
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:961–977 
https://doi.org/10.1007/s12652-019-01203-7

ORIGINAL RESEARCH

A real-time service system in the cloud

Aneta Poniszewska‑Maranda1 · Radosław Matusiak1 · Natalia Kryvinska2 · Ansar‑Ul‑Haque Yasar3

Received: 15 August 2018 / Accepted: 28 November 2018 / Published online: 5 February 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Recently, we have witnessed unprecedented use of cloud computing and its services. It is influencing the way software is built, 
as well as company’ resources such as servers, workstations or generally hardware are used. This paper aims to examine the 
benefits of cloud usage to support real-time service systems, using the Salesforce platform. First, we explore the meaning 
and the role of cloud computing for the real-time service systems efficient functioning. Then, we build a service management 
platform for the Polish Billiards and Snooker Association (PBSA), based on a real-time system located in the cloud. This 
way, PBSA managers are able to complete their tasks in this system on-demand. Moreover, it is set up as a private cloud to 
grant access only to the snooker organization employees.

Keywords  Cloud computing · Real-time service system · Salesforce platform · SaaS cloud

1  Introduction

Ubiquitous development of Information and Communication 
Technologies (ICTs) involves the evolution of commonly 
adopted computer systems and applications. One of the 
fastest growing trends in the IT environment is the cloud. 
It is influencing the way of the software building, as well 
as companies or end users exploit resources such as serv-
ers, workstations or generally hardware, which in turn can 
become deprecated quickly. Cloud itself can be referred to as 
cloud computing or public cloud; e.g., online disks designed 
for data storage and easy access to it. Accordingly, business/
private users can manage their businesses or processes using 
any device that has an Internet connection (Mell and Grance 
2009, 2011; Jin et al. 2010; Qi et al. 2018).

From the research point of view, cloud computing is an 
interesting field as it is one of the fastest developing domains 
in modern businesses and classical computer science. 
It brings a lot of opportunities in response to on-demand 
access to data resources; but, at the same time, there are 
many concerns about the safety of such solutions. Often 
information that users decide to store online is sensitive. In 
a certain sense, there is some risk involved when using cloud 
computing as beneficiaries must trust and rely on the service 
providers. On the other hand, the growing number of users 
who takes advantage of cloud solutions force cloud provid-
ers to assure an appropriate level of security. Hence, more 
and more organizations decide to move their data into the 
cloud (Tang et al. 2010; Sriram and Khajeh-Hosseini 2010; 
De la Prieta et al. 2017). As an example, an organization that 
lacks a service management computer system, we analyze 
the Polish Billiards and Snooker Association (PBSA). It is a 
Polish federation representative for two sports disciplines—
snooker and English billiards. Its main occupation embraces 
organizing tournaments, the popularization of mentioned 
disciplines, representation of Poland on the international 
arena and choosing players to the national team.

Polish Billiards and Snooker Association does not have 
distributed computing infrastructure. Also, the activities on 
behalf of this organization are not the main occupation of 
people from it, rather just hobby. The cloud approach with 
its advantages seems a reasonable solution to build a sys-
tem that could help to manage snooker tournaments. Cloud 

 *	 Aneta Poniszewska‑Maranda 
	 aneta.poniszewska‑maranda@p.lodz.pl

	 Natalia Kryvinska 
	 Natalia.Kryvinska@fm.uniba.sk

	 Ansar‑Ul‑Haque Yasar 
	 ansar.yasar@uhasselt.be

1	 Institute of Information Technology, Lodz University 
of Technology (TUL), Lodz, Poland

2	 Department of Information Systems, Faculty of Management, 
Comenius University in Bratislava, Bratislava, Slovakia

3	 Transportation Research Institute-IMOB Hasselt University, 
Hasselt, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01203-7&domain=pdf


962	 A. Poniszewska‑Maranda et al.

1 3

platform enables access from personal computers or smart-
phones from anywhere as long as an Internet connection is 
available (Sadiku et al. 2014; Poniszewska-Maranda et al. 
2017; Chen et al. 2018).

There are many aspects that would make the organization 
of such competition more efficient. For example, the main 
referee should have a tool that allows managing the schedule 
of matches and notifying players about their next match, 
generating match report, and generating tournament bracket 
automatically. Accordingly, we examine the capabilities of 
cloud in relation to the real-time service systems, consider-
ing Salesforce platform.

This paper is organized as follows. Section 2 describes 
the idea of real-time system and cloud computing common 
usage. This section also describes cloud, key characteris-
tics, deployment and service models. Section 3 reveals the 
information about Salesforce platform—what it is for, and 
what tools it offers to build our proposed system. Section 4 
deals with the building of the proposed system, including 
the development of the requirements, architecture and logic 
layer. Section 5 provides a summary of the results and pro-
posed future work.

2 � Cloud computing for real‑time service 
systems

Polish Billiards and Snooker Association (PBSA) service 
management platform is developed as a real-time system 
located in the cloud. It allows PBSA managers and employ-
ees to call up this system on-demand. It is deployed as a 
private cloud with restricted access to the employees of the 
snooker organization only. This section describes a real-time 
system functionality and its usefulness for our proposed 
management system. Then, a categorization of cloud capa-
bilities in relation to the research problem is discussed.

2.1 � Real‑time systems

The term real-time system sometimes can be easily misun-
derstood. One might probably think of a complex system 
that processes data, operates and responds to the user almost 
immediately. In fact, this concept is much wider. The crucial 
thing is to distinguish the difference between real-time sys-
tem and computer real-time system (Shin and Ramanathan 
1994). A definition proposed in (Laplante 1994; Schoch 
and Laplante 1995; Laplante and Ovaska 2011) states that 
not only computations correctness is important in real-time 
systems, but also the fact that they follow events happening 
in real time. In this case, it means that the essential require-
ments are punctuality (meeting time constraints) and contin-
uous operation. According to a concept proposed in (Kopetz 
2011), such systems are divided into the set of subsystems, 

referred to as clusters (Kopetz 2011). Figure 1 depicts the 
components of real-time systems.

