggregations consist in
merging nodes and edges by navigating through the node hierarchy. Along
the same lines, Qu et al. [18] introduced a more detailed framework for
topological OLAP analysis of graphs. The authors discussed the structural

9https://www.w3.org/TR/rdf-sparql-query/

6

https://www.w3.org/TR/rdf-sparql-query/

aggregation of the graph following the OLAP paradigm, presenting tech-
niques based on the properties of the graph measures for optimizing measure
computation through the different aggregation levels.

GraphCube [26] is a framework for OLAP cubes computation and anal-
ysis through the different levels of aggregation of a graph. It targets single,
homogeneous, node-attributed graphs. The framework introduces so-called
cuboid and crossboid queries, for building and analyzing the different graph
cubes. Along similar lines, Pagrol [24] is a Map-Reduce framework for dis-
tributed OLAP analysis of homogeneous attributed graphs. Pagrol extends
the model of GraphCube by considering the attributes of the edges as di-
mensions. The idea behind these two proposals is basically the same: to
efficiently compute all possible aggregations of an homogeneous graph. Also
based on the notion of so-called graph cuboids (that is, graphs defined at
different levels of aggregation), Distributed Graph Cube [8] is a distributed
framework for graph cube computation and aggregation, implemented us-
ing Spark10 and Hadoop11. Again, this proposal only supports homogeneous
graphs. To handle heterogeneous graphs, and also starting from the topolog-
ical and informational dimensions introduced in [5], Yin et al. [25] propose
a data warehousing model based on the notion of entity dimensions. In this
work, two basic operations are defined, namely, rotate and stretch, which
allow defining different views of the same graph, defining entities as rela-
tionships and vice versa.

More oriented to OLAP graph modeling, in [10] the authors propose
a framework for building OLAP cubes from graph data. The framework is
aimed at extracting the candidate multidimensional spaces in heterogeneous
property graphs, and, in general, at providing insight into the multidimen-
sional concepts in graph data. In this model, only binary relationships
between nodes are supported.

A key difference between the works described above and the proposal
introduced in this paper, is that the latter supports the notion of OLAP
hypergraphs, highly expanding the possibilities of analysis. At the same
time, this increases the difficulty of the problem addressed. Now, instead
of binary relationships between nodes, there are n-ary, probably duplicated
relationships. In other words, the model handles multi-hypergraphs, which
are the graphs typically found in real-world “Big data” scenarios. Also, the
paper works over the classic OLAP operations, and formally defines their
meaning in a graph context. This approach allows an OLAP user to work
with the notion of a data cube, regardless the kind of underlying data (in
this case, graphs), since these operations could be given, conceptually, in

10http://spark.apache.org/
11http://hadoop.apache.org/

7

terms of cubes and dimensions rather than nodes and edges.

3 Data Model

This section presents the graphoid OLAP data model. First, background di-
mensions are formally defined, along the lines of the classic OLAP literature.
Then, the (hyper)graph data model is introduced.

3.1 Hierarchies and Dimensions

The notions of dimension schema and dimension graph (or dimension in-
stance) that will be used throughout the paper, are introduced first. These
concepts are needed to make the paper self-contained, and to understand the
examples. The reader is referred to [16, 17] for full details of the underlying
OLAP data model.

Definition 1 (Dimension Schema, Hierarchy and Level) Let D be a
name for a dimension. A dimension schema σ(D) for D is a lattice (a partial
order set), with a unique top-node, called All (which has only incoming
edges) and a unique bottom-node, called Bottom (which has only outgoing
edges), such that all maximal-length paths in the graph go from Bottom to
All. Any path from Bottom to All in a dimension schema σ(D) is called a
hierarchy of σ(D). Each node in a hierarchy (that is, in a dimension schema)
is called a level (of σ(D)). ut

The running example used throughout this paper analyses calls between
customers, which belong to different companies. For this, as background
(contextual) information to the graph data representing calls (to be ex-
plained later), there is a Phone dimension, with levels Phone (representing
the phone number), Customer, City, Country, and Operator. There is also a
Time dimension, with levels Date, Month, and Year. The following examples
explain this in detail.

Example 1 Figure 1 depicts the dimension schemas σ(Phone) and σ(Time),
for the dimensions Phone and Time, respectively. In addition, there is also a
dimension denoted Id, representing identifiers, that will be explained later.
In the dimension Phone, it holds that Bottom = Phone, and there are two
hierarchies denoted, respectively, as

Phone→ Customer→ City→ Country→ All,

and
Phone→ Operator→ All.

8

The node Customer is an example of a level in the first of the above hi-
erarchies. For the dimension Time, Bottom = Day holds, as well as the
hierarchy Day→ Month→ Year→ All. ut

All

Country

Operator

Phone

All

Y ear

Month

(a) (b)

Customer

City

All

Day Bottom

(c)

Figure 1: Dimension schemas for the dimensions Time (a), Phone (b), and
Id (identifier) (c).

Definition 2 (Level, Hierarchy, and Dimension Instances) LetD be
a dimension with schema σ(D), and let ` be a level of σ(D). A level instance
of ` is a non-empty, finite set dom(D.`). If ` = All, then dom(D.All) is the
singleton {all}. If ` = Bottom, then dom(D.Bottom) is the domain of the
dimension D, that is, dom(D).

A dimension graph (or instance) I(σ(D)) over the dimension schema
σ(D) is a directed acyclic graph with node set⋃

`

dom(D.`),

where the union is taken over all levels in σ(D). The edge set of this directed
acyclic graph is defined as follows. Let ` and `′ be two levels of σ(D), and
let a ∈ dom(D.`) and a′ ∈ dom(D.`′). Then, only if there is a directed edge
from ` to `′ in σ(D), there can be a directed edge in I(σ(D)) from a to a′.

If H is a hierarchy in σ(D), then the hierarchy instance (relative to the
dimension instance I(σ(D))) is the subgraph of I(σ(D)) with nodes from
dom(D.`), for ` appearing in H. This subgraph is denoted IH(σ(D)). ut

9

Remark 2 A hierarchy instance IH(σ(D)) is always a (directed) tree, since
a hierarchy is a linear lattice. The following terminology is used. If a and
b are two nodes in a hierarchy instance IH(σ(D)), such that (a, b) is in
the transitive closure of the edge relation of IH(σ(D)), then it is said that
a rolls-up to b, and denoted by ρH(a, b) (or ρ(a, b) if H is clear from the
context). Example 2 illustrates these concepts. ut

Example 2 Continuing with Example 1, consider dimension Phone, whose
schema σ(Phone) is given in Figure 1 (b).

Associated with this schema, there is an instance where dom(Phone) =
dom(Phone.Bottom) = dom(Phone.Phone) = {Ph1, Ph2, Ph3, Ph4, Ph5}.
For level Operator, dom(Phone.Operator) = {ATT, Movistar, V odafone}.
This dimension instance I(σ(Phone)) is depicted in Figure 2, which shows,
e.g., that phone lines Ph2 and Ph4 correspond to the operator V odafone.

ut

all

Rome

Cust1

Ph1

Italy

Cust2 Cust3
Movistar

Ph2 Ph3 Ph5Ph4

ATT Vodafone

NYC

US

Figure 2: An example of a dimension instance I(σ(Phone)) for the dimen-
sion Phone.

In a dimension graph with multiple hierarchies, elements in some levels
may be reachable from elements in the Bottom level, in multiple ways. In
what follows, “sound” dimension graphs are assumed. These graphs guaran-
tee that rolling-up in different ways (that is, through different paths) gives
the same results [16, 17], typical in so-called balanced (or homogeneous)
dimensions [22].

10

3.2 The Base Graph and Graphoids

As a basic data structure for modelling OLAP on graph data, the concept of
graphoid is introduced and defined in this section. A graphoid plays the role
of a multi-dimensional cuboid in classical OLAP and is designed to contain
the information of the application domain, at a certain level of granularity.
Essentially, a graphoid is a node- and edge-labelled directed multi-hypergraph.

In what follows, a collection of dimensions D1, ..., Dd is assumed in the
application domain, and their schemas σ(D1), ..., σ(Dd) are given. Further-
more, hierarchy instances I(σ(D1)), ..., I(σ(Dd)) for all dimensions are given.
Finally, assume that a special dimension D0 = Id is given, to represent
unique identifiers (Figure 1(c)). Prior to defining graphoids at levels `1, ..., `d
in the respective dimensions, the notions of attributes, node types and edge
types are needed.

Attributes All the levels in the dimensions are used as the set of attributes
A that describe the data, such that A = {D.` | D ∈ {D0, D1, ..., Dd} and
` is a level of D}. As described in Section 3.1, to each attribute A of A, a
domain dom(A) is associated, from which the attribute takes values.

Node types Assume a finite, non-empty set N of node types. Elements
of N will be denoted by a string starting with a hashtag. For example,
the node type #Phone indicates that a node in a graph represents a phone
line number. Also assume the existence of the functions ar and dim on
N . For each node type #n in N , ar(#n) is a natural number, called the
arity, that expresses the number of attributes associated with a node of
type #n. Secondly, dim(#n) is an ar(#n)-tuple of attributes, which are
dimensions (at Bottom-level), the first of which is the Identifier dimension.
This means that dim(#n) is an element of {Id}×{D1, ..., Dd}ar(#n)−1. The
tuple dim(#n) expresses which attributes are associated with a node of type
#n, without specifying their levels. Finally, assume that dim(#n) contains
no repetition, which is the usual case in practice. The identifier dimension
is always used at its Bottom level.

