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Hip osteoarthritis patients exhibit changes in kinematics and kinetics that affect joint

loading. Monitoring this load can provide valuable information to clinicians. For example,

a patient’s joint loading measured across different activities can be used to determine the

amount of exercise that the patient needs to complete each day. Unfortunately, current

methods for measuring joint loading require a lab environment which most clinicians

do not have access to. This study explores employing machine learning to construct a

model that can estimate joint loading based on sensor data obtained solely from a mobile

phone. In order to learn such a model, we collected a dataset from 10 patients with

hip osteoarthritis who performed multiple repetitions of nine different exercises. During

each repetition, we simultaneously recorded 3D motion capture data, ground reaction

force data, and the inertial measurement unit data from a mobile phone attached to

the patient’s hip. The 3D motion and ground reaction force data were used to compute

the ground truth joint loading using musculoskeletal modeling. Our goal is to estimate

the ground truth loading value using only the data captured by the sensors of the

mobile phone. We propose a machine learning pipeline for learning such a model based

on the recordings of a phone’s accelerometer and gyroscope. When evaluated for an

unseen patient, the proposed pipeline achieves a mean absolute error of 29% for the left

hip and 36% for the right hip. While our approach is a step in the direction of using

a minimal number of sensors to estimate joint loading outside the lab, developing a

tool that is accurate enough to be applicable in a clinical context still remains an open

challenge. It may be necessary to use sensors at more than one location in order to

obtain better estimates.

Keywords: machine learning, inertial measurement units, joint loading, patient monitoring, hip osteoarthrithis

1. INTRODUCTION

Hip osteoarthritis (OA) patients exhibit changes in kinematics and kinetics that affect the contact
forces of the hip and knee joints during walking and daily activities. It is believed that these changes
are important in the progression of OA (Felson, 2013) and that monitoring these changes during
daily life could provide valuable information to clinicians. For example, a patient’s joint loading
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measured across different exercises can serve as an indication
for the number of exercise repetitions that the patient needs
to complete when rehabilitating after hip arthroplasty surgery.
Despite the importance of joint loading monitoring, it is difficult
to systematically and widely measure joint loading in a clinical
environment. First, acquiring these measurements requires a lab
environment consisting of optoelectronic cameras and ground
reaction force plates. The cost and space required for such a setup
makes this impractical to install in a clinician’s practice. Second,
it would be infeasible to analyze a large number of patients in a
lab since collecting and processing the data is a time-consuming
task. Third, in order to calculate joint contact forces, one would
need to use amusculoskeletal modeling workflow, which requires
expert knowledge.

Because of these drawbacks, clinicians could greatly benefit
from a mobile system that is able to provide accurate joint
loading estimates based on cheaper sensors. Ideally, such a
system would be based on inexpensive, wearable sensors that the
patients can easily use at the clinician’s practice or even at home.
Inertial measurement unit (IMU) sensors and electromyography
(EMG) sensors are ideal candidates for this purpose as they are
relatively cheap and have been applied successfully in a wide
range of human movement analysis tasks (Zhang et al., 2011;
Camomilla et al., 2018; De Brabandere et al., 2018; Op De Beéck
et al., 2018). Designing such a system requires collecting data
in a lab setting where a subject performs the relevant exercises
while simultaneously recording data from the cheap portable
sensors and the expensive, standard lab sensors. This enables
either hand-crafting a model or applying a data-driven approach
such as machine learning to learn a model that relates the data
produced by the portable sensors to the ground truth joint
loading estimated from the lab equipment. These predictive
models can then be deployed outside the lab as they can make
predictions about a subject’s joint loading solely based on the data
captured by cheaper sensors.