Based on this view, a computer real-time system is just 
one of the clusters of a bigger system where computations 
take place. Hence, the relation through the man–machine 
interface is obvious—a man operates a computer that pro-
cesses data related to a controlled object. An interface, in 
turn, consists of sensors and actuators that process physical 
signals and transfer them to or receive them from the compu-
tational cluster (Gomaa 1993; Liu et al. 2000; Kopetz 2011).

Real-time systems can be divided into two categories, 
namely: hard and soft. The most crucial factor here is 
time. A computer real-time system should operate within a 
requested time constraint referred to it as a deadline. Hard 
type of real-time systems means—every deadline must be 
met; otherwise, the system can result in a total failure. Such 
breakdown could cause a disaster, even for humans. Such 
disasters can happen in chemical plants or in air traffic 
control, which are in turn real-time systems (Mattai 1995; 
Kopetz 2011; Laplante and Ovaska 2011). On the other 
hand, soft type of real-time systems does not cause any dan-
ger when the deadline is not met. When a failure occurs in 
this case, a system might become just annoying for the user 
or may result in some financial losses. A good example to 
illustrate this problem is an online reservation system. Miss-
ing a time constraint would result in unsuccessful opera-
tion, but no danger for people (Krishna 2001; Kopetz 2011; 
Laplante and Ovaska 2011).

Another classification of real-time systems involves 
event-triggered and time-triggered systems. A trigger can be 
defined as an event that entails further actions or computa-
tions in the computer. Hence, in time-triggered systems, any 
activities taken by it happen at a predefined earlier moment. 
This makes the whole system inflexible since it handles 
only events that had been defined before. On the other hand, 
actions in event-triggered systems are started immediately 
after any event other than set earlier to happen at a given 
time triggers the system (Kopetz 2011; Klein et al. 2012).

Within the context of this work, a system is developed 
for practical purposes that can be defined as a soft real-
time system. In case of total failure, naturally there is no 
a significant danger for people or surroundings. It is a tool 
designed for improving the efficiency of management sports 
tournaments. Therefore, if it doesn’t work properly, people 
in charge have to operate just like they are doing it now—
without any automation. Hence, the time constraint involved 
here should be such that the work with this system is fluent, 
approximately 2–3 s per action invoked by a user. It is also 
an event-triggered system, because it reacts to the results 
on the tournament. As this is not so complicated, from the 
theoretical point of view of real-time systems, the instru-
mentation interface is rather neglected. This is because we 
can not define the controlled object as one physical object. 



963A real-time service system in the cloud﻿	

1 3

In this case, it rather refers to the tournaments as a whole—
matches, calculation of results and registration process.

2.2 � Cloud computing

Mell and Grance from National Institute of Standards and 
Technology (NIST) defined cloud computing as a model that 
provides end users with access from any device, which has 
an Internet connection, to a shared set of resources such as 
servers, applications or services (Computer Security Divi-
sion 2018; Mell and Grance 2009, 2011). Therefore, the 
most crucial fact in the cloud computing concept is that the 
software being used is not installed on a device from which 
it is accessed. Appropriate services do not involve compa-
nies’ infrastructure, they are available over an Internet con-
nection, ready to use (Leavitt 2009; Tang et al. 2010). One of 
the first companies, who started to offer cloud services over 
the Internet was Salesforce. A further example was Amazon 
Web Services that enabled users the possibility to store data 
online and perform computations (Barry 2003; CRM Soft-
ware & Cloud Computing Solutions 2018).

NIST provides four deployment models: private cloud, 
community cloud, public cloud, and hybrid cloud (Angeles 
2013; Computer Security Division 2018; Barry 2003; Sriram 
and Khajeh-Hosseini 2010; Mell and Grance 2011). Besides, 
it considers three main service models. These are Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS) and 
Software as a Service (SaaS). Service models and deploy-
ment models are strictly connected with each other. Besides, 
it is important to remember that no matter whether the end 
product is delivered in IaaS, PaaS or in SaaS—it can be 
built on any of deployment models (Cusumano 2010; Sadiku 
et al. 2014; Sultan 2014). In the following, we provide some 
implementation examples of cloud service models.

In the first model, Infrastructure as a Service (IaaS), a 
customer is given computing resources such as virtual server 
space, networking, operating systems so that it can deploy 
and run the software. Companies such as Amazon, Rack-
space or GoGrid are examples of IaaS providers. Resources 
given to the customer are distributed across data centers, 
which are maintained by the provider. Customers, in turn, 
can work in virtualized components and deploy their own 
platform. The reason for employing the IaaS model in com-
panies is that it allows moving expenses of managing hard-
ware to the cloud provider. Infrastructure as a Service allows 
the consumer to build scalable system as resources based 
on their needs (Angeles 2013; Computer Security Division 
2018; Barry 2003; Sriram and Khajeh-Hosseini 2010; Mell 
and Grance 2011).

The next service model is Platform as a Service (PaaS). 
The customer is again given the cloud infrastructure and can 
deploy their own system into the cloud utilizing tools avail-
able by the cloud provider such as programming languages, 
libraries or database management systems. Moreover, avail-
able tools do not exclude the usage of libraries and tools 
from other integrated sources. Examples of PaaS providers 
are Google App Engine, Microsoft Azure, Force.com and 
Amazon. Cloud infrastructure is maintained by the cloud 
provider, where application programmers can fully con-
centrate on the system development. Moreover, the tools 
provided in the PaaS model often enable developing applica-
tions without the knowledge of programming. For example, 
Force.com platform allows building parts of a system using 
one-click functionalities (Angeles 2013; Computer Security 
Division 2018; Barry 2003; Sriram and Khajeh-Hosseini 
2010; Mell and Grance 2011).

The last model mentioned in NIST definition is Software 
as a Service (SaaS). In this case, a customer does not build 
its own system but makes use of a ready system prepared 

Fig. 1   Decomposition of the 
real-time system (Kopetz 2011)



964	 A. Poniszewska‑Maranda et al.

1 3

by the cloud provider and running it in the cloud. Exam-
ples of SaaS providers are Salesforce, Microsoft Online 
Services, and Google Apps. Applications created by SaaS 
providers are accessible from any device with Internet con-
nection. For example, a user can download a program from 
Google and use it on his/her smartphone, or a company with 
Salesforce licenses can take the advantage of ready to use 
applications from Salesforce’s marketplace—AppExchange 
(Computer Security Division 2018; Sriram and Khajeh-
Hosseini 2010; Mell and Grance 2011). Figure 2 illustrates 
the main elements that constitutes these models (Salesforce 
Developers|API Documentation, Developer Forums & More 
2017).