Edge types Assume the existence of a finite, non-empty set E of edge
types, which is disjoint from the set N . Elements of E will also be denoted
by a string starting with a hashtag. For example, the node type #Call
indicates that an edge connects nodes such that they participated in a call.
Again, also assume the existence of the functions ar and dim on E . To
each edge type #e in N , ar(#e) is a natural number, called the arity,
that expresses the number of attributes that is associated with an edge of
type #e. Secondly, dim(#e) is an ar(#e)-tuple of attributes, which are

11

dimensions (at Bottom-level). This means that dim(#e) is an element of
{D0, D1, ..., Dd}ar(#e). The tuple dim(#n) expresses which attributes are
associated with an edge of type #e, without specifying their levels. Finally,
assume that dim(#e) contains no repetition. The identifier dimension (at
its Bottom level) may appear, but is not required. If the identifier dimension
appears, it only appears once among the attributes that describe edges of a
certain type.

It is now possible to define the notion of “graphoid”, which will serve as
the basic data structure for the graph-OLAP process.

Definition 3 (Graphoid) Let D0 = Id be the identifier dimension. Let
dimensions D1, ..., Dd be given with their respective schemas and instances.
Let `1, ..., `d be levels for these respective dimensions. A (D1.`1, ..., Dd.`d)-
graphoid (or graphoid, for short, if the levels are clear from the context) is
a 6-tuple G = (N, τN , λN , E, τE , λE), where

• N is a finite, non-empty set, called the set of nodes of G;

• τN is a function from N to N (that associates a unique type with each
node of G);

• λN is a function that maps a node n ∈ N to a string [#n, a1, ..., aar(#n)],
where #n = τN (n) and, if dim(#n) = (A1, ..., Aar(#n)), then, for
i = 1, ..., ar(#n), ai ∈ dom(Dj .`j), if Ai is the dimension Dj . It is
assumed that different a1-values are associated with different nodes,
since the first attribute value acts as a node identifier; λN is denoted
the node labelling function;

• E is a subbag12 of the set P(N)×P(N), which we call the set of (multi
hyper-)edges of G;

• τE is a function from E to E (that associates a unique type to each
edge of G); and

• λE is a function that maps a hyperedge e ∈ E to a string [#e, b1, ...,
bar(#n)], where #e = τE(e) and, if dim(#e) = (B1, ..., Bar(#n)), then,
for i = 1, ..., ar(#e), bi ∈ dom(Dj .`j), if Bi is the dimension Dj ; λE is
called the edge labelling function. ut

The basic graph data that serves as input data to the graph OLAP
process, is called the base graph. A base graph plays the role of a multi-
dimensional cube in classical OLAP and is designed to contain all the infor-
mation of the application domain, at the lowest level of granularity.

12Let A and B be bags (or sets). If the number of occurrences of each element a in A
is less than or equal to the number of occurrences of a in B, then A is called a subbag of
B, also denoted A ⊆ B.

12

Definition 4 (Base graph) Let dimensions D1, ..., Dd be given with their
respective schemas and instances. The (D1.Bottom, ..., Dd.Bottom)-graphoid
is called the base graph. ut

Example 3 (Base graph) The running example used in this paper is aim-
ed at analysing calls between customers of phone lines; lines correspond
to different operators. Examples 1 and 2 showed some of the dimensions
used as background information. Next, the call information will be shown,
represented as a graph. The Phone dimension can play the roles of the
calling line and the callee line (this is called a role-playing dimension in the
OLAP literature [22]). The information of the hyperedges reflects the total
duration of the calls between two or more phone numbers on a given day.

Figure 3 shows an example of a base graph, where N = {1, 2, 3, 4, 5} is
the node set. The nodes in this base graph are all of the same type and
represent phones (not persons–a person may have more than one phone).
In this example, N = {#Phone}. The node type #Phone has arity 2. Its
first attribute is a node identifier and the second attribute is a dimensional
one that represents the phone number, with domain {Ph1,Ph2, ...}. In the
example of Figure 3,

λN : i 7→ [#Phone, 10 + i,Phi], for i = 1, ..., 5.

Hyperedges represent phone calls, which most of the time involve two
phones, but which may also involve multiple phones, representing so-called
“group calls.” So, edges are all of the same type #Call and E = {#Call}.
In Figure 3, a directed hype-edge from a subset S of N to a subset T of
N is graphically represented by a coloured node which has incoming arrows
(of the same colour) from all elements of S and outgoing arrows (again of
the same colour) to all elements of T . Such a coloured construction is a
depiction of the hyperedge e = (S, T), which will be denoted S → T from
now on.13 For example, the red and purple hyperedges {1} → {2} represent
two different phone calls from Ph1 to Ph2, made on the same day and of the
same duration. This example explains why the model assumes bags rather
than sets. The orange hyperedge {3} → {2, 5} represents a group call, from
Ph3 to both Ph2 and Ph5. In the figure, we see six phone calls. So, E is the
bag {{{1} → {2}, {1} → {2}, {4} → {3}, {4} → {5}, {3} → {2, 5}, {5} →
{2, 3}}}. The edge labelling function λE associates two attributes, with edges

13The nodes of S are called the source nodes of e and the nodes of T are called the
target nodes of e. If S has one element, then the hyperedge e is called single source. The
source and target nodes of e are called adjacent to e, and the set of the adjacent nodes to
e are denoted by Adj(e). Thus, Adj(e) = S ∪ T .

13

of type #Call, namely Date and Duration. Date is a dimensional attribute
to which the dimensional hierarchy in Figure 1 is associated. Duration is a
measure attribute (which has as an associated aggregation function, in this
case, the summation).

1 2

4 5

3
[#Phone, 12, Ph2][#Phone, 11, Ph1]

[#Phone, 13, Ph3]

[#Phone, 14, Ph4]

[#Phone, 15, Ph5]

[#Call, 2/5/2016, 5]

[#Call, 10/10/2016, 4]

[#Call, 10/10/2016, 4]

[#Call, 5/5/2016, 8]
[#Call, 10/10/2016, 3]

[#Call, 11/10/2016, 6]

Figure 3: Basic phone call data as a base graph.

ut

Note that, although the base graph plays the role of a multi-dimensional
cube in classical OLAP (or a fact table in relational OLAP), a key difference
is that this cube has a variable number of “axes”, since it can represent facts
including a variable number of dimensions.

The next example discusses two graphoids whose dimensions are at dif-
ferent levels of granularity. Later in the paper, it will be explained how these
graphoids can be obtained from the base one.

Example 4 (Graphoid) Continuing with Example 3, consider two avail-
able dimensions, namely D1 = Time and D2 = Phone. A (Time.Day,
Phone.Operator)-graphoid based on the base graph of Figure 3, is shown in
Figure 4. Here, in the Phone nodes, the phone numbers (e.g., Ph3) have been
replaced with their corresponding operator name, at the Phone.Operator
level in the dimension Phone (for example, for Ph3, the corresponding op-
erator is Movistar).

Figure 5 shows an alternative (Time.Day,Phone.Operator)-graphoid for
the data from Figure 3. This graphoid has N = {1, 2, 3} as a node set.
The nodes with identifiers 12 and 14 represent, respectively, Ph2 and Ph4

in the base graph (and also in the graphoid of Figure 4), which belong

14

1 2

4 5

3
[#Phone, 12, Vodafone][#Phone, 11, ATT]

[#Phone, 13, Movistar]

[#Phone, 14, Vodafone]

[#Phone, 15, Movistar]

[#Call, 2/5/2016, 5]

[#Call, 10/10/2016, 4]

[#Call, 10/10/2016, 4]

[#Call, 5/5/2016, 8]
[#Call, 11/10/2016, 6]

[#Call, 10/10/2016, 3]

Figure 4: A (Time.Day,Phone.Operator)-graphoid, based on the data shown
in Figure 3.

to the operator Vodafone. Thus, these two nodes were collapsed into one
(with identifier 12) and similarly, the nodes Ph3 and Ph5 were collapsed
into one node (with identifier 13). These operations were possible because
these nodes have identical attribute values (apart from the identifier). For
the dimension Time, all information in Figure 5 is at the level of Day and
all information for the dimension Phone is at the level of Company. These
examples show that there is more than one (Time.Day,Phone.Operator)-
graphoid that is “consistent” with the given base graph. This suggests that
some kind of normalization is needed. This is studied in the next section.

ut

Remark 3 The conceptual data modelling view underlying this proposal
requires some additional explanation, which is given next.

Nodes are assumed to represent basic objects in the modelled applica-
tion world. These objects are given by a number of descriptive attributes.
Measure information, that is typically present in an OLAP setting to quan-
tify facts, is, in this philosophy, represented as attributes on the hyperedges.
The call duration is an example of a measure that is placed on edges of the
type Call.