Related studies have proposed different models for estimating
joint loading from wearable sensors. de Vries et al. (2012)
proposed a neural network model which estimates several
loading variables for the shoulder joint based on kinematics
and EMG data. The kinematics were measured using four IMU
sensors. While the model can be used in an ambulatory setting, it
still requires a relatively large number of sensors. Moreover, the
EMGmeasurement is somewhat intrusive as it requires attaching
13 electrodes to the person’s body. Other work by Wesseling
et al. (2018) proposed a model for estimating hip and knee joint
contact forces based on IMU kinematics and ground reaction
force (GRF) data. They found that the IMU kinematics were
sufficient to estimate the hip contact forces reliably, which enables
using the model outside a lab. However, the knee contact force
model required both the IMU and GRF data. Hence, this has the
same drawbacks as the lab sensors for calculating joint contact
forces as it is challenging to measure GRF data in the wild. Stetter
et al. (2019) proposed a model for predicting knee joint loading
using two IMU sensors, one on the upper leg and one on the
lower leg. However, similar to de Vries et al. (2012) andWesseling
et al. (2018), they evaluated the model on data from healthy
subjects only. Applying the same model to patients may not

work due to alteredmovement patterns. Other studies considered
similar problems, such as estimating the daily cumulative joint
loading (Robbins et al., 2009) and ground reaction forces (Guo
et al., 2017; Karatsidis et al., 2017; Wouda et al., 2018).

The goal of this paper is to predict the joint loading of
the left and right hip and knee based on IMU data collected
from a mobile phone. First, we collect data using three types
of sensors simultaneously: a hip-mounted phone, optoelectronic
motion capture cameras and ground reaction force plates. We
use the latter two to calculate the ground truth joint loading
using a musculoskeletal modeling workflow. Second, we employ
machine learning to automatically construct a model that can
predict the ground truth joint loading on the basis of the IMU
data collected from the mobile phone. Our approach confers two
advantages over prior work. First, by relying on a mobile phone
it both builds off an omnipresent technology and minimizes the
number of required sensors. Hence, clinicians and possibly even
patients will not need to rely on expensive specialized equipment.
Second, we focus on hip OA patients instead of healthy subjects.
Since clinicians see patients with abnormal movement patterns,
we train and evaluate the model using data collected from a
representative patient group.

2. METHODS

2.1. Subjects
For this study, 20 patients with unilateral end-stage hip
osteoarthritis were recruited from a local hospital (Ziekenhuis
Oost Limburg, Belgium). They were included based on the
following criteria: aged between 55 and 75 years; unilateral hip
osteoarthritis; awaiting joint replacement surgery; Body Mass
Index ≤ 30kg · m−2; able to walk 10m; no cortiosteroid
injection 3 months prior to inclusion; no joint replacements and
no other musculoskeletal or neurological disorders that would
affect movement pattern. Participants provided written informed
consent prior to the start of the measurements. Out of these
20 patients, we select only those for which the mobile phone
measurements were recorded correctly throughout the whole
protocol, which corresponds to a subset of 10 patients. The ethical
committee of the academic hospital Leuven approved the study
(reference no. s-59857).

2.2. Protocol
Each patient performed multiple repetitions of nine types of
exercises. Table 1 shows the number of repetitions per exercise.
The exercise types are defined as follows:

• Walk: level walking at a self-selected speed, one repetition
corresponds to one stride;

• Ascend stairs and descend stairs: at a self selected speed,
without hand-held support on a standardized 4-step staircase,
one repetition corresponds to one stride;

• Sit down and stand up: the height of the chair was
standardized to participants knee height;

• Forward lunge and side lunge: step length standardized at
70% leg length;
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TABLE 1 | Number of exercise repetitions per subject.

Subject ID W AS DS SD SU FL SL SOL SQOL

1 13 9 10 10 10 10 10 10 9

2 10 9 9 10 10 8 10 10 10

3 10 10 7 11 11 10 10 10 10

4 10 10 10 10 10 10 9 10 9

5 10 10 9 10 10 9 10 10 10

6 10 12 8 10 10 10 9 10 10

7 10 10 10 10 10 10 10 10 10

8 10 9 10 10 10 10 10 11 10

9 13 10 12 10 10 10 10 10 12

10 10 10 10 10 10 10 10 10 10

W, walk; AS, ascend stairs; DS, descend staris; SD, sit down; SU, stand up; FL, forward

lunge; SL, side lunge; SOL, stand on one leg; SQOL, squat on one leg.

• Stand on one leg (approx. 2 s) and squat on one leg: hands
fixed at the side.