In this paper, the real-time service management system 
advanced is built on two service models. The final solu-
tion delivered to the Polish Billiards and Snooker Associa-
tion, from the point of view of this organization, is given 

in Software as a Service model since it is ready to use the 
system in the cloud. During its development, Force.com 
platform provided by Salesforce is used, which involves 
another model; i.e., Platform as a Service. Issues related 
to the Salesforce functionality and its PaaS platform are 
described in the next Section.

3 � The functionality of Salesforce cloud 
service delivery platform

This section provides a detailed description of Salesforce 
components that are used to build our proposed system. 
Salesforce mainly provides customer relationship manage-
ment (CRM) software, primarily cloud-based. Salesforce has 
a high reputation among its beneficiaries as it is confirmed 
by numerous awards for the best CRM system given by mag-
azines Enterprise CRM, Mid-Market CRM or being a leader 
in ranking of recommended CRM’s led by Software Advice 
based on customers’ reviews (CRM Salesforce 2017; Yous-
eff et al. 2008; Benioff and Adler 2009; Trailhead 2017).

3.1 � Database in Salesforce

The database represents the persistence layer of each appli-
cation. In the case of Salesforce, users and developers are not 
responsible for managing this part of the system as there is 
no software that has to be installed for that purpose. Instead, 
the platform delivers the database that can be used when 
building the applications using Force.com. It is a relational 
type, but there are a few differences in comparison to the 
database management systems in traditional applications. 
In the latter, data is kept in tables which consist of columns 
defined by a particular data type. Information might be 
retrieved among rows of the concrete table. Furthermore, 
these tables can be associated with each other with the use 
of a primary key in one table and foreign key in the related 
table.

Object replaces the table in Force.com database. In Sales-
force nomenclature, it is crucial to differentiated from so-
called sObject, which can be described as an object mate-
rialized in the platform’s object-oriented programming 
language, Apex. This term is introduced to differ such objects 
from instances of classes. Hence, the main function of Sales-
force’s object is to store the data. Objects can be related to 
each other via relationship fields. There are two types of 
them in Salesforce, namely: Lookup and Master–Detail. In 
both cases, the ID of the related object is saved in the rela-
tionship field. The first type reflects the relationship of type 
“one-to-one” or “one-to-many” and creates a link between 
two objects. Among standard Salesforce objects, there is 
always a relationship of Lookup type between Account and 

Fig. 2   Elements of cloud service models (Computer Security Divi-
sion 2018; Mell and Grance 2011)



965A real-time service system in the cloud﻿	

1 3

Contact. The latter has the Lookup field that stores the ID of 
a related object, in this case—Account.

The Master–Detail relationship is used when two objects 
are tightly bounded with each other. Deletion of parent 
record in this relationship entails deleting all child records. 
This kind of relationship might reflect “many-to-many” 
relationship. It happens with the use of so-called junc-
tion object that has set up Master–Detail field to two other 
objects (Salesforce developers). Force.com platform offers 
a special language dedicated to retrieving data from its data-
base, called Salesforce Object Query Language (SOQL). Its 
statements are very similar to the well-known language of 
relational databases. The basic structure of SOQL query is 
presented in Fig. 3.

3.2 � Apex

The Salesforce platform is using Apex which is an object-
oriented programming (OOP) language. Its syntax strongly 
bears resemblance to Java as it is based on its conceptual 
principles. Additionally, it supports the OOP paradigm such 
as classes, inheritance, and interfaces. Apex is executed and 
saved on the Force.com platform. The working principles of 
this language is presented in Fig. 4.

Apex enables the conditions and statements available in 
the majority of programming languages, such as variables, 
constants, if-else statements, loops, and array notation. How-
ever, in the case of this language, an array is the same as 
one of the collections, i.e. list. Other collections available 
in Apex are sets and maps. What makes Salesforce’s pro-
gramming language unique is that the Cloud is the place 

where the code is executed and compiled. Apex also enables 
SOQL calls and assigning its results to the chosen collection. 
Moreover, it supports Data Manipulation Language (DML) 
operations, which can insert, update or delete the records 
from the database.

3.3 � Visualforce: client‑side language

Visualforce is a framework that enables web development 
within the Salesforce platform as such creating customized 
user interfaces. All interfaces are built using of this lan-
guage may consist of Visualforce tags, starting from prefix 
‘apex’ (e.g., the starting tag <apex:page>), plain HTML and 
optionally styling elements such as css elements that can be 
uploaded into Salesforce. Moreover, Visualforce can com-
prise JavaScript. The working principle of this framework 
is depicted in Fig. 5.

Each interface has its own unique URL address through 
which it can be accessed. Then, it can interact with the sys-
tem logic, defined in Apex classes (custom controllers) or 
triggers or in standard controllers, enabling automatic access 
to data in Salesforce. Custom Visualforce interfaces might be 
used in various places inside the platform. To give an exam-
ple, standard Salesforce interfaces for editing or creating a 
new record can be overwritten by Visualforce ones. They 
can be also accessed through the custom buttons created by 
a user. The other options are embedding custom interface 
into a standard layout or to open it through the custom tab 
(trailhead and Salesforce developers).

