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Motivation

Raman spectroscopy and micro-Raman imaging as a tool for biomass and

polysaccharide evaluation

1. Hierarchical organization of biomass

2. Biomass processing and optimization

3. Biomaterial functionalization and applications

Understanding structural organization of components

in biomass allows for design of dedicated extraction

routes and bio-mimicking of organization in

biocomposite materials: chitin and cellulose

Optimization of processing conditions and efficiency,

maximizing properties and structure of the obtained

components (e.g. crystallinity, homogeneity):

fibrillated cellulose

Designing surface structures with active functionality

such as functionalized nanofibers and coatings,

thermal release in nanoparticles, melt-processing of

nanocomposites: cellulose fiber composites
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1. Hierarchical organization of biomass

The crustacean cuticle is a biological material that covers the animal and forms a continuous

exoskeleton. The cuticle consists of a inorganic/organic chitin-protein based nanocomposite with

hierarchi-cally order over several levels. The different levels have differences in structure together

with a heterogeneous mineralization pattern. The cuticle contains minerals like magnesium-/calcite,

amorphous calcium carbonate and amorphous calcium phosphate. The composition of the different

layers can be studied by several analytical techniques, e.g. chemical mapping by Raman

spectroscopy. It is a versatile material adapted to different functions, constituting a source of bio-

inspiration for the development of advanced bio-based materials.
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The Lobster Cuticle Ultrastructure
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Organization of Cuticle Layers

The different cuticle layers have a characteristic composition with different main

components. The Raman maps with the distribution of the different components were

obtained by integration of specific areas in the spectra. The transitions and different

compositions of the several layers can clearly be visualized. The structure of the cuticle

can be resolved by principal component analysis (PC) of Raman maps.
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Bio-mineralization of the Spiny Region

Calcite Carbonate Organic
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Organic phase = formation of crystalline chitin core fibers surrounded by sheet of ordered proteins

Minerals = crystalline (calcite), amorphous calcium carbonate (ACC), amorphous calcium phosphate (ACP) 

The minerals are not distributed homogeneously and mineralization proceeded to different amounts through the structure

Epi

Endo

Exo

The epicuticle is strongly mineralized and mechanically protects the underlaying structure. The exocuticle contains

organic material together with amorphous calcium phosphate and provides flexibility to the structure. The 

endocuticle progressiveyl undergoes mineralization with highest carbonate content, but both calcite and phosphate6 



Bio-mineralization of the Antenna Region

In the cuticle of Antenna regions, calcite was not observed in the Endocuticle but still a high percentage of carbonate was

observed, wich is assumed it is constituting amorphous calcium carbonate (no crystalline mineral: Calcite). For Antenna region

with spine, very low proportion of phosphate was observed, practically a very thin layer at the upper part of the Exocuticle and at

the surrounding of the spine was observed. In antenna regions without spine, phosphate could be identified in the whole

endocuticle region. The degree of mineralization is clearly different in the observed antenna regions.

Antenna region without spine

Antenna region with spine

CarbonateCalcite Organic
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2. Biomass processing and optimization

Driven by continuous efforts to develop more sustainable products and processes, the

processing of cellulose in alternative solvents rather than in common organic chemicals

recently came in the spotlight, in particular using ionic liquids (IL). The IL and (NA)DES

provide favourable environments for creating both cellulose nanocrystals and fibrillated

cellulose, but the swelling properties of the cellulose fibers should be narrowly controlled in

combination with a strict understanding of the changes in cellulose structure. In parallel with

the use of advanced analytical tools, the effects of ionic liquid types with different alkyl chain

length and composition on cellulose crystallinity were quantified, indicating an increase in

crystallinity with swelling time and higher crystallinity after fibrillation in contrast with

processing in pure water that provides lower crystallinity.
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Swelling Cellulose Pulp Fibers in IL

Experimental conditions

• Selection of IL (imidazolium chloride) 

with variable alkyl chain 

Selection of appropriate

swelling conditions (practical kinetics)

• Concentration IL:water = 50:50

• Temperature 23 to 100°C

• Time 30 min to 12 h

[Bmim]Cl

[Emim]Cl

[Amim]Cl
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• Softwood cellulose pulp fibers



Swelling Cellulose Pulp Fibers in IL

500 µm

D i s s o l v e d 

The [Emim]Cl causes homoge-

neous fiber swelling favourable

for further fibrillation. The selec-

tion of temperature, time,

concentration, leads to control-

led swelling with favourable

kinetics to liberate elementary

fibrils without dissolution.
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Crystallinity : Traditional XRD Analysis
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XRD = ratio (I200 – IAM) / I200

The crystallinity after homogenization in

E[mim]Cl is higher and progressively increases

with time in contrast to homogenization in pure

water (reference), where higher forces likely fully

disrupt the crystalline structure.
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Relation XRD versus Raman/FTIR Crystallinity

Raman

FTIR

XRD crystallinity index
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Crystallinity index from XRD is overestimated by FTIR

spectroscopy due to influences of multiple oriented

structures monitored by FTIR, while there is very good

agreement with calculations from Raman spectroscopy.
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The variations in 1095 cm-1 band with time clearly indicate internal stress distribution within the fiber that

is medium high during swelling and becomes extremely high during homogenization. The crystallinity during

processing in E[mim]Cl remains superior and gradually increases with time, while there is destruction of the

crystalline domains in B[mim]Cl.
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Monitoring Swelling in Single Fibers

Reference cellulose fiber (non-treated)

Even distribution of stresses over the

surface of native fibers with relatively

surfaces. Sometimes the exposure of

some more fibrils are seen as a slight

increase in intensity over the fiber surface.