2.3. Joint Loading
We measure the patients’ hip and knee contact force to define
the ground truth joint loading that we aim to estimate. While
contact forces can be measured directly using instrument
prostheses, we instead use a combination of experimental data
andmusculoskeletal modeling (Fregly et al., 2012) since the direct
method is an invasive procedure. Moreover, this method requires
total joint replacement, which would limit the number of patients
we can analyze. The remainder of this section describes the
procedure for calculating the contact forces. Validation studies
by Wesseling et al. (2016) and Zargham et al. (2019) have shown
that this procedure results in accurate estimates.

The experimental data was collected using 13 optoelectronic
cameras (Vicon, Oxford Metrics, UK, 100Hz) and three ground
reaction force plates embedded in the floor (AMTI, Watertown,
MA, USA, 1,000Hz). Each participant was equipped with 38
reflective markers on bony landmarks conforming to the full-
body plug-in walk model (Oxford Metrics). The single markers
on the body segments were substituted by rigid three marker
clusters. The marker trajectories and ground reaction force data
were used as input in a standard musculoskeletal modeling
workflow applied in OpenSim 3.3 (Delp et al., 2007). First,
the generic OpenSim model gait2392 (Delp et al., 1990)
was used. We added a degree of freedom in the knee joint
(i.e., ab/adduction) and implemented a functional knee axis
of rotation (Meireles et al., 2017). The model was scaled to
match the height and weight of the participant. Joint kinematics
were derived from marker trajectories using inverse kinematics
analysis with a Kalman smoothing algorithm (De Groote et al.,
2008). Subsequently, joint moments were calculated with the
inverse dynamic analysis using the calculated joint angles and
measured ground reaction forces. Muscle force and muscles
activation were determined using static optimization. Lastly, the
joint contact forces were calculated using the vector sum of the
estimated muscle forces and joint reaction forces (Steele et al.,
2012).

Since our goal is to build a workflow that estimates the joint
loading for one repetition of an exercise, we aggregate the contact
forces by extracting the joint impulse y. This variable is defined
as the integral of the contact force signal, relative to the subject’s
body weight:

y =

∫ T
0 CFt dt

m · 9.81

where CFt is the joint contact force at time t, T is the duration of
one exercise repetition, andm is the body mass. We compute the
joint impulse for the left and right hip and knee.

2.4. Input Signals
For the input data of our joint impulse estimation models, we
use inertial measurement unit (IMU) sensors since they are easy
to use outside the lab. IMU sensors are often used in human
motion analysis for this reason (Bussmann et al., 2001; Weyand
et al., 2001; Alvarez et al., 2008; Camomilla et al., 2018). In
addition, they are relatively inexpensive to buy compared to the
lab equipment needed to calculate joint contact forces.

In this study, we use the IMU sensors from a mobile phone
(Samsung Galaxy J5 2017). During the whole exercise protocol,
the phone continuously recorded the 3D acceleration (ax, ay, az)
and 3D angular velocity (gx, gy, gz), both with a sampling rate of
50 Hz1. The phone was attached to the patient’s left hip using a
velcro strap around the patients’ hips. While our goal is to predict
the joint loading on both sides, we also wanted to use a simple
setup with the minimal number of sensors. Hence, we only use
one sensor and always attach it on the same side of the body. Since
people usually wear their phone in a pocket, we chose the left
hip to mimic that placement. The phone was attached such that
the IMU’s reference frame corresponded to the anterior-posterior
(x), proximal-distal (y) and lateral-medial (z) direction of the
person’s left leg.

Since the signals change over time, each signal is represented
as a time series, i.e., a sequence of values. For example,
the ax acceleration signal corresponds to the time series
[ax(t0), ax(t1), ..., ax(tn)] where ti is the ith time stamp of an
exercise repetition.

2.5. Synchronization
Whereas the optoelectronic cameras and the ground reaction
force plates were connected to the computer that was used
for measuring the joint contact forces, the mobile phone
sensor recordings were collected directly on the phone. Since
the computer and the mobile phone recorded the data
independently, their recordings were not synchronized through
a single clock. In order to link to correct parts of the sensor data
to the joint contact forces, both systems’ time stamps have to be
aligned. This can be done by incrementing the time stamps of
the phone by the lag between the two clocks, i.e., the difference
between the computer’s clock time and the phone’s clock time.