4 � Real‑time service system based 
on the Salesforce platform

This section provides a practical example of real-time sys-
tem employment into cloud computing. It is a system we 
developed with the use of the Salesforce platform named 
Top 16 Manager. The main goal of this system is to examine 

Fig. 3   Structure of SOQL query (Salesforce developers)

Fig. 4   Structure of SOQL query (Salesforce developers)



966	 A. Poniszewska‑Maranda et al.

1 3

Salesforce platform capabilities in the context of real-time 
systems and cloud computing. For that purpose, the system 
which can be classified as the soft real-time system is cre-
ated in the private cloud, taking advantage of Force.com 
tools and programming languages. One of the best advan-
tages of Salesforce is that customizations can be achieved 
by using few administration tools offered by Force.com plat-
form. Applications in Salesforce are mainly built for busi-
ness purposes, where there is a possibility to define Email 
Alerts with their contents defined in an Email Template. 
This can be invoked using other Force.com tools, namely: 
Workflows and Process Builder. Both of them are used to 
automate the processes used in Salesforce application. Their 
creation starts from defining which object is going to entail 
further actions. For example, these include updating the field 
value on defined records or sending an email according to 
Email Alerts indicated earlier. Actions set in these tools are 
triggered only if they meet certain criteria given by the user 
who creates either a workflow or a process. These actions 
might be either immediate or time-dependent. The difference 
between these two tools is that the Process Builder allows 
updating child records what is not allowed in workflows. All 
described processes are created only by clicking and setting 
right options, no code is involved in such cases.

Salesforce may have many users; therefore, there is a need 
to define who can access what. It can be achieved by setting 
appropriate profiles using another Force.com tool which 
does not involve any technical knowledge. Users’ profiles 
are set of permissions and their settings regulate which 
resources a particular user can access. For example, they 
can control view, update, create or delete the permissions for 
each object defined in Salesforce, which fields and buttons 
are visible for the user or which Apex class or Visualforce 
interface can be executed by a particular user (Salesforce 
developers). Although Salesforce is 17 years old and many 
users claim that the design of the platform is old-fashioned, 
many functionalities are stated that makes it so powerful 

to build the CRMs in the cloud. However, with the release 
of the Salesforce1 mobile application, platform’s creators 
decided to move its design into the desktop version of Sales-
force. This is also done to meet the expectations of users 
for which the design of the system is its important part. For 
that purpose, Salesforce launched lightning experience; a 
new graphical user interface of the whole platform. What 
has changed apart from the overall design of the platform 
is, for example, navigation menu, record layouts, list view, 
and dashboards. Salesforce has also released Salesforce 
lightning design system (SLDS); a CSS stylesheet consist-
ent with lightning experience principles. It is also possible 
to develop the interfaces in Visualforce and apply lightning 
styling on them. Except for improved look of the platform, 
lightning entails changes in the programming conventions in 
Salesforce. The new user interface framework is released in 
order to develop the applications on the desktop and mobile 
versions of the platform. It is called lightning components. 
Just as in Salesforce classic, the server side is handled by 
Apex. However, client-side in case of lightning components 
is served by JavaScript. It enables an interaction with custom 
controllers and with the database. Lightning components 
might be accessed in the system through the tab, they can 
be the part of custom interfaces or they can be defined under 
quick action which may be applied to each record. Typically, 
a single component consists of a few elements put in defini-
tion bundle. It comprises of a component in which a user 
interface is defined and JavaScript handlers: controllers and 
helpers. Optionally, CSS definition of a component might 
be included (Trailhead).

Salesforce is undoubtedly an interesting platform as it is 
leading CRM software provider as well as from the cloud 
computing research point of view. It connects its two service 
models (PaaS and SaaS), as the final product used by cus-
tomers is ready to use the software while developing applica-
tions in Salesforce that involves Force.com platform. A big 
advantage of Salesforce is the fact that except for technical 

Fig. 5   Principles of working of 
visualforce (CRM Salesforce; 
trailhead; Salesforce developers)



967A real-time service system in the cloud﻿	

1 3

tools, programming languages dedicated specially for this 
platform, it also has ones that require setting correct options 
and processes within a few clicks. It is worth to notice cur-
rent development of the platform, especially with the release 
of lightning as every upgrade brings new functionalities and 
possibilities of application creation.

4.1 � System requirements

The main function of the Top 16 Manager system is the 
management of the snooker tournaments TOP 16 organ-
ized periodically by Polish Billiards and Snooker Associa-
tion. Such an event is a challenge from the organizational 
point of view. Usually, there is only one person, i.e., the 
main referee who is responsible for the efficient conduct 
of the tournament. It embraces managing the start time of 
each match, their order, assigning referees and placement 
of matches on available tables. What is more, the main ref-
eree must inform every player about their incoming match, 
which sometimes quite challenging. The functional require-
ments for the Top 16 Manager are as follows: putting match 
scores to the system, calculation of table in the group stage, 
generation of bracket for the knock-out phase, possibility of 
referee, table and status assignment for all matches, match 
report generation, e-mail notification for players about the 
next match, and mass e-mail message to players taking part 
in the tournament.

The basic feature of the Top 16 Manager is the ability to 
put match scores to the system and calculate the table of each 
group in the tournament. The system automatically draws 
groups for the tournament and presents the list of matches. 
After the end of the group stage, it is possible to generate 
a bracket of the tournament based on scores from the first 

phase. In this way, quarterfinals, semifinals and final games 
are presented in the system. When a match of the knock-out 
phase is finished, the bracket is automatically updated. The 
panel of tournament matches is constructed in such a way 
that the main referee can easily assign to the single match the 
following: a referee, table and status, which makes managing 
them more efficiently as all required information is in one 
place. Figure 6 illustrates the use-case diagram with all the 
functional requirements of the Top 16 Manager. It embraces 
only one actor that is the main referee as it is the only user 
in this system due to limitations of the developer edition. 
With a license of multiple users, it is possible to add to this 
diagram other actors, such as players.

4.2 � Top 16 Manager system architecture

The architecture of any Salesforce application is defined as 
a multitenant architecture. It means that users of the plat-
form share the same resources and tools provided by Force.
com. At the same time, individual users of Salesforce can 
take advantage of the customization built on the platform 
especially for them. Moreover, Salesforce utilizes metadata-
driven architecture. All platform customizations such as 
interface layouts, objects definition, workflows, processes 
or Apex code are stored as metadata. In the Salesforce data-
base, no tables are created such as in traditional relational 
databases. What is more, the code from the Apex classes and 
triggers are not compiled. Instead, stored metadata is used 
by system engine at runtime to generate virtual application.