However, the above definition also allows for node attributes to be di-
mensions that contain measure information. Consider a slightly modified
situation in which an object of type #Phone includes an additional attribute
that expresses the average (or expected) billing amount for that particular

15

1 2 3
[#Phone, 11, ATT]

[#Call, 2/5/2016, 5]

[#Call, 10/10/2016, 4]

[#Call, 10/10/2016, 4]

[#Call, 5/5/2016, 8]

[#Call, 11/10/2016, 6]

[#Phone, 13, Movistar]

[#Phone, 12, Vodafone]

[#Call, 10/10/2016, 3]

Figure 5: An alternative (Time.Day,Phone.Operator)-graphoid, based on
the data shown in Figure 3.

phone number, for example, [#Phone, 11,Ph1, 880]. In this modified setting,
a user may want to compute the average expected billing amount over all
phone lines. To answer these kinds of queries, attribute values of certain
types of nodes must be averaged (in the example, the #HasExpectedBill
attribute). However, in the model presented here, aggregations are only per-
formed on attribute values of hyperedges. Whenever this problem occurs, the
representation can be modified as illustrated in Figure 6. On the left-hand
side, there is a node that includes the #HasExpectedBill attribute. On the
right-hand side, this attribute is brought to the All level in its dimension
and gets the value all. The expected billing information is moved to a new
edge of type #HasExpectedBill, where it can be subject to aggregation. The
above operation is called the edgification of an attribute A in a node of type
#n, and it is denoted by Edgify(#n, A).

This is consistent with both possibilities of data acquisition and mod-
elling, namely ETL and ELT, commented in Section 1. In the latter, mostly
used in a “Big Data” scenario, it is usual to capture data as they come,
and then decide whether or not to model these data in a particular way.
Edgification is useful in these scenarios. When it is possible to model data
prior to exploitation, the choice would most likely be to represent measures
as edges. However, when data are acquired as they come, it is most likely
that measures like the ones above, come as attribute of some node or di-
mension. Then, the notion of edgification gives the possibility of changing
this situation on-the-fly. ut

16

1

[#Phone, 11, Ph1, 880]

[#Phone, 11, Ph1, all]

1

[#HasExpectedBill, 880]

(a) (b)

Figure 6: (a) A node with label [#Phone, 11,Ph1, 880], where 880 expresses
the expected bill. (b) An edgification of this node, where the expected billing
information is moved to an edge that is labelled #HasExpectedBill.

3.3 Minimal graphoids

Example 4 showed that Definition 3 allows the existence of more than one
(D1.`1, ..., Dd.`d)-graphoid. In this section, the notion of minimal (D1.`1, ...,
Dd.`d)-graphoid is defined. This graphoid is obtained from a (D1.`1, ..., Dd.`d)-
graphoid by collapsing nodes which (apart from the identifier) have identical
labels (that is λN -values).

Let G = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-graphoid. If the
nodes n1, n2 ∈ N have identical labels, apart from the identifier (which
by definition are distinct), denoted λN (n1) =Id λN (n2), then these nodes
are identified. This means that only the one with the smallest identifier is
preserved, while the others are deleted. So, if the λN -values of the nodes
n1, n2, ..., nk pairwise satisfy the =Id-relationship, and n1 has the smallest
identifier among them, then the nodes n2, ..., nk are replaced by n1 and then
deleted. The expression repN (ni) = n1, for i = 1, 2, ..., k, indicates that
n1 will represent the nodes n1, n2, ..., nk in the minimal graph. All edges
leaving from or arriving at the nodes n2, ..., nk will be redirected to n1. For
this purpose, the function repN is defined on subsets of the node set N : if
S ⊆ N , then repN (S) = {repN (n) | n ∈ S}. Now, the notion of minimal
graphoid is defined more formally.

Definition 5 (Minimal graphoid) Let D0, D1, ..., Dd and `1, ..., `d be the
same as in Definition 3. LetG = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-
graphoid. The minimal graphoid of G is the (D1.`1, ..., Dd.`d)-graphoid
G′ = (N ′, τN ′ , λN ′ , E′, τE′ , λE′), defined as follows:

• N ′ is the set repN (N) = {repN (n) | n ∈ N};

17

• τN ′ is a function fromN ′ toN , defined as τN ′(repN (n)) := τN (repN (n)),
for each n in N ;

• λN ′ is a function on N ′ defined as λN ′(repN (n)) := λN (repN (n)), for
each n in N ;

• E′ is a subbag of the set P(N ′)×P(N ′), defined as follows: for each hy-
peredge e = S → T in E, then a new hyperedge repN (e) := repN (S)→
repN (T) is in E′;

• τE′ is a function from E′ to E , defined as τE′(repN (e)) := τE(e), for
each e in E;

• λE′ is a function on E′ and it is defined as λE′(repN (e)) := λE(e), for
each e in E.

ut

Remark 4 The set N of nodes of G is contracted to the set N ′ = repN (N),
therefore each node in N ′ has the smallest identifier from all nodes that are
mapped to n by the repN -function.

For edges, E′ is defined as the bag {{repN (e) | e ∈ E}}, which means
that for each hyperedge in E, there is a corresponding hyperedge in E′. This
means that the cardinalities of the bags E and E′ are the same. ut

Example 5 (Minimal graphoid) Figures 4 and 5 in Example 4 depict
two (Time.Day,Phone.Operator)-graphoids that correspond to the graph of
Figure 3. The graphoid of Figure 5 is the minimal graphoid of Figure 4.
In this example, the original nodes 2 and 4 are contracted into one node,
namely the node 2 (since it has the smallest identifier of the two). Similarly,
the original nodes 3 and 5 are contracted into the node 3. The original node
1 remains as it is. Between the nodes 1 and 2, there are two edges (with the
same label) in the original graph. They are copied in the minimal graph.
The edges between the nodes 4 and 3 and 4 and 5, respectively, become two
edges between the nodes 2 and 3 in the minimal graph. The two hyperedges
that involve the nodes 2, 3 and 5 correspond to two hyperedges between the
nodes 2 and 3 in the minimal graph. ut

Proposition 1 below, immediately follows from the definition of minimal
graphoid.

Proposition 1 For any (D1.`1, ..., Dd.`d)-graphoid G = (N, τN , λN , E, τE ,
λE), its minimal (D1.`1, ..., Dd.`d)-graphoid always exists and it is unique.

ut

18

Definition 6 For any (D1.`1, ..., Dd.`d)-graphoidG = (N, τN , λN , E, τE , λE),
the result of the minimisation described in this section, is denoted Minimize(G)
and called the minimisation of G. ut

Remark 5 It is easy to see that the minimal (D1.`1, ..., Dd.`d)-graphoid of
a (D1.`1, ..., Dd.`d)-graphoid G = (N, τN , λN , E, τE , λE) can be computed,
in the worst case, in time that is quadratic in |N | and linear in |E|. However,
this can be improved in most cases, for instance, with an early pruning of
the nodes that will not be contracted. Addressing these issues is beyond the
scope of this paper. ut

4 OLAP Operations on Graphs

In this section, the operations that compose the graph-OLAP language over
graphoids are defined. In Section 5 it is shown that these operations can
simulate the typical OLAP operations on cubes, when data cubes are rep-
resented as graphs.

4.1 Climb

First, the Climb-operation, both on nodes and on edges is introduced. Intu-
itively, this operation allows to define graphs at different levels of granularity,
based on the background dimensions.

Definition 7 LetG = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-graphoid.
Let Dk be a dimension that appears in G, and let `k and `′k be levels in the
schema σ(Dk) of this dimension, such that `k → `′k. Also, let ρ`k→`′k be the

corresponding rollup function (at the instance level). Let #n be a node type
that appears in G, and let #e be an edge type that appears in G.

The node-climb-operation of G along the dimension Dk from level `k to
level `′k in all nodes of type #n, denoted Climb(G,#n, Dk.(`k → `′k)), gives
as a result the replacement of any attribute value a from dom(Dk.`k) by the
new value ρ`k→`′k(a) from dom(Dk.`

′
k), in all nodes of G of type #n, leaving

G unaltered otherwise.
The edge-climb-operation of G along the dimension Dk from level `k to

level `′k in all hyperedges of type #e, denoted Climb(G,#e, Dk.(`k → `′k)),
gives as a result the replacement of any attribute value a from dom(Dk.`k)
by the new value ρ`k→`′k(a) from dom(Dk.`

′
k), in all edges of G of type #e,

leaving G unaltered otherwise. ut

Example 6 Applying to the graphoid G depicted in Figure 3 the operation
Climb(G,#Phone,Phone.(Phone→ Operator)), results in the graphoid, de-
picted in Figure 4. ut

19

Remark 6 Often, in applications, a dimension Dk may appear in multi-
ple node types and edge types, and the user may want to apply the Climb-
operation on any number of them. In this case, the shorthand Climb(G, {#n1,
...,#nr,#e1, ...,#es}, Dk.(`k → `′k)) is used, to indicate a climbing, in the
dimension Dk, from level `k to level `′k in all the nodes of types #n1, ...,#nr,
and in all the edges of types #e1, ...,#es in G. It is remarked that this can
be performed in any order. The expression Climb(G, ∗, Dk.(`k → `′k)) de-
notes a climbing, in the dimension Dk, from level `k to level `′k in all possible
node and edge types. ut

4.2 Grouping

The Group-operation, both on nodes and on edges, is defined in this section.