Single wavenumber 1095 cm-1

mapping

Following tests = on-line monitoring swelling of single fibers over 

time in 

[Emim]Cl 

[Bmim]Cl

[Amim]Cl

Variations in “mild” conditions and “heavy” 

conditions artificially tuned by changing the

concentration water:IL from 50:50 and 30:70,

in order to speed up the swelling process for

monitoring.
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Cellulose fiber swollen in [Emim]Cl : “heavy conditions”

30 min 90 min

150 min 720 min

Progressive visualization of

single microfibrils on the fiber

surface. There is a gradual

and mild, smooth increase in

stresses progressing from

the broders to the inside of

the fiber with time (mainly

near fiber borders), towards

medium stresses at the end

of swelling period.

Cellulose fiber swollen in [Emim]Cl : “mild conditions”

Very weak stresses mainly

located near the fiber

borders.

30 min 90 min

150 min 720 min
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Monitoring Swelling in Single Fibers



Cellulose fiber swollen in [Bmim]Cl: “mild conditions”
30 min 90 min

150 min

Much faster progression of

the swelling stresses, leading

to finally much higher stress

concentrations in the centre

of the fiber.
30 min 90 min

150 min 720 min

Cellulose fiber swollen in [Bmim]Cl: “heavy conditions”

Local disruption of the fiber

surface due to “ballooning”

effact causes extremely high

stresses in the fibers and

transformation in crystalline

structure

30 min 90 min

150 min 720 min
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Fast fragmentation of the

cellulose fibers and complete

disruption of the fiber

structure with high local

stresses in the centre of the

fiber fragments.

Progressive dissolution of

fiber fragments leads to the

formation of films with high

structural variations and

internal stresses.

30 min 90 min

150 min 720 min

30 min 90 min

150 min 720 min
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Cellulose fiber swollen in [Amim]Cl : “mild conditions”

Fiber fragmentation

and

particle formation

Full film formation

Cellulose fiber swollen in [Amim]Cl : “heavy conditions”

Monitoring Swelling in Single Fibers



3. Biomaterial functionalization and applications

The hydrophobic properties of cellulose can be altered by surface modification, which has

been done by the deposition of functional nanoparticles with encapsulated vegetable oils.

The progressive thermal release of oil during heating allows to tune the hydrophobicity of

the cellulose surface and cellulose films towards required value of contact angle, as a

result of combined surface topography and chemistry. The mechanism can be used for

creation of hydrophobic paper coatings or enhancing the incorporation of nanocellulose in

polymer composites. Thanks to use of Raman spectroscopy, the variations in

hydrophobic moieties at the fiber surface can be monitored in parallel with the changes in

crystalline structure of the polymer matrix phase.
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Microfibrillated Cellulose Surface Modification

Hydrophobic surface modification of cellulose nanofibers by nanoparticle deposits,

resulting in stable aqueous pulp suspension.
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Chemistry of Modified Fibers, e.g. MFC

- No chemical degradation of the cellulose

main chain (e.g. chain scission) after

reaction with ammonia.

- Degree of imidization is quantatively

lower for modified MFC and SMI/wax

than for pure SMI.

- Formation of a small plateau near the

3421 cm-1 band (OH-stretching) in

modified MFC, with D = 368 cm-1

(unmodified) or D = 406 cm-1 (modified):

physical interactions among cellulose

and SMI through the formation of

hydrogen bonding.

- Flatting and broadening of 1430, 1372

and 1336 cm-1 bands in modified MFC,

indicating some variations in the well-

ordered cellulose web through hydro-

gen bonding.

Raman spectroscopy of MFC, mMFC, SMI+wax

Raman allows for perfect quantification of the degree of imidization
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Monitoring Thermal Release of Wax from Nanoparticles

Thermal release above the glass transition temperature allows for deposition of a very

thin wax layer on fiber surfaces providing highest CA.

SMI on 

fiber 

surface

Wax 

release

21 V.K. Rastogi, D. Stanssens, P. Samyn, Materials 7 (2014), 7196-7216.



Monitoring Nanocellulose in Polymer Composites
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Conclusion

The strength of Raman spectroscopy in several fields of bio-based materials engineering has

been proven to provide consistent information and additional insight in materials and processes:

• The organization of chitin/protein organic matrix in crustaceans and degree

of mineralization depends on the location : the organic phase is intermixed

with amorphous calcium phosphate, while crystalline calcite might be

present in outer shell and/or internal structure.

• The severity of fiber swelling in IL depends on the alkyl chain length and

progressive ingress of the swelling can be monitored as internal stresses

and/or variations in crystalline structure.

• Surface modification by nanoparticle deposits show hydrogen bonding

interactions with the cellulose, with tunable thermal release of encapsulated

ingredients (oil) from the surface. The variations and spatial homogeneity in

composite crystallinity can be monitored.

By comparing with other techniques, the Raman spectroscopy mostly allows to extract direct 

quantitative information through baseline correction, normalization and band intensity ratio.
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