The multitenant data model of discussed platform con-
sists of multitenant metadata, multitenant data, and mul-
titenant indexes. Multitenant metadata comprises internal 
tables called MT_Objects and MT_Fields. These tables store 

Fig. 6   Use-case diagram of Top 
16 Manager



968	 A. Poniszewska‑Maranda et al.

1 3

information in the form of metadata about objects together 
with organization ID, to which these objects belong and 
about fields that are defined on objects. Multitenant data, in 
turn, stores individuals’ data inside Salesforce application 
that can be mapped to their objects and fields defined in 
MT_Objects and MT_Fields. This data type can be avail-
able on the Salesforce platform; for example, number, text, 
date, formula. It is also possible to store long text informa-
tion as character large objects (CLOBs). Finally, multitenant 
indexes allow cataloging data stored in the cloud so that 
retrieving this data and access to it during runtime is opti-
mized. Schema of the multitenant data model is depicted 
in Fig. 7.

The Top 16 Manager system comprises of three main 
components, for managing TOP 16 tournaments, namely: 
Match management, Players notification, and User interface. 
Match management component is the most important com-
ponent among others, as it is responsible for handling the 
basic functionalities of Top 16 Manager—input of match 
scores and calculation of tables. The logic of this component 
is defined in Apex classes—controllers for Visualforce inter-
faces, on which the main referee operates. The other compo-
nent is Players notification that has the responsibility of sent 

messages to the players taking part in a particular competi-
tion. This component is not critical for the correct opera-
tion of Top 16 Manager. It also communicates with Match 
management component, because any notification send to 
players is based on the match details. The logic of players’ 
notification component is defined in Process Builder as well 
as in Apex classes. The last component, User interface, is 
responsible for the arrangement of the Visualforce interfaces 
customization that overrides the standard ones, but also for 
all the layouts of object interfaces, related lists and search 
layouts. It is defined through a set-up of the Salesforce plat-
form user interface capabilities. Figure 8 depicts the com-
ponent diagram of Top 16 Manager.

4.3 � Data model

To fulfill the required functionalities of the proposed system, 
the following five custom objects are developed: Tourna-
ment, Player, Tournament Appearance, Match, and Referee. 
The main developed object is the Tournament, which is the 
starting point of the system. It is related to the Match object 
via a one-to-many relationship. Every tournament is con-
nected to it matches; at first 24 in the group stage and then 7 

Fig. 7   Multitenant data model 
on Saleforce platform (Sales-
force developers)

Fig. 8   Component diagram of Top 16 Manager



969A real-time service system in the cloud﻿	

1 3

more at the knock-out phase (quarterfinals, semifinals, and 
the final). This reflects the type one-to-many relation, as 
the single tournament has multiple matches related to each 
other. Match is connected with Player, which contains two 
Lookup fields as two players take part in a single match. It 
is also connected with the Referee object because a referee 
is always assigned to a match.

Tournament appearance object is developed to reflect the 
relationship of type many-to-many as multiple players can 
take part in many tournaments. This object acts as a junc-
tion object; it has fields of type Master–Detail to Player and 
Tournament objects. It also contains a few fields needed for 
calculating the table during the group stage of each tour-
nament. Figure 9 illustrates the data model of the snooker 
management system, from a platform Schema Builder view 
point.

All fields marked by red vertical lines are either standard 
ones, such as Created By Last Modified By and Owner, or 
the required ones, such as Master–Detail fields on Tourna-
ment Appearances object. A standard field is also the name 
of each object’s record. It can be either text or an auto num-
ber. Tournament object contains fields that describe the date 
and place of the single competition and technical Check-
box fields which are used as flags for the logic flow. Fields 

in the Player object describes the data about a player. One 
important information is the e-mail as it allows receiving the 
notifications about next matches.

4.4 � Logic layer

The system development within the Salesforce platform 
involves model-view-controller (MVC) pattern. The system 
is divided into three separate layers for easy maintenance 
and to provide modularity. In this case, the model is defined 
in the standard and in the custom objects, or in Apex classes. 
View layer comprises of Visualforce interfaces and compo-
nents, which are rendered on the server and displayed in 
the web browser. The logic (controller) layer might be cus-
tomized. It is defined programmatically in Apex classes or 
triggers, but it can also use standard controllers generated 
by Force.com platform. It embraces; for example, binding 
of the input fields on the interface with the object, or with 
actions such as saving or cancel. MVC pattern in Salesforce 
is depicted in Fig. 10.

The logic of Top 16 Manager is customized programmati-
cally in Apex and in various Force.com administration tools. 
The first step in the platform configuration is to define the 
appropriate profile, which could be assigned to the account 

Fig. 9   The data model of Top 16 Manager



970	 A. Poniszewska‑Maranda et al.

1 3

for the main referee. In the definition of this profile, all tabs 
for standard objects have been hidden since they are unnec-
essary from the system point of view. Instead, it has been 
set that visible tabs are those related to five custom objects 
used in Top 16 Manager. Moreover, read and write permis-
sions have been given for the required objects. Access to 
every Visualforce interface in the system has been allowed 
for users with that profile.

If there is a need to add more users to the system, new 
profiles should be created. This concerns players as an exam-
ple. In such a situation, their permissions for objects can be 
different. For example, they are not supposed to have edited 
and created access for such objects as Matches, Referees, 
and Tournaments. Due to the fact that Tournament is the 
main object in Top 16 Manager, functionalities are mainly 

executed from the view of records of that object. It involves 
creating a few custom buttons, which open Visualforce inter-
face where a user can operate. The list of buttons belonging 
to Tournament object is presented in Fig. 11.

A user can enroll the first players to the tournament with 
the use of custom interfaces. Logic defined in Apex work-
ing under that interface creates the records of Tournament 
Appearances object connected with the tournament, from 
which this action is fired with the selected players. The sys-
tem checks whether the user selected 16 players or not. If 
yes, then it saves it to the newly created map Tournament 
Appearances. Next, with the use of the random function it 
assigns to the appearance group A, B, C or D, in which a 
player is going to compete. After that, it saves the appear-
ances to four lists according to their groups, which have 
been drawn. Finally, it inserts into the database six matches 
in each group, as every player must play against every other 
player in his/her group. Those matches assigned relation to 
the tournament and the status is set to Match Ready in the 
moment of insertion.