Definition 8 LetG = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-graphoid.
Let Dk be a dimension that appears in G and let `k and `′k be levels in the
schema σ(Dk) of this dimension, such that `k → `′k. Let ρ`k→`′k be the cor-
responding rollup function. Let #n be a node type that appears in G and
let #e be an edge type that appears in G.

The node-grouping of G along the dimension Dk from level `k to level `′k
in all nodes of type #n, denoted Group(G,#n, Dk.(`k → `′k)), is defined as
Minimize(Climb(G,#n, Dk.(`k → `′k))).

The edge-grouping of G along the dimension Dk from level `k to level `′k
in all hyperedges of type #e, denoted Group(G,#e, Dk.(`k → `′k)), is defined
as Climb(G,#n, Dk.(`k → `′k)). ut

Example 7 Applying to the graphoid G depicted in Figure 4 the operation
Group(G,#Phone,Phone.(Phone→ Operator)), results in the graphoid, de-
picted in Figure 5. ut

4.3 Aggregate

In this section, the Aggr-operation on measures stored in edges is defined.

Definition 9 LetG = (N, τN , λN , E, τE , λE) be a minimal (D1.`1, ..., Dd.`d)-
graphoid. Let Dk be a dimension that appears in the hyperedges of G of type
#e, and that plays the role of a measure, to which the aggregate function
Fk can be applied.

The aggregation of the graphoid G over the dimension Dk (using the
function Fk), denoted Aggr(G,#e, Dk, Fk), gives as result a graphoid G′

over the same N, τN and λN as G, with the following modified hyperedge
bag E′. If the hyperedges e1, e2, ..., er are all of type #e and all of type
S → T (and if they are the only ones), and if λE agrees on all of them apart

20

from a possible identifier-attribute, and apart from the dimension Dk, then
the hyperedges e1, e2, ..., er are replaced by one of them (say e1) of the same
type and with the same attribute values, apart from the identifier, which is
the identifier of e1, and the value of the attribute Dk.`k, which becomes the
value of the aggregation function Fk applied to the values of the attribute
Dk.`k of the edges e1, e2, ..., er. ut

Example 8 Applying the operation Aggr(G,#Call,Duration,Sum) to the
graphoid G, depicted in Figure 5, results in the same graphoid, in which
the two edges that connect the nodes 1 and 2 are replaced by one edge with
label [#Call, 10/10/2016, 8], which contains, in the measure attribute, the
sum of the two durations. ut

Remark 7 To aggregate multiple dimensions M1, ...,Mk, using the aggre-
gate functions F1, ..., Fk simultaneously, the notation would be: Aggr(G,#e,
{M1, ...,Mk}, {F1, ..., Fk}).

Also, for simplicity, only the typical SQL aggregate functions Sum,
Max,Min and Count are considered. ut

Remark 8 Although the operations Climb, Group, and Aggr, are not present
in classic relational OLAP, they are included here for several reasons: first,
they can be useful when operating on graphs in practice; second, they fa-
cilitate and make it simple the definition of the Roll-up operation, that
otherwise could be unnecessarily difficult to express. This does not mean
that the implementation of a Roll-up operation requires the sequence of op-
erations described in Definition 4.4 below. ut

4.4 Roll-Up

The operations defined above allow defining the Roll-Up-operation over di-
mensions and measures stored in edges, as explained next.

Definition 10 LetG = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-graphoid.
Let Dc be a dimension that appears in some nodes and/or hyperedges of G.
This dimension plays the role of a climbing dimension. Let M1, ...,Mk be
dimensions that appear in the hyperedges of type #e of G. These dimen-
sions play the role of measure dimensions, and it is assumed that aggregate
functions F1, ..., Fk are associated with them. Let #n1, ...,#nr be node types
appearing in G, and let #e1, ...,#es be hyperedge types appearing in G. The
roll-up of G over the dimensions M1, ...,Mk (using the functions F1, ..., Fk)
in hyperedges of type #e, and over the climbing dimension Dc from level

21

`c to level `′c in nodes of types #n1, ...,#nr and edges of types #e1, ...,#es,
denoted

Roll-Up(G, {#n1, ...,#nr,#e1, ...,#es}, Dc.(`c → `′c); #e,M1, ...,Mk, F1, ..., Fk),

is defined as

Aggr(Minimize(Climb(G, {#n1, ...,#nr,#e1, ...,#es},
Dc.(`c → `′c))),#e,M1, ...,Mk, F1, ..., Fk).

ut

Example 9 Applying to the graphoid depicted in Figure 5 the operation
Roll-Up(G, {#Call},Time.(Day → Year); #Call,Duration,Sum), results in
the graphoid of Figure 7. The minimisation step in the above implementa-
tion of the roll-up operation does nothing, in this case, since the operation
is applied to a minimal graphoid. ut

1 2 3
[#Phone, 11, ATT]

[#Call, 2016, 13]

[#Call, 2016, 8]

[#Phone, 13, Movistar][#Phone, 12, Vodafone]

[#Call, 2016, 9]

Figure 7: The result of the operation Roll-Up(G, {#Phone},Time.(Day →
Year); #Call,Duration,Sum) applied to the graphoid of Figure 5.

Remark 9 To apply the climbing in the roll-up operation to the nodes and
edges of all possible types, the shorthand “∗” is used as follows: Roll-Up(G, ∗,
Dc.(`c → `′c); #e,M1, ...,Mk, F1, ..., Fk). Furthermore, to aggregate over all
edge types, the notation becomes Roll-Up(G, ∗, Dc.(`c → `′c); ∗,M1, ...,Mk,
F1, ..., Fk). ut

22

4.5 Drill-Down

The Drill-Down-operation does the opposite of the Roll-Up one,14 taking a
graphoid to a finer granularity level, along a dimension Dd, call it a descend-
ing dimension, and also operating over a collection of measures, using the
same aggregate functions associated with such measures. Note also that,
descending from a level `d down to a level `′d along a dimension Dd is equiv-
alent to climbing from the bottom level of Dd, Dd.Bottom, to the level `′d
along Dd. Thus, analogously to the Roll-Up-operation, the drill-down of G
over the dimensions M1, ...,Mk (using the functions F1, ..., Fk) in hyperedges
of type #e, and over the descending dimension Dd from level `d to level `′d
in nodes of types #n1, ...,#nr and edges of types #e1, ...,#es, denoted

Drill-Down(G, {#n1, ...,#nr,#e1, ...,#es},
Dd.(`d → `′d); #e,M1, ...,Mk, F1, ..., Fk),

is defined as

Aggr(Minimize(Climb(G, {#n1, ...,#nr,#e1, ...,#es},
Dd.(Bottom→ `′d))),#e,M1, ...,Mk, F1, ..., Fk).

Given the above, in what follows the discussion is limited to the Roll-Up-
operation.

4.6 Dice

In this section, the Dice-operation over a graphoid is defined. This opera-
tion produces a subgraphoid that satisfies a Boolean condition ϕ over the
available dimension levels. A “strong” version is also defined, called the
s-Dice-operation. In this context, ϕ is a Boolean combination of atomic con-
ditions of the form D.` < c, D.` = c, and D.` > c, where D is a dimension,
` is a level in that dimension, and c ∈ dom(D.`). The expression ϕ can be
written in disjunctive normal form as∨

k

∧
l

ϕkl,

where all ϕkl are atomic conditions.

14Actually, this is true for a sequence of roll-up and drill-down operations such that
there are no slicing or dicing operations (explained in Sections 4.6 and 4.7) in-between.
However, for the sake of simplicity, and without loss of generality, in this paper it is
assumed that roll-up and drill-down are the inverse of each other.

23

Before giving the definition of the Dice-operation, it must be explained
what does it mean that a hyperedge e in a graphoid satisfies ϕ, denoted
e |= ϕ. For this, interpreting conjunction and disjunction in the usual way,
it is sufficient to define e |= ϕkl for the atomic formulas that appear in
ϕ. Thus, the formula ϕkl cannot be evaluated in e if the label of e does
not contain information on dimension D at level `. Otherwise, ϕkl can be
evaluated in e.

Let ϕkl be D.` < c, D.` = c or D.` > c; ϕkl is not false in e if it can be
evaluated in e and is true, or if it cannot be evaluated in e. The notion of
ϕkl being not false in a node n that is adjacent to e (that is, n ∈ Adj(e))
is defined in a similar way. Finally, e |= ϕkl if ϕkl is not false in e and not
false in all n ∈ Adj(e).

Definition 11 Let G = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-gra-
phoid. Let ϕ be a Boolean combination of equality and inequality constraints
that involve, on the one hand dimension levels `′1, ..., `

′
d (equal or higher than

`1, ..., `d in the dimension schemas σ(D1), ..., σ(Dd), respectively), and on the
other hand, constants from dom(D1.`

′
1), ..., dom(Dd.`

′
d). The dice over G on

the condition ϕ, denoted
Dice(G,ϕ),

produces a subgraphoid of G, whose nodes are the nodes of G and whose
edges satisfy the conditions expressed by ϕ. When an hyperedge does not
satisfy ϕ, the whole hyperedge is deleted from the graph and thus, it does
not belong to Dice(G,ϕ). All other edges of G belong to Dice(G,ϕ).