1We recorded the data from the TYPE_ACCELEROMETER and

TYPE_GYROSCOPE sensor types of Android. As shown in the API documentation

(https://developer.android.com/guide/topics/sensors/sensors_motion). Android

corrects for drift in the sensor measurements.
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Unfortunately, the exact lag was unknown at the time of data
collection. Finding this lag manually would require to check
for each possible lag whether the joint contact force signal is
aligned with the phone’s signals and select the lag that results
in the best alignment. Additionally, since the lags vary across
the different collection sessions due to drift in the phone’s
clock time, this would have to be repeated for each subject.
Therefore, we align the signals automatically using an approach
based on the cross-correlation coefficient between the signals.
Specifically, we compute the cross-correlation for each possible
lag, i.e., xcorr(Pl : l+nCF ,CF) for each lag l ∈ [0, nP − nCF], which
corresponds to the lags l for which all time stamps of the contact
force data CF are between the start and end of the phone data P.
Figure 1 illustrates the synchronization approach.

2.6. Pipeline
Figure 2 shows our machine learning pipeline for predicting the
joint impulse based on the phone’s signals. The input and output
of the pipeline are defined as follows:

• Input: Themeasurements of the phone’s IMU collected during
a single exercise repetition.

• Output: The joint impulse at the left hip, right hip, left knee or
right knee. Each location corresponds to one target variable,
i.e., the goal is to predict one value per location. Since the four
locations may require different models, we develop a separate
pipeline (with the same building blocks) for each target.

The pipeline consists of three building blocks. First, the feature
extraction block converts the raw phone signals into a format
that is suitable for learning a model. This format consists of
features that summarize the phone signals, e.g., by extracting
the mean of the ax signal. Each feature summarizes the data of
one exercise repetition, i.e., one window of data. The process of
defining a set of relevant features is called feature construction.
Section 2.6.1 describes this process in more detail. Next, the
normalization block normalizes the feature values in order to
make the predictions more robust. Section 2.6.2 lists several
normalization procedures. Finally, the model block turns the
(normalized) feature values into a prediction for the left/right
hip/knee joint impulse. Since the relation between phone-based
features and joint impulse is unknown from a biomechanics
perspective, we use machine learning to automatically learn a
model from a dataset labeled with ground-truth joint impulses.
Sections 2.6.3 and 2.6.4 describe the learning settings and
methods for training these models.

2.6.1. Feature Construction
The input of the pipeline consists of the measurements collected
by the phone’s sensors. However, the high dimensionality of
the raw phone signals prevents using these signals directly
for training a model. Therefore, we follow a feature-based
approach (Fulcher, 2018) and convert the raw phone signals
into a low-dimensional feature representation which captures the
relevant characteristics of the signals.

We use the TSFuse Python package with the minimal feature
extraction settings to generate a feature representation. This
package extracts a set of statistical features (e.g., mean, median,

variance,...) from both the original signals and additional signals
derived from these signals. To derive new signals, TSFuse
combines multiple signals using different transformations (e.g.,
the resultant of three signals). We refer to De Brabandere
et al. (2019) for the complete list of transformations as well as
the feature construction algorithm which builds features using
these transformations.

Since this construction method uses the target data to
remove irrelevant features, the feature construction method
was repeated for each cross-validation fold (see section 2.7).
In our experiments, TSFuse constructed the same 63 features
in each fold. Supplementary Table 1 shows an overview of the
constructed features.

2.6.2. Normalization Procedures
Normalizing the feature values may be required from a machine
learning and biomechanics perspective. From amachine learning
perspective, standardizing the feature values to a similar range is
necessary for certain types of models, including the regularized
linear model of our pipeline (section 2.6.4). From a biomechanics
perspective, other studies using accelerometer data have shown
that individual differences (e.g., body height, body mass,
movement pattern, ...) may influence the signals and thus affect
the feature values as well (Op De Beéck et al., 2018).

For the features, we consider the following
normalization procedures:

• No normalization: use the original feature values.
• Dataset-level standardization: standardize each feature using

the mean and standard deviation as computed over the
complete dataset. This procedure only accounts for differences
in the range of the features.