All records that are planned for insertion are first saved to 
the list, which is then inserted entirely, instead of inserting 
every record separately, based on Apex development guide-
lines. This is done to reduce the number of Data Manipula-
tion Language operations, which is limited to the Salesforce 
platform. Then, actions are related to the matches of the 
given tournament Fig. 12 depicts an activity diagram of the 
process of the players enrolled in the tournament.

In the current system, Visualforce interface lists the games 
into groups. It is possible to put the score there and update 
its data as status, date and time, table and referee that are 
connected with a given match. It should be noted that update 
logic is defined in Apex. However, before a record of Match 

Fig. 10   MVC pattern in Salesforce (Salesforce developers)

Fig. 11   Tournament object in Top 16 Manager 



971A real-time service system in the cloud﻿	

1 3

object is updated, it is checked with the use of a few Valida-
tion Rules set on this object. If the criteria defined in the Vali-
dation Rules are satisfied, then the system creates the lists of 
matches’ records, according to the groups in which they take 
place. It also creates four lists of Tournament Appearances 
object, to calculate the table of each group, since this object 
stores information about the points gained in the group stage. 
The system creates a map, where the key is the player’s ID, 
and the value is his/her appearance. When the main referee 
updates matches’ results, the procedure goes through matches 
on the interface, where there is information about the player, 
and then comparing which of the players has won more 
frames. Then, it retrieves player’s appearance from the map 
and updates this appearance; accordingly, points are awarded 
to the winner. Consequently, the group tables are updated. The 

system queries for the appearances in each group and sorts 
lists with players by points, the difference between frames 
won and lost, and frames either won or lost. Figure 13 illus-
trates the activity diagram of updating group matches.

An example of usage of administration tools is the func-
tionality that sends.

An e-mail, set by the referee on the Visualforce interface, 
is sent to both players after the match time is one example of 
the administration tools that can provide. The view of this 
process is depicted in Fig. 14.

As soon as the group stage of the tournament is over, the 
main referee can generate a bracket for the knock-out phase. 
This demonstrates the functionalities that are invoked from 
another Visualforce interface and has the logic defined in Apex 
controllers. The custom controller assigns seeding to players 

Fig. 12   Activity diagram of 
enrolling players to the tourna-
ment in Top 16 Manager

Fig. 13   Activity diagram of 
group matches updating in Top 
16 Manager



972	 A. Poniszewska‑Maranda et al.

1 3

according to their performance in the first phase based on 
the points they have collected, and the difference between 
frames won and lost and a higher number of frames won. If 
all the parameters are equal, then the draw decides which of 
the players is seeded higher. The system dedicated for this 
process queries for the appearances of the given tournament 
and sorts them in the same way as in the group stage. Then, 

every player taking part in the given competition. Then, with 
the use of Apex Messaging class, it sends all emails. The last 
custom interface shows the positions that players took in the 
current tournament that uses jQuery plugin TableSorter.

To conclude the analysis of actions performed so far, 
we can confidently say that it is possible to develop a man-
agement system based on the Salesforce platform. It is not 
necessary to be developed for business-oriented purposes, 
although Salesforce is mainly aimed for businesses environ-
ments. Moreover, it is possible to develop systems to manage 
individuals’ data, using this platform.

4.5 � GUI layer

The implementation of our proposed Top 16 Manager sys-
tem is based on the classic version of Salesforce. To improve 
the design of the whole system, SLDS is utilized. It is a CSS 
stylesheet compatible with the lightning experience. What 
is more, the standard interfaces for creating and editing five 
custom objects used in Top 16 Manager system are over-
ridden by custom ones, which are also styled according to 
SLDS CSS. To override the standard Salesforce interface, 
it is necessary to create a custom Visualforce one. For this 
purpose, a few classes from SLDS stylesheet is applied to 
make a better look for Top 16 Manager system. Listing 1 
presents an example for SLDS classes.

Fig. 14   The process of sending an e-mail to players with information 
about next match time

it inserts it into the quarterfinal matches database. The player 
that is seeded with number 1 competes with the player with 
number 8. The order is as follows: 2 vs. 7, 3 vs. 6 and 4 vs. 
5. The system also inserts the semifinal and final games but 
does not assign any players for those matches yet. When the 
tournament bracket is generated, the main referee performs 
the same actions as in the group stage. However, at this time, 
the system forms the map in which the key is the matching 
symbol. For example, QF1, QF2, SF1, etc., and the value is 
Match record. After each update, conditional statements check 
the winner of each match and assigns him/her to the match in 
the next round, i.e., either semifinal or the final.

It is possible for the main referee to send a broadcast email 
to all players taking part in the given tournament by filling 
the simple form on another custom interface. When the ref-
eree submits it, the system queries for the e-mail field of 

It is possible to merge HTML code with Visualforce. 
Therefore, CSS classes are used in the Listing 1 such as slds-
form-element, slds-form-element__label or slds-input, ena-
bling to style the input fields according to Lightning design 
style wrap the apex:inputField element, which in fact it is 
also rendered to HTML that captures the user input. The 
example shown in Listing 1 styles only one element from 
a single interface. According to this approach, all Visual-
force interface are styled to achieve the Lightning look. In 
order to take advantage of SLDS stylesheet, it is loaded from 
the static resource, where it is uploaded at the beginning. 
Nevertheless, during the development of Lightning styled 
interface a few problems are encountered such as SLDS does 
not support input fields of type Lookup. Moreover, the usage 
of standard inputs like a date with the intention to display a 
date picker has damaged the styling of the whole interface. 



973A real-time service system in the cloud﻿	

1 3

Due to these facts, the open source solutions are applied to 
render the mentioned fields properly. These are a special 
Visualforce component that displays Lightning styled inputs 
in Salesforce Classic (Sultan 2014) and the date picker tak-
ing advantage of Appiphony Lightning JS library (Yous-
eff et al. 2008). Unfortunately, it was not possible to write 
New or Edit interface for Tournament Appearance object, 
since Visualforce component used in the system supports 
inputs of type Lookup but does not support inputs of type 
Master–Detail.

