

Development and characterisation of nano-porous vanadium dioxide coatings for energy efficient windows

Lavinia Calvi

Contents

- Problem statement
- Smart windows concept
- Vanadium dioxide coating principles & structure
- Challenges of vanadium dioxide for glass coatings
- Synthesis of powders
- Characterisation techniques
- Approach to challenges
- Conclusion & continuation of project

Problem Statement

- Increase in world energy needs → increase in efficiency & decrease in energy losses
- Buildings: 30-40% of world's total energy consumption
- Use of glass in construction has increased over the years
 - + Light weight
 - + Allows natural light in the building
 - Heat is lost in winter and gained in summer

1. "Stadhuis Hasselt." *TripAdvisor*, www.tripadvisor.com/Attraction_Review-g188650-d9879719-Reviews-Stadhuis_Hasselt-Hasselt_Limburg_Province.html.

IMO-IMOMEC

2. "'T Scheep Hasselt." UAU Collectiv, 25 Sept. 2018, www.uaucollectiv.com/portfolio/nsh/.

Brightlands Materials Center Chem

Hasselt City Hall^{1,2}

Electrochromic & Thermochromic Windows

- Chromogenic materials exhibit changes in optical properties due to external stimulus
- Currently both types of glass become tinted
- Less visible light enters
- Active vs passive

Interreg

Vlaanderen-Nederland

• Voltage vs temperature

Suntuitive® Glass windows installed at an educational facility in Keller, Texas, USA. Photo courtesy of Pleotint, LLC.

Vanadium Dioxide Coating Principles

- Thermochromic change optical properties with temperature change
- Critical / switching temperature (T_c) where 'switch' occurs
- Vanadium dioxide (VO₂) infrared properties change with temperature

VO₂ Structure

*VO*₂ *Structure*

unec

▶▶ UHASSELT

- Low temperature (T<T_c)
- Monoclinic lattice
- Semi-conducting phase
- Tilt in the c-axis

- High temperature (T>T_c)
- Rutile structure
- Metallic phase
- Infrared reflecting

IMO-IMOMEC **Brightlands Materials** Center

Challenges of VO₂

1. Relatively high switching temperature – about 68°C

- Doping the material can be used to lower this temperature
- 2. Low luminous transmittance \rightarrow increase porosity to lower refractive index and increase transmission in visible
 - a) Decreasing particle size \rightarrow avoid scattering
 - b) Stacking of particles
 - c) Encapsulation of air

Transmitted light

Glass coatings light transmission⁵

5. S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, and A. Yu, "Prog. Mater. Sci., vol. 81, pp. 1–54, 2016.

- Oxalic acid VO₂ Powder Synthesis • V_2O_5 is dispersed in a solvent and then a reducing agent is added • Freeze drying or rotary evaporator is used Annealing of the dried precursor is sensitive to oxygen
 - High temperature curing process to form crystalline VO₂ & remove organics
 - If too much oxygen is present in the tube furnace the material will oxidise

VO₂ Characterisation

- DSC is used to measure various parameters of the VO₂ powders
- Integration of peak over time gives the enthalpy of the switch from monoclinic to tetragonal
 - 55 J/g is the theoretical values
 - Used to evaluate purity

Interreg

Vlaanderen-Nederland

- Hysteresis is the difference between the two peak temperatures
 - 72.28 °C 60.79 °C = 11.49 °C
- XRD is also used to confirm the VO_2 structure but does not show amorphous phases

▶▶ UHASSELT

▶ UHASSELT

Schematic diagram of bead mill⁶

Interreg

Vlaanderen-Nederland

6. Chemtech Company Hiroshima Metal & Machinery CO., L. Bead Mill - Grinding & Dispersing http://www.hiroshimammchemtech.com/en/knowledge/detail01/(accessed Feb 18, 2020).

hem

- 5-10 μ m to 800 nm (determined by SEM)

Materials Center unec

Conclusion & further works

- Successfully synthesised VO₂ thermochromic powder with **high** purity
- Introduced tungsten successfully as a dopant to lower and tune the switching temperature (-15 to 68 °C)
- Reduced the particle size using bead milling from 5-10 μm to 800 nm
- During the milling the switching enthalpy decreases further research is require to determine the cause
- Looking into the kinetics of the switch from monoclinic to tetragonal using DSC to compare the activation energy for the different powders

Acknowledgements

 Research group Design and Synthesis of Inorganic Nanomaterials for Energy Applications
M.K. Van Bael, A. Hardy, K. Elen & P. Buskens

Brightlands Materials Center

Interreg I

Vlaanderen-Nederland

Brightlands

JUNEL

Materials Center

• Brightlands Materials Center

R. Habets, L. Leufkens, C. Yeung, D. Mann, T. Kusters

- & P. Buskens
- Project Funding

▶▶ UHASSELT

UHASSELT

Brightlands Materials Center

15