• Subject-level standardization: standardize each feature using
the mean and standard deviation as computed separately for
each subject. This procedure also accounts for differences
between subjects.

For the target data, we only consider (1) the original
joint impulses relative to subject’s body weight, and (2) the
standardized impulses using the mean and standard deviation
over the complete training set. We do not consider standardizing
based on each subject’s joint impulses since that would require
ground truth joint loading measurements for the test data, which
is understandable as the model does not have these when applied
to an unseen subject.

2.6.3. Learning Settings
Since some exercises have completely different movements,
the joint impulse can not be modeled in the same way for
each exercise. The model could detect the exercise type itself
by training the model using the complete dataset. However,
given the small dataset size, we simplify the learning task by
training multiple models, each focusing on only one or a few
similar exercises. Specifically, we consider the following two
learning settings:
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FIGURE 1 | Illustration of our synchronization method for one of the subjects. The original signals (left) are the resultant acceleration measured by the phone and the

left hip contact force. The cross-correlation between these signals (middle) is computed for all possible lags, i.e., all lags for which the hip contact force signal still

ends before the acceleration signal ends. The location of the highest peak then corresponds to the time difference between the signals, which can be used to align the

signals (right).

FIGURE 2 | Joint loading estimation pipeline.

• One exercise (OE)

This setting splits the data per exercise type and evaluates
models for each exercise type separately.

• Similar exercises (SE)

This setting splits the dataset in groups of similar exercises:
walk, ascend stairs and descend stairs; sit down and stand up;
forward lunge and side lunge; and stand on one leg and squat
on one leg.

Grouping multiple exercises in the SE setting increases the
number of training examples compared to the OE setting, which
may help selecting relevant features and setting good parameters
for the model. We hypothesize that the SE setting yields more
accurate models as a result of the increased training set size. To
evaluate this hypothesis, section 3.4 compares both settings.

2.6.4. Learning Methods
To estimate the joint loading based on the phone’s data, we train
regularized linear regression models using the Least Absolute

Shrinkage and Selection Operator (LASSO) by Tibshirani (1996).
This method performs both regularization and feature selection
by including the ℓ1-norm of the weights in the cost function.
Given the small dataset of this study, this method is suitable
as it is able to select relevant features from a large number of
features (p) when the number of training examples (n) is small
(n≪ p). In our experiments, we use the Lasso implementation
of scikit-learn (Pedregosa et al., 2011) with the default
parameters, which sets the regularization constant alpha to 1.

We compare the linear regression models to a naïve baseline
model which predicts the average joint impulse of all exercise
repetitions in the training data. As the baseline requires no
learning, achieving a lower prediction error is a minimal
requirement for the linear model to do better than the current
best approach for monitoring the joint loading of patients.
This approach uses the population average as a “joint loading
profile” for monitoring an individual patient. The naïve baseline
estimates the population average from a specific group of
subjects, in this case a sample of hip OA patients.
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2.7. Evaluation
We evaluate the pipeline’s performance on unseen (i.e., future)
data with respect to two scenarios: (1) applying the model to an
unseen patient, and (2) applying the model to a seen patient, i.e.,
a patient for whom some labeled data is already available. The
first scenario is relevant when a doctor without lab access applies
the model to one of his patients. Since this patient’s movement
patterns may be different compared to the patients for whom the
model was trained, we hypothesize that the second scenario may
improve the predictions by including labeled data of the patient
in the training data. To evaluate these scenarios, we employ the
following cross-validation procedures:

• Leave-one-subject-out cross-validation

This cross-validation procedure evaluates how accurate the
pipeline works for an unseen patient. In each fold, we hold
out all data of a single patient and train the model using
all other patients’ data. The error averaged over all folds
corresponds to the prediction error that a doctor without lab
access can expect.

• Leave-one-exercise-type-out cross-validation

This cross-validation procedure evaluates how accurate the
pipeline works for a seen patient. This procedure splits the
data based on the exercise type. In each fold, the test data
consists of all repetitions of one exercise type performed by
one subject. The training data consists of all other exercises
performed by the same subject as well as all data of the other
subjects. Note that we do not consider leave-one-repetition-
out cross-validation: since all trials of each exercise were
performed consecutively, the dependency between trials may
be too strong and result in overly optimistic errors.