If two edges in G have the same set of adjacent nodes and one of them is
deleted from G in Dice(G,ϕ), then both of them are deleted in G to obtain
the strong dice over G on the condition ϕ, denoted s-Dice(G,ϕ). ut

Example 10 Applying the operation Dice(G,Phone.Operator 6= ATT) to
the graphoid depicted in Figure 5, results in the graphoid of Figure 8(a).
In this case, the result would be the same as the one obtained after apply-
ing s-Dice(G,Phone.Operator 6= ATT). Applying Dice(G,Time.Month =
5/2016) over the graphoid in Figure 8(a), results in the graphoid shown in
Figure 8(b). ut

4.7 Slice

The description of the graph-OLAP operations concludes defining the Slice-
operation over dimensions and measures stored in edges. Intuitively, this
operation eliminates the references to a dimension in the graphoid. The
analogy with classic OLAP slice operation will be discussed in Section 5.

24

2 3

[#Call, 2/5/2016, 5]

[#Call, 5/5/2016, 8]

[#Call, 11/10/2016, 6]

[#Phone, 13, Movistar]

[#Phone, 12, Vodafone]

[#Call, 10/10/2016, 3]

2 3

[#Call, 2/5/2016, 5]

[#Call, 5/5/2016, 8]

[#Phone, 13, Movistar]

[#Phone, 12, Vodafone]

(b)(a)

1
[#Phone, 11, ATT]

1
[#Phone, 11, ATT]

Figure 8: (a) The result of the operation Dice(G,Phone.Operator 6=
ATT) to the graphoid depicted in Figure 5; (b) The result of applying
Dice(G,Time.Month = 5/2016) to (a).

Definition 12 Let G = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-gra-
phoid. Let Ds be a dimension that appears in some nodes and/or hyperedges
of G. Let M1, ...,Mk be dimensions that appear in the hyperedges of G.
These dimensions play the role of measure dimensions. It is assumed that
aggregate functions F1, ..., Fk are associated with them. The slice of the
dimension Ds from G over the dimensions M1, ...,Mk (using the functions
F1, ..., Fk), denoted

Slice(G,Ds;M1, ...,Mk, F1, ..., Fk),

is defined as the roll-up operation up to the level Ds.All over the dimensions
M1, ...,Mk (using the functions F1, ..., Fk). Formally, this slice operation is
defined as

Roll-Up(G, ∗, Ds.(`s → All); ∗,M1, ...,Mk, F1, ..., Fk).

ut

Example 11 Applying the operation Slice(G,Time; Duration,Sum) to the
graphoid depicted in Figure 5, results in the graphoid of Figure 9. ut

25

1 2 3

[#Call, all, 13]

[#Call, all, 8][#Phone, 11, ATT]

[#Phone, 12, Vodafone]

[#Phone, 13, Movistar]

Figure 9: The result of the operation Slice(G,Time,Duration,Sum) on the
graphoid of Figure 5.

4.8 Node-delete

The n-Delete-operation over a graphoid, deletes all nodes of a certain type
and delete, in the source and target set of all edges, the nodes of this type.
Again, although this operation is not present in classic OLAP, it is needed to
simulate the classic OLAP slice operation, as will become clear in Section 5.2.

Definition 13 Let G = (N, τN , λN , E, τE , λE) be a (D1.`1, ..., Dd.`d)-gra-
phoid. The node-delete over G, given a node type #n, denoted

n-Delete(G,#n),

produces a subgraphoid of G, whose nodes of type #n are deleted, and in
which all edges e = S → T are replaced by edges S#n → T#n, where S#n

and T#n are S and T , respectively, minus the nodes of type #n. The edges
remain of the same type and they keep the same label. ut

Example 12 When a graphoid contains only nodes of one type, which is
the case of Figure 3, the result of the deletion of a node of this type is,
obviously, the empty graph. In the graphoid of Figure 11 (explained later),
the result of n-Delete(G,#Location) would be a graph with nodes 2 and 3,
where a hyperedge containing only these nodes would remain, with label
[#Sales, 10]. ut

5 Classical OLAP Cubes as a Special Case of OLAP
Graphs

This section explains how the classical cube-based OLAP model can be
represented in the graphoid OLAP model. It is also shown that the classical
OLAP-operations Roll-Up, Drill-Down, Slice and Dice can be simulated by
the graphoid OLAP-operations defined in Section 4.

26

5.1 A Preliminary Discussion on Modelling

Consider a typical example of an OLAP cube with dimensions (D1, D2,
D3) = (Product, Location, T ime). Such a cube, illustrated in Figure 10,
represents sales amounts of products at certain stores locations (cities)
on certain dates (at the lowest level of granularity). There are several
ways in which such a cube can be represented in the graphoid model.
For instance, Figure 11 shows two alternative ways of modelling the fact
(Lego,Antwerp, 1/1/2014; 10), which expresses that the sales of Lego in the
Antwerp store on January 1st, 2014 amount to 10.

...

Antwerp
Brussels

Marseille

Product

T
im

e
 (

D
a

y
)

Lego

2/1/2014

1/1/2014

Paris

Apples

OrangesBrio

Lo
ca

tio
n

31/1/2014

Figure 10: An example of a Sales data cube with one measure: µ1 = sales.

Figure 11(a) shows nodes 1, 2 and 3, of types #Product, #Location and
#Time, respectively. All of these nodes have only one attribute, to store
the values Lego, Antwerp and 1/1/2014, call those attributes ProductVal,
LocationVal and TimeVal, respectively. Further, those attributes are di-
mensions, with an appropriate dimension schema. The measure information
is stored in the hyperedge ∅ → {1, 2, 3} with label [#Sales, 10], which has
one attribute, namely SalesVal, to store the sale amount, which is 10. So,
in this approach, each cell of a data cube is modelled by a “star”-shaped
hyperedge.

An alternative representation is shown in Figure 11(b), which is the most
compact representation. In this approach there is only one node, of type
#Cube in the graphoid, which represents the data cube. This node is labelled
[#Cube, 11] in this example. It has no attribute values (apart from an iden-
tifier value). Cell-coordinates and cell-content are stored in hyperedges that
form loops in the only node. The fact (Lego,Antwerp, 1/1/2014 ; 10) is mod-
elled by a unique hyperedge with label [#InCube,Lego,Antwerp, 1/1/2014,

27

10]. So, cube facts are represented by a hyperedge of type #InCube that has
four attributes: ProductVal, LocationVal, TimeVal and SalesVal.

In between the two alternatives above, there are, obviously, more mod-
elling possibilities.

1

2

3

[#Sales, 10]

[#Location, 11, Antwerp]

[#Time, 12, 1/1/2014]

[#Product, 13, Lego]

(b)(a)

1

[#Cube, 11]

[#InCube, Lego, Antwerp, 1/1/2014, 10]

Figure 11: (a) The star-representation of the fact
(Lego,Antwerp, 1/1/2014; 10). (b) The petal-representation of the
fact (Lego,Antwerp, 1/1/2014; 10).

The next section will show that the graphoid OLAP-operations (as pre-
sented in Section 4) are at least as powerful as the classical OLAP-operations
of the classical cube model. The proof will assume the star-representation
of data cubes in the graphoid model (Figure 11(a)). Also, the semantics of
the classical OLAP operations, as defined in [16, 17], is used.

5.2 Graph- and Classic- OLAP Operations Equivalence

A classical data cube is based on dimensions D1, ..., Dd and on measures
µ1, ..., µm. Each dimension Di has its domain dom(Di) and its dimension
schema σ(Di) with corresponding dimension instances and roll-up functions
(between the levels). Each measure µj has its domain dom(µj) and an
associated aggregation function fj .

A (classical) data cube C over the dimensions D1, ..., Dd with measures
µ1, ..., µm, can then be seen as a (possibly partial) function µ : dom(D1) ×
· · · × dom(Dd)→ dom(µ1)× · · · × dom(µm). This function maps each “cell”
of the cube to m values for the measures. We denote a cell of the cube with
coordinates (a1, ..., ad) ∈ dom(D1) × · · · × dom(Dd), that contains values
(c1, ..., cm) ∈ dom(µ1)× · · · × dom(µm), simply by (a1, ..., ad; c1, ..., cm).

The “star-representation” of a data cube in the graphoid model can be
formally defined now.

28

Definition 14 Let C be a data cube over the dimensions D1, ..., Dd with
measures µ1, ..., µm. The star-graphoid of C, denoted Star(C), is the follow-
ing graphoid.

• For i = 1, ..., d, for each ai ∈ dom(Di), there is a node of type #Di

with label [#Di, id, ai], where id is a unique node identifier.

• For each cell (a1, ..., ad; c1, ..., cm) ∈ dom(D1) × · · · × dom(Dd) →
dom(µ1)×· · ·×dom(µm), there arem hyperedges: for each j = 1, ...,m,
there is a hyperedge of type #µj with an empty source node set and
with a target node set consisting of all nodes labelled [#Di, id, ai], for
i = 1, ..., d, which is labelled [#µj , cj]. ut

Now, the main theorem of this section is stated.

Theorem 1 The cube OLAP-operations Roll-Up, Drill-Down, Slice and Dice
can be expressed (or simulated) by OLAP-operations on graphoids.