5 � Top 16 Manager in action

This section demonstrates the practical functionalities of the 
proposed system in Salesforce platform. It is a framework 
for main referees of the TOP 16 tournaments. It is presented 
from the perspective of the system administrator’s account. 

When a user (not a system administrator) successfully login 
to the platform, he/she can see a panel with tabs at the top of 
the screen. By default, the tab to which the user is redirected 
is Tournaments tab as it is the main object in the system. The 
other tabs concern another custom object presented in the 
system, including Matches, Players, Referees, and Tourna-
ment Appearances. There are also two more default tabs 
Home and Chatter. They are in the platform to allow users 
saving some notes, marking important dates in the calendar 
and for interaction with other users as Chatter that can be 
described as a company intranet. However, the use of these 
two tabs is neglected in snooker management system as there 
is only one user, i.e., the main referee created as an end user 
and a system administrator. The min GUI promoted to the 
user is depicted in Fig. 15.

This interface allows a user to select a particular tourna-
ment and view its details. It is also possible to expand the 
View list and choose the list view, which displays all records 

Fig. 15   Main GUI to login to Salesforce platform

Fig. 16   Tournament interface in Top 16 Manager



974	 A. Poniszewska‑Maranda et al.

1 3

according to the given conditions. After a successful crea-
tion of Tournament record, a user is redirected to record’s 
details. It contains all related lists of Matches and Tourna-
ment Appearances that are connected with a new tourna-
ment. Tournament detail interface has buttons under which 
there are appropriate functionalities, including: Entries, 
Matches, Bracket, Mass Email, Results. Figure 16 shows 
Tournament record interface.

The first step in a tournament management process is to 
enrolling players to the competition. In our current imple-
mentations, there are 20 players, but there might be a neces-
sity in the future for the main referee to add another player. 
The main referee must tick 16 players that are going to take 
part in the competition. An updated view of the interface is 
presented in Fig. 17.

Figure 18 illustrates an interface that shows the desired 
information about the Matches. Through this interface, the 
main referee can update matches’ details.

Match management interface allows updating the current 
situation in each group. Through this interface, a user not 
only adds the scores of the finished match, but also update 
its status (Waiting, Match Ready, In Progress, Finished). 
A user also is able to generate a report in PDF format and 
assign a time to each match. Every time the score is added, 
the information is updated accordingly. The reschedule is 
constructed even in case of inputting a wrong score. The 
proposed system does not allow assigning In Progress status 

without a referee assigns it to the match. It also prevents 
unexpected inputs of score to TOP 16 tournament. Tie score 
is not allowed. The winner must have 4 frames won. Also, it 
is not possible to set two matches with status In Progress at 
the same table. All the aforementioned situations are han-
dled; and the user is prompted with a message on the top of 
the interface. Every time the main referee updates the time 
of a single match, the system generates an email to both 
players with information about match time. It is also possible 
to send a broadcast email to all players that take part in the 
given competition.

The last stage of the tournament management process is 
an update of positions that players took in the competition. 
Under Results button on the Tournament details interface, 
there is a custom interface, which displays the final classifi-
cation of the tournament, as shown in Fig. 19.

To sum up, all the processes that the main referee is inter-
ested in are five custom objects defined especially for the 
purposes of the required functionalities. Initially, the pro-
cess starts from either adding a new tournament or find-
ing a proper one. Then, invoking management action from 
a few custom Visualforce interfaces that are provided on 
the tournament details interface. A user can also view the 
data about players or referees. On the related lists of those 
objects, there is information about achievements or perfor-
mances. For example, players have their positions taken in 
each tournament, and referees have listed matches that they 

Fig. 17   An updated view of tournament details in “Top 16 Manager”



975A real-time service system in the cloud﻿	

1 3

Fig. 18   Match management interface in Top 16 Manager

Fig. 19   Tournament results 
interface Top 16 Manager 



976	 A. Poniszewska‑Maranda et al.

1 3

conducted during TOP 16 tournaments. User are informed 
in case incorrect input data.

6 � Conclusions and future work

In this paper, we examined the Salesforce platform capa-
bilities within the context of the real-time service systems 
and cloud computing. The research work performed in this 
paper proved that the combination of real-time systems and 
cloud computing allows building efficient systems that could 
be used for different purposes. Additionally, the Salesforce 
platform enables the creation of not only the event-triggered 
real-time systems with the use of Apex Triggers, workflows 
and Process Builder but also time-triggered systems. This 
is because it is possible to define the time-dependent actions 
using Process Builder. We also developed a Salesforce sys-
tem, i.e., Top 16 Manager which aims to help managing the 
processes of the series of TOP 16 snooker tournaments held 
by Polish Billiards and Snooker Association. The results 
showed that the Salesforce platform is an environment where 
it is possible to develop a soft real-time system as private 
cloud. The developed system is a combination of Software 
as a Service, from the perspective of the end user, and Plat-
form as a Service, from the perspective of the developer. It 
should be noted that Top 16 Manager significantly improves 
managing of TOP 16 snooker tournaments that comprises 
some functionality that is not available for use by main ref-
erees. In the future, we plan to make it generic and usable for 
other types of snooker tournaments and taking advantage of 
more Salesforce functionalities such as reports, dashboards 
or workflows. We also plan to make Top 16 Manager as a 
component of a larger system dedicated to snooker federa-
tions from different countries where snooker competitions 
take place.