Proof 1 Let C be a data cube and let Star(C) be its corresponding star-
graphoid. The proof of the theorem is based on showing that each of the
classical OLAP operations Roll-Up, Drill-Down, Slice and Dice, over C, can
be equivalently applied on Star(C).

Roll-Up. For cube data, a roll-up operation takes as input a data cube
C, a dimension Dc and a level `i in σ(Dc) and returns the aggregation
of the original cube along Dc up to level `c for all of the input measures
µ1, ..., µm, using aggregate functions F1, ..., Fm. Assume, without loss of
generality, that the roll-up starts at the Bottom level, that is, at dom(Dc).
Also assume, for the sake of clarity of exposition, that m = 1, that is,
that there is only one measure, call it µ, with associated aggregate func-
tion F . Now, it will be shown that the roll-up Roll-Up(C,Dc.`c;µ, F) on
the cube C can be simulated on Star(C) by the graphoid OLAP-operation
Roll-Up(Star(C), {#Dc}, Dc.(Bottom → `c); #eµ;µ, F), where #Dc is the
unique node type in Star(C) that contains information on the dimension Dc

and where #eµ is the unique edge type that contains measure information
on µ.

Let (a1, ..., ac−1, ac+1, ..., ad) be an element of dom(D1)×· · · dom(Dc−1)×
dom(Dc+1) × · · · × dom(Dd) and suppose that there are r values ac,i from
dom(Dc) (for i = 1, ..., r) such that (a1, ..., ac−1, ac,i, ac+1, ..., ad;mi) appear
in the cube C, and such that all ac,i roll-up to the same element, call it aru,
that means ρDc.Bottomk→`c(a) = aru. The roll-up on C will replace these r
cells by one “new” cell which has coordinates (a1, ..., ac−1, aru, ac+1, ..., ad) in
dom(D1)× · · · dom(Dc−1)× dom(Dc.`c)× dom(Dc+1)× · · · × dom(Dd), and

29

which contains the aggregated measure F ({m1, ...,mr}). In Star(C), each
one of these “new” cells will be represented by a hyperedge. To achieve this,
the following graphoid OLAP-operation is performed:

Roll-Up(Star(C),#Dc, Dc.(Bottom→ `c); #eµ, µ, F).

To see the correctness of this claim, the substeps in the above graphoid
roll-up are analysed. Firstly, Climb(Star(C),#Dc, Dc.(Bottom → `c)) is
performed; a graphoid called G1 is obtained. Compared against Star(C), in
G1 all nodes and edges remain the same, except for the nodes of type #Dc,
which now contain values at level `c. Next, a minimisation is performed
(to obtain a grouping on Dc), which may contract some nodes in G1 into
“roll-up” nodes. Call the resulting graphoid G2. These roll-up nodes of G2

simulate the “new” cells in the cube that store the aggregate information.
Finally, Aggr(G2,#eµ, µ, F) contracts edges that have the same adjacency
set and gives them the aggregated value of µ as attribute value.

Drill-Down. As mentioned above, the drill-down to level ` can be seen as
a roll-up from the Bottom level to level `. So, there is nothing further to
prove here.

Slice. On data cubes, the Slice-operation takes as input a cube C, a dimen-
sion Ds and returns a cube in which the dimension Ds is dropped, and in
which all measures are aggregated over the dropped dimension. To drop the
dimension Ds, a roll-up to the level All in this dimension is needed first,
such that its domain becomes a singleton.

To simulate this on Star(C) using graphoid OLAP-operations, a climb
to the level All in the dimension Ds is performed, and then the proof of the
roll-up case holds. The difference is that, in this case, all nodes representing
Ds will contain the value all. Then, the slice of the cube C is simulated by
Slice(Star(C), Ds;µ, F).

There one step missing, however. When slicing a dimension from a
cube C, this dimension is deleted. In the case of the graphoid Star(C), the
nodes of type #Ds are still present in G1 = Slice(Star(C), Ds;µ, F). So,
n-Delete(G1,#Ds) is needed to delete these nodes.

Dice. Intuitively, the Dice operation selects the cells in a cube C that satisfy
a Boolean condition ϕ. The syntax for this operation is Dice(C,ϕ), where ϕ
is a Boolean condition over level values and measures. The resulting cube
has the same dimensionality as the original cube. For a formal definition,
refer to [16, 17]. It must be shown that Dice(C,ϕ) can be simulated by
s-Dice(Star(C), ϕ).

As in Section 4.6, take

ϕ =
∨
k

∧
l

ϕkl,

30

with ϕkl of the form D.` < c, D.` = c or D.` > c, where D is a dimension,
` is a level in that dimension and c ∈ dom(D.`); or µ < c, µ = c or µ > c,
where µ is a measure and c belongs to the domain of that measure.

Let (a1, ..., ad; c1, ..., cm) ∈ dom(D1)× · · · × dom(Dd)→ dom(µ1)× · · · ×
dom(µm) be a cell of C that satisfies ϕ. Denote this by (a1, ..., ad; c1, ..., cm) |=
ϕ. The proof here requires showing that the edges ej, labelled [#µj , cj] (that
are adjacent to the nodes [#Di, id, ai], for i = 1, ..., d), for j = 1, ...,m, also
satisfy ϕ. From (a1, ..., ad; c1, ..., cm) |= ϕ it follows that there exists a k such
that for all l, (a1, ..., ad; c1, ..., cm) |= ϕkl holds.

If ϕkl is of the form D.` < c, D.` = c or D.` > c, then ϕkl is undefined
in the edge label and thus, it is not false in it. Furthermore, because of the
particular definition of stars in star-graphoids, where all nodes that are ad-
jacent to an edge ej carry information on unique dimensions, ϕkl is not false
in all adjacent nodes that do not contain information on D.` and it is true
in the unique adjacent node that contains information on D.`. Therefore,
the edge ej satisfies ϕkl.

If ϕkl is of the form µ < c, µ = c or µ > c, then ϕkl evaluates to true
on one of the edges ej (that contains information on that measure µ) and is
undefined on the other edges (that contain information on other measures).
On the adjacent nodes to these edges, the condition ϕkl is not false (since
these nodes do not contain information on any measures). In both cases, all
these edges satisfy ϕkl. This means that the strong dice-operation will keep
all these edges.

By a similar reasoning, it can be shown that when (a1, ..., ad; c1, ..., cm) 6|=
ϕkl, we have ej 6|= ϕkl.

This shows that exactly the edges (labelled [#µj , cj]) corresponding to
cells (a1, ..., ad; c1, ..., cm), where ϕ is not satisfied are deleted from the graphoid
Star(C) by the strong dice-operation.

This completes the proof.

6 Case Study and Discussion

The running example followed so far in this paper will also be used as a case
study, in order to evaluate the hypergraph model against the traditional
relational OLAP alternative. The example case has many interesting char-
acteristics, such as: (a) Normally it involves huge volumes of data facts (i.e.,
calls); (b) The number of dimensions involved in facts is variable, since calls
may differ from one another in the number of participants; (c) It allows per-
forming not only the typical OLAP operations described in Section 4, over
the fact measures, but also to aggregate the graph elements using graph
measures like shortest paths, centrality, and so on. Therefore, the case

31

study is appropriate for illustrating and discussing the graphoid model use-
fulness in two scenarios: the classic OLAP, for which the relational model
is normally used, and a Graph OLAP scenario, where graph metrics are ag-
gregated. The hypothesis to be tested here is that, although the relational
OLAP alternative works well when facts have a fixed dimensionality (e.g.,
when all calls in the database involve the same number of participants), the
graphoid model is competitive when the number of dimensions is variable,
and definitely better to perform what will be denoted here on as Graph
OLAP operations.

The dataset to analyse consists of group calls between phone lines, where
a line cannot call itself, and the analyst also needs to identify the line who
started the call. The schemas of the background dimensions are the ones in
Figure 1, with small changes that will be explained below. Facts are similar
to the ones in Figure 3.

Although performing an exhaustive experimental study is beyond the
scope of this paper, and will be part of future work, this section aims at
analysing the plausibility of the graph model to become a better solution
that the relational model for the kinds of problems where factual data are
naturally represented as graphs. For this, the graphoid model will be com-
pared against the relational alternative containing exactly the same data.
First, two alternative relational OLAP representations are implemented on
a Postgres database, and three synthetic datasets of different sizes are pro-
duced and loaded into both representations. Then, the same datasets are
loaded into a graph database. Neo4j is used for this purpose, and queries
are written in Cypher, Neo4j’s high level query language.15

6.1 Relational Representation

Since the relational design may impact in query performance, two alter-
native designs for the fact table are implemented in order to provide a
fair comparison. In both cases, the fact table schema is the following:
Calls(CallId, CallerId, Participant,StartTime, EndTime, Duration).

The meaning of the attributes is:

• CallId: Call identifier;

• CallerId: The identifier of the line which initiated the call;

• StartTime, EndTime: Timestamps of the initial and final instants of
the call;

• Duration: Attribute precomputed as (StartTime - EndTime).

15https://neo4j.com/developer/cypher-query-language/

32

https://neo4j.com/developer/cypher-query-language/

Although the schemas are the same in both cases, the instances differ
from each other. In one case, a call between phone Ph1, Ph2, and Ph3,
initiated by Ph1, contains the tuples (1 , Ph1, Ph2, ...) and (1 , Ph1, Ph3).
In the other case, a tuple (1 , Ph1, Ph1, ...) are added to the other two to
indicate that Ph1 started the call. This makes a difference for queries where
the user is not interested in who did initiate the call. In what follows, both
relational representations are denoted Calls and Calls-alt, respectively.

As expressed above, the background dimensions are the same of Figure 1.
There are two slight differences, however, for practical reasons. First, for
the Time dimension, the bottom level will have granularity Timestamp,
since the StartTime and EndTime attributes in the fact tables have that
granularity. That means, a new level is added to the dimension. Second, in
the Phone dimension the bottom level will be the phone identifier, denoted
Id, which rolls up to the line number, denoted Number. This is because
caller and callee are represented as integers, as usual in real world data
warehouses. The Phone dimension is represented in a single table, keeping
the constraints indicated by the hierarchies. This representation (i.e., Star)
was chosen to provide a fair comparison. In summary, the dimension table
schema will be Phone(Id, Number, Customer, City, Country, Operator).

6.2 Graphoid-OLAP Representation

The logical model for the graphoid representing the calls (i.e., the base
graphoid), is similar to the one depicted in Figure 3. Figure 12 shows a
portion of the running example implemented in Neo4j. There are two main
entity nodes, namely #Phone and #Call, to represent call facts. These are
linked through edges labelled #creator and #receiver, the former going from
the phone that initiated the call, to the node representing such call. Back-
ground dimensions are represented in the same graph, using the entity nodes
#Operator, #User, #City and #Country for the dimension levels. Finally, di-
mension levels are linked using the edges of types #provided by, #has phone,
#belongs to and #lives in. It can be observed that nodes are not duplicated.

6.3 Datasets

For the relational representation, synthetic datasets of two different sizes are
generated and loaded into a Postgres database. Table 1 depicts the sizes of
the datasets. The first column shows the number of tuples in the Calls fact
table. The second column shows the number of tuples in the Calls-alt fact
table. The third column indicates the number of calls (obviously the same
in both versions), and the fourth column tells the number of tuples in the
Phone dimension table.

33

Figure 12: Portion of the Call-graph.

Table 1: Dataset sizes for the relational representation

Dataset tuples Calls tuples Calls-alt calls tuples Phone
D1 293,817 420,517 126,700 793
D2 528,408 756,117 227,709 4,689

For the graph representation, Table 2 depicts the main numbers of
elements in the Neo4j graph.

6.4 Queries

This section shows how different kinds of complex analytical queries can be
expressed and executed over the three representations described above. Four
kinds of OLAP queries are discussed: (a) Queries where the aggregations are
performed for pairs of objects (e.g., phone lines, persons, etc.); (b) Queries
where aggregations are performed in groups of N objects, where N > 2; (c)
For (a) and (b), rollups to different dimension levels are performed.; (d)
Graph OLAP-style aggregations performed over graph metrics. The idea of
these experiments is to study if, when the queries can take advantage of the
graph structure, graphoid-OLAP queries are more concisely expressed, and
more efficiently executed. The impact of N in the relational and the graph

34

Table 2: Dataset sizes for the graph representation

Dataset Phone nodes User nodes Call nodes creator edges receiver edges
D1 793 500 126,700 126,700 293,817
D2 4,689 3,000 227,710 227,709 528,408

representation is also studied. The queries are described next. For the sake
of space, only some of the SQL and Neo4j queries are shown.

Query 1 Average duration of the calls between groups of N phone lines.

The query looks for all the N -subsets of lines that participated in some
call. That means, if a call involves 3 lines, say Ph1, Ph2 and Ph3, and
N = 2, the groups will be (Ph1, Ph2), (Ph1, Ph3), and (Ph2, Ph3). For the
sake of space only some of the queries are depicted. Figure 13 shows the
recursive SQL query for the first representation alternative. The Cypher
query for N = 2 is shown in Figure 14, and Figure 15 shows the Cypher
query for N = 3.

Query 2 Average duration of the calls between groups of N users.

Figure 16 shows the Cypher query for N=3. Note that in all cases the
queries actually perform a roll-up to the level User along the Phone dimen-
sion. The relational queries perform this roll-up through a join between the
fact and dimension tables. In the case of Neo4j the roll-up is performed
using by pattern matching. That is, the climbing (in the graphoid OLAP
model) is done by the MATCH clause (the climbing path is explicit in this
clause), while the aggregation is performed in the RETURN clause.

Query 3 below, analyses a roll-up to the level Operator, which has less
instance members than the level User.

Query 3 Average duration of the calls between groups of N operators.

Query 4 is aimed at analysing the connections between phone line users,
and has many real-world applications (for example, to investigate calls made
between two persons who use a third one as an intermediary).

Query 4 For each pair of Phones in the Calls graph, compute the shortest
path between them.

35

set myvars.recsize = 2; --3,4, 5 or any number
WITH RECURSIVE records(CallId, ids, Duration) as
(
SELECT CallId, array[Number], Duration
FROM Calls JOIN Phone AS member ON
Calls.Participant = member.PhoneId

UNION

SELECT CallId, array[Number], Duration
FROM Calls JOIN Phone AS member ON
Calls.CallerId = member.PhoneId

UNION

SELECT Calls.CallId, array (SELECT unnest(array[Number] || ids)
As x ORDER BY x), Calls.Duration

FROM Calls JOIN Phone AS member ON Calls.Participant = member.Id,
records
WHERE Calls.CallId = records.CallId
AND array_length(ids, 1) < current_setting(’myvars.recsize’)::int
AND Number <> ALL(ids)
)
SELECT ids, avg(duration)
FROM records
WHERE array_length(ids, 1) > 1
GROUP BY ids;

Figure 13: Query 1 - Calls representation.

From a technical point of view, this is an aggregation over the whole
graph, using as a metric the shortest path between every pair of nodes.
Although it is obviously a query appropriate for a graph representation, the
SQL solution was also computed, since we are comparing the appropriateness
of both representations for different kinds of queries. Figure 17 shows the
corresponding Cypher query.

Finally, the following queries combine the computation of graph metrics
together with roll-up and dice operations.

Query 5 Compute the shortest path between pairs p1, p2) of phone lines,
such that p1 corresponds to operator “Claro” and p2 corresponds to operator
“Movistar”.

Query 6 Compute the shortest path between pairs p1, p2) of phone lines,

36

MATCH (p1:Phone)-[:creator|:receiver]-(m:Call)
-[:creator|:receiver]-(p2:Phone)

WHERE p1.id < p2.id
RETURN p1,p2, avg(m.duration)

Figure 14: Query 1 - Cypher query for N = 2

MATCH (t1 :Phone)<-[:creator|:receiver]-(c :Call)-
[:creator|:receiver]->(t2 :Phone),(t3:Phone)
<-[:creator|:receiver]-(c :Call)

WHERE t1.number < t2.number AND t2.number < t3.number
RETURN t1.number, t2.number, t3.number, avg(c.duration)

Figure 15: Query 1 - Cypher query for N = 3

such that p1 corresponds to a user from the city of Buenos Aires and p2
corresponds to a user from the city of Salta.

Query 7 Compute the shortest path between pairs p1, p2) of phone lines,
such that p1 corresponds to a user from the city of Buenos Aires.

6.5 Results

Table 3 shows the results of the experiments. The tests were ran on machine
with a i7-6700 processor and 12 GB of RAM, and 250GB disk (actually, a
virtual node in a cluster). The execution times are depicted, and are the
averages of five runs of each experiment, expressed in seconds.

6.6 Discussion of Results

In Table 3 it can be seen that running traditional OLAP queries, like Query
1, Query 2 and Query 3, takes approximately the same time in the relational
and graphoid models, with a slight advantage for the former. Further, it can
be seen that for Queries 2 and 3, which include a roll-up, results are very
similar, and even Neo4j wins here in many cases. In Query 1, which is an
aggregation over the fact graph, the relational alternatives work better.16

16It is worth noting that Neo4j (and graph databases in general) is a novel database,
whose query optimization strategy is still very basic. On the contrary, relational databases
are mature technologies, and query optimization is very efficient indeed. Further, for the
experiments presented here, the Postgres databases have been tuned to perform in the

37

MATCH (u1:User)<-[:has_phone]-(t1:Phone)<-[:creator|:receiver]-
(c:Call)-[:creator|:receiver]->(t2:Phone)-[:has_phone]->(u2:User),
(u3:User)<-[:has_phone]-(t3:Phone) <-[:creator|:receiver]-(c:Call)
WHERE u1.id < u2.id AND u2.id < u3.id
RETURN u1.name, u2.name, u3.name, avg(c.duration)

Figure 16: Query 2 - Cypher for N = 3.

MATCH (m:Phone),(n:Phone)
WITH m,n WHERE m<>n
MATCH p= shortestPath((m)-[:receiver|:creator *]-(n))
RETURN p, length(p)

Figure 17: Query 3 - Cypher expression.

Table 3: Experimental results (running times in seconds).