OpenAccess  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Angeles S (2013) 8 reasons to fear cloud computing. In: Bus. News Dly. 
http://www.busin​essne​wsdai​ly.com/5215-dange​rs-cloud​-compu​
ting.html. Accessed 30 Oct 2017

Barry DK (2003) Web services, service-oriented architectures, and 
cloud computing. Elsevier, New York

Benioff M, Adler C (2009) Behind the cloud: the untold story of how 
Salesforce. com went from idea to billion-dollar company-and 
revolutionized an industry. Wiley, New York

Chen L, Fallmann S, López-de-Ipiña D et al (2018) Context, intelli-
gence and interactions for personalized systems. J Ambient Intell 

Humaniz Comput 9:1557–1559. https​://doi.org/10.1007/s1265​
2-018-0985-y

Computer Security Division ITL Publications|CSRC (2018) https​://
csrc.nist.gov/publi​catio​ns. Accessed 30 Nov 2018

CRM Software & Cloud Computing Solutions (2018) https​://www.
sales​force​.com/eu/. Accessed 30 Nov 2018

Cusumano M (2010) Cloud computing and SaaS as new computing 
platforms. Commun ACM 53:27–29

De la Prieta F, Bajo J, Rodríguez S, Corchado JM (2017) MAS-based 
self-adaptive architecture for controlling and monitoring cloud 
platforms. J Ambient Intell Humaniz Comput 8:213–221. https​://
doi.org/10.1007/s1265​2-016-0434-8

Gomaa H (1993) Software design methods for concurrent and real-
time systems, 1st edn. Addison-Wesley Longman Publishing Co., 
Inc., Boston

Jin H, Ibrahim S, Bell T, Gao W, Huang D, Wu S (2010) Cloud types 
and services. In: Furht B, Escalante A (eds) Handbook of cloud 
computing. Springer, Boston, MA, pp 335–355

Klein M, Ralya T, Pollak B et al (2012) A practitioner’s handbook for 
real-time analysis: guide to rate monotonic analysis for real-time 
systems. Springer, Berlin

Kopetz H (2011) Real-time systems: design principles for distributed 
embedded applications, 2nd edn. Springer, Berlin

Krishna CM (2001) Real-time systems. In: Webster JG (ed) Wiley 
encyclopedia of electrical and electronics engineering. Wiley, 
New York

Laplante PA (1994) A real-time image processing language?. In: 
Halang WA, Stoyenko AD (eds) Real time computing. NATO 
ASI series (Series F: Computer and Systems Sciences), vol 127. 
Springer, Berlin, Heidelberg

Laplante PA, Ovaska SJ (2011) Real-time systems design and analysis: 
tools for the practitioner. Wiley, New York

Leavitt N (2009) Is cloud computing really ready for prime time. 
Growth 27:15–20

Liu F, Narayanan A, Bai Q (2000) Real-time systems
Mattai J (1995) Real-time systems: specification, verification, and 

analysis. Prentice Hall PTR, Upper Saddle River
Mell P, Grance T (2009) Effectively and securely using the cloud com-

puting paradigm. NIST Inf Technol Lab 2:304–311
Mell PM, Grance T (2011) The NIST definition of cloud computing. 

Spec Publ NIST SP-800-145
Poniszewska-Maranda A, Matusiak R, Kryvinska N (2017) Use of 

Salesforce platform for building real-time service systems in 
cloud. In: 2017 IEEE international conference on services com-
puting (SCC). pp 491–494

Qi J, Xu B, Xue Y et al (2018) Knowledge based differential evolu-
tion for cloud computing service composition. J Ambient Intell 
Humaniz Comput 9:565–574. https​://doi.org/10.1007/s1265​
2-016-0445-5

Sadiku MN, Musa SM, Momoh OD (2014) Cloud computing: oppor-
tunities and challenges. IEEE Potentials 33:34–36

Salesforce Developers|API Documentation, Developer Forums & More 
(2017) https​://devel​oper.sales​force​.com/. Accessed 30 Oct 2017

Schoch DJ, Laplante PA (1995) A real-time systems context for the 
framework for information systems architecture. IBM Syst J 
34(1):20–38

Shin KG, Ramanathan P (1994) Real-time computing: a new discipline 
of computer science and engineering. Proc IEEE 82:6–24. https​://
doi.org/10.1109/5.25942​3

Sriram I, Khajeh-Hosseini A (2010) Research agenda in cloud tech-
nologies. arXiv:10013259Cs

Sultan N (2014) Servitization of the IT industry: the cloud phenome-
non. Strateg Change 23:375–388. https​://doi.org/10.1002/jsc.1983

Tang L, Dong J, Zhao Y, Zhang L-J (2010) Enterprise cloud service 
architecture. In: IEEE 3rd international conference on cloud com-
puting (CLOUD), 2010, pp 27–34

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.businessnewsdaily.com/5215-dangers-cloud-computing.html
http://www.businessnewsdaily.com/5215-dangers-cloud-computing.html
https://doi.org/10.1007/s12652-018-0985-y
https://doi.org/10.1007/s12652-018-0985-y
https://csrc.nist.gov/publications
https://csrc.nist.gov/publications
https://www.salesforce.com/eu/
https://www.salesforce.com/eu/
https://doi.org/10.1007/s12652-016-0434-8
https://doi.org/10.1007/s12652-016-0434-8
https://doi.org/10.1007/s12652-016-0445-5
https://doi.org/10.1007/s12652-016-0445-5
https://developer.salesforce.com/
https://doi.org/10.1109/5.259423
https://doi.org/10.1109/5.259423
https://doi.org/10.1002/jsc.1983


977A real-time service system in the cloud﻿	

1 3

Trailhead|The fun way to learn Salesforce (2017) https​://trail​head.sales​
force​.com/en. Accessed 30 Oct 2017

Youseff L, Butrico M, Da Silva D (2008) Toward a unified ontology of 
cloud computing. In: IEEE grid computing environments work-
shop, 2008. GCE’08, pp 1–10

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://trailhead.salesforce.com/en
https://trailhead.salesforce.com/en

	A real-time service system in the cloud
	Abstract
	1 Introduction
	2 Cloud computing for real-time service systems
	2.1 Real-time systems
	2.2 Cloud computing

	3 The functionality of Salesforce cloud service delivery platform
	3.1 Database in Salesforce
	3.2 Apex
	3.3 Visualforce: client-side language

	4 Real-time service system based on the Salesforce platform
	4.1 System requirements
	4.2 Top 16 Manager system architecture
	4.3 Data model
	4.4 Logic layer
	4.5 GUI layer

	5 Top 16 Manager in action
	6 Conclusions and future work
	References