Dataset Calls Calls Calls Calls-alt Calls-alt Calls-alt Neo4j Neo4j Neo4j
N = 2 N = 3 N = 4 N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

D1-Q1 4.9 7.6 9.5 5.4 8.7 10.6 7.3 11.2 12.5
D1-Q2 4.6 11.7 12.9 4.4 12.3 14.5 7 11.8 14.8
D1-Q3 6.6 7.3 11.5 12.8 12.6 14.7 3.7 10.8 15.5
D1-Q4 ∞ N/A N/A ∞ N/A N/A 185 N/A N/A
D1-Q5 ∞ N/A N/A ∞ N/A N/A 21 N/A N/A
D1-Q6 ∞ N/A N/A ∞ N/A N/A 6 N/A N/A
D1-Q7 ∞ N/A N/A ∞ N/A N/A 34 N/A N/A

D2-Q1 9.3 14.1 15.1 10.4 16.2 17.7 15.6 17.5 21.6
D2-Q2 12.9 19 20.7 14.5 24 26.8 20.2 21.6 24.8
D2-Q3 12.5 19.4 22.2 14.3 14.6 22.8 9.3 18.7 28.4
D2-Q4 ∞ N/A N/A ∞ N/A N/A ∞ N/A N/A
D2-Q5 ∞ N/A N/A ∞ N/A N/A 677 N/A N/A
D2-Q6 ∞ N/A N/A ∞ N/A N/A 123 N/A N/A
D2-Q7 ∞ N/A N/A ∞ N/A N/A 924 N/A N/A

However, when typical Graph OLAP queries (Queries 4 through 7), which
aggregate graph metrics, the graph model shows a dramatical advantage over
the relational alternative. For Neo4j, Query 4 does not finish within a rea-
sonable time for the largest of the two datasets (D2) but performance is
acceptable for D1. On the other hand, the relational alternatives do not ter-
minate successfully neither for D1 nor for D2. However, it can be observed

best possible way. In this sense, Neo4j’s performance for typical OLAP queries is, in some
sense, penalized.

38

that when at least one end of the path is fixed in some way (eg., Query 7),
the graph alternative ends in a reasonable time, while the relational ones
are still unacceptable. It is important to make it clear that with an ad-hoc
relational design, specifically for graph representation, it is possible that
the performance of the relational alternative for shortest path aggregations
could be improved, although it will hardly be close to the graph alterna-
tive, given the results presented here. However, the intention of this paper
is to present a flexible model that can perform efficiently on a variety of
situations. In this sense, the tests presented here suggest that the graphoid
data model can be competitive with the relational model for classic OLAP
queries, but is much better for typical Graph OLAP ones.

7 Conclusion and Open Problems

This paper presents a data model for graph analysis based on node- and
edge-labelled directed multi-hypergraphs, called graphoids. A collection of
OLAP operations, analogous to the ones that apply to data cubes, is for-
mally defined over graphoids. It is also formally proved that the classic
data cube model is a particular case of the graphoid data model. As far as
the authors are aware of, this is the first proposal that formally addresses
the problem of defining OLAP operations over hypergraphs. Supported by
this proof, it is shown that the graphoid model can be competitive with the
relational implementation of OLAP, but clearly much better when graph
operations are used to aggregate graphs. This feature allows devising a gen-
eral OLAP framework that may cope with the flexible needs of modern data
analysis, where data may arrive in different forms. It is worth to remark,
once more, that the experiments presented do not pretend to be exhaustive,
but a good general indication of the plausibility of the approach, and it is
clear that the graph data model provides OLAP with a machinery of more
powerful tools than the classic cube data model, which is already good news
for the OLAP practitioners.

Building on the results in this paper, future work includes looking for
further graph metrics that can be applied to the graphoid model, new case
studies, and the study of query optimization strategies. Moreover, the ap-
proach can also benefit from tools supporting parallel computation with
columnar databases as backends. This can further improve the relational
OLAP computation, while keeping the properties of the graphoid model for
Graph OLAP queries.

39

Acknowledgments

Alejandro Vaisman was supported by a travel grant from Hasselt Univer-
sity (Korte verblijven–inkomende mobiliteit, BOF16KV09). He was also
partially supported by PICT-2014 Project 0787. The authors also want to
thank T. Colloca, S. Ocamica, J. Perez Bodean, and N. Castaño, for their
collaboration in the data preparation for the experiments.

References

[1] R. Angles. A Comparison of Current Graph Database Models. In
Proceedings of ICDE Workshops, pages 171–177, Arlington, VA, USA,
2012.

[2] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vr-
goc. Foundations of modern query languages for graph databases. ACM
Comput. Surv., 50(5):68:1–68:40, 2017.

[3] Renzo Angles and Claudio Gutierrez. Survey of graph database models.
ACM Comput. Surv., 40(1):1:1–1:39, 2008.

[4] S-M-R. Beheshti, B. Benatallah, H. R. Motahari Nezhad, and M. Allah-
bakhsh. A framework and a language for on-line analytical processing
on graphs. In Web Information Systems Engineering - WISE 2012,
volume 7651 of Lecture Notes in Computer Science, pages 213–227.
Springer, 2012.

[5] C. Chen, X. Yan, F. Zhu, J. Han, and P. Yu. Graph OLAP: a multi-
dimensional framework for graph data analysis. Knowl. Inf. Syst.,
21(1):41–63, 2009.

[6] J. Cohen, B. Dolan, M. Dunlap, J.M. Hellerstein, and C. Welton. MAD
Skills: New analysis practices for big data. Proceedings of the VLDB
Endowment, 2(2):1481–1492, 2009.

[7] Alfredo Cuzzocrea, Ladjel Bellatreche, and Il-Yeol Song. Data Ware-
housing and OLAP over Big Data: Current Challenges and Future Re-
search Directions. In Proceedings of the Sixteenth International Work-
shop on Data Warehousing and OLAP, DOLAP ’13, pages 67–70, New
York, NY, USA, 2013. ACM.

[8] B. Denis, A. Ghrab, and S. Skhiri. A distributed approach for graph-
oriented multidimensional analysis. In IEEE International Conference
on Big Data, pages 9–16, 2013.

40

[9] L. Etcheverry and A.A. Vaisman. QB4OLAP: A vocabulary for OLAP
cubes on the semantic web. In Proceedings of COLD, Boston, USA,
2012. CEUR-WS.org.

[10] A. Ghrab, O. Romero, S. Skhiri, A. A. Vaisman, and E. Zimányi.
GRAD: Modeling and Querying Data Warehouses. In Proceedings of
ADBIS, pages 92–105, Poitiers, France, 2015.

[11] Leticia I. Gómez, Bart Kuijpers, and Alejandro A. Vaisman. Perform-
ing OLAP over graph data: Query language, implementation, and a
case study. In Proceedings of the International Workshop on Real-Time
Business Intelligence and Analytics, BIRTE, Munich, Germany, Au-
gust 28, 2017, pages 6:1–6:8, 2017.

[12] O. Hartig. Reconciliation of RDF* and property graphs. CoRR,
abs/1409.3288, 2014.

[13] Huahai He and AmbujK. Singh. Query language and access methods
for graph databases. In Managing and Mining Graph Data, volume 40
of Advances in Database Systems, pages 125–160. Springer US, 2010.

[14] Ralph Kimball. The Data Warehouse Toolkit. J. Wiley and Sons, 1996.

[15] M. B. Kraiem, J. Feki, K. Khrouf, F. Ravat, and O. Teste. Modeling
and olaping social media: the case of twitter. Social Netw. Analys.
Mining, 5(1):47:1–47:15, 2015.

[16] B. Kuijpers and A. A. Vaisman. A formal algebra for OLAP. CoRR,
abs/1609.05020, 2016.

[17] Bart Kuijpers and Alejandro A. Vaisman. An algebra for OLAP. In-
telligent Data Analysis, 21(5), 2017.

[18] Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and
Hongyan Li. Efficient topological OLAP on information networks. In
Proceedings of the 16th International Conference on Database Systems
for Advanced Applications - Volume Part I, DASFAA’11, pages 389–
403. Springer, 2011.

[19] N. U. Rehman, A. Weiler, and M. H. Scholl. OLAPing social media: the
case of twitter. In Advances in Social Networks Analysis and Mining
2013, ASONAM ’13, pages 1139–1146, Niagara, ON, Canada, 2013.

[20] I. Robinson, J. Webber, and Emil Eifrém. Graph Databases. O’Reilly
Media, 2013.

41

[21] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient
aggregation for graph summarization. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 567–
580. ACM, 2008.

[22] A. A. Vaisman and E. Zimányi. Data Warehouse Systems: Design and
Implementation. Springer, 2014.

[23] Alejandro A. Vaisman. Publishing OLAP cubes on the semantic web.
In EBIS’15, Lecture Notes in Business Information Processing, pages
32–61. Springer, 2015.

[24] Z. Wang, Q. Fan, H. Wang, K-L. Tan, D. Agrawal, and A. El Abbadi.
Pagrol: Parallel graph OLAP over large-scale attributed graphs. In
Data Engineering (ICDE), 2014 IEEE 30th International Conference
on, pages 496–507, 2014.

[25] Mu Yin, Bin Wu, and Zengfeng Zeng. HMGraph OLAP: a novel frame-
work for multi-dimensional heterogeneous network analysis. In Pro-
ceedings of the 15th international workshop on Data warehousing and
OLAP, pages 137–144. ACM, 2012.

[26] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph cube: on
warehousing and OLAP multidimensional networks. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
data, pages 853–864. ACM, 2011.

42