For both cross-validation schemes, we evaluate the models by
reporting the relative mean absolute error (MAE%) of the
estimated joint impulses ŷi w.r.t. the ground truth joint impulses
yi over all exercise repetitions i. Thismetric represents the average
relative deviation from the actual joint impulses over all exercise
repetitions performed by a patient. The MAE% is defined as
follows:

MAE% =

N
∑

i

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

3. RESULTS

This section evaluates the proposed joint impulse prediction
pipeline. We evaluate the pipeline using both cross-validation
procedures in section 3.1 (leave-one-subject-out) and section 3.2
(leave-one-exercise-type-out). For the pipeline’s building blocks,
we use dataset-level standardization for the feature values and
train the models using the SE setting. Our comparison in sections
3.3 and 3.4 shows that this normalization procedure and learning
setting were found to be optimal choices for our dataset.

3.1. Error for Unseen Patients
Table 2 shows the MAE% for the joint impulse at each of the
four locations. Overall, the linear model outperforms the baseline
for the hip joint loading. However, the knee joint loading seems

TABLE 2 | MAE% evaluated using leave-one-subject-out cross-validation.

Exercise Method Left hip Right hip Left knee Right knee

Walk
Baseline 0.439 0.460 0.286 0.291

Linear 0.168 0.155 0.430 0.406

Ascend stairs
Baseline 0.158 0.077 0.193 0.076

Linear 0.158 0.077 0.193 0.183

Descend stairs
Baseline 0.184 0.340 0.207 0.164

Linear 0.184 0.227 0.319 0.478

Sit down
Baseline 0.360 0.324 0.372 0.214

Linear 0.360 0.324 0.279 0.214

Stand up
Baseline 0.296 0.204 0.269 0.142

Linear 0.296 0.204 0.269 0.142

Forward lunge
Baseline 0.280 0.300 0.208 0.337

Linear 0.263 0.265 0.178 0.256

Side lunge
Baseline 0.277 0.293 0.254 0.314

Linear 0.325 0.330 0.243 0.269

Stand on one leg
Baseline 0.461 0.469 0.531 0.352

Linear 0.531 0.315 0.744 0.401

Squat on one leg
Baseline 0.278 1.031 0.291 1.986

Linear 0.251 1.081 0.223 1.811

Overall
Baseline 0.314 0.417 0.297 0.483

Linear 0.290 0.360 0.321 0.482

The errors which outperform the baseline are highlighted in bold.

TABLE 3 | MAE% for the two cross-validation schemes.

Left hip Right hip Left knee Right knee

Leave-one-subject-out 0.290 0.360 0.321 0.482

Leave-one-exercise-type-out 0.296 0.407 0.295 0.482

For each location, the lowest error is highlighted in bold, if one cross-validation method

outperforms the other.

harder to estimate as the linearmodel is marginallymore accurate
than the baseline for right knee and even less accurate than the
baseline for the left knee. Evaluating the error for each exercise
type separately shows that the results are different across different
exercise types. The hip joint impulse estimations for walking
show the largest improvement over the baseline compared to the
other exercises.

3.2. Error for Seen Patients
Table 3 compares the leave-one-subject-out cross-validation
scheme with the leave-one-exercise-type-out cross-validation.
We hypothesized that the leave-one-exercise-type-out cross-
validation could improve the predictions by including data of
the patient in the test data. Unfortunately, the leave-one-exercise-
type-out errors are close to the leave-one-subject-out errors and
for the left and right hip, the leave-one-subject-out models often
outperform the leave-one-exercise-type-out models.

3.3. Comparison of Normalization
Procedures
In section 2.6.2, we hypothesized that normalization procedures
can improve the error of the models by scaling features
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TABLE 4 | Overall MAE% (averaged over all locations, i.e., left/right hip/knee) for

different combinations of the normalization procedures.

Target normalization

No Yes

Feature normalization

No 0.439 0.433

Dataset-level 0.363 0.391

Subject-level 0.371 0.391

The table shows the results for the linear models with the SE setting evaluated using leave-

one-subject-out cross-validation. The lowest error over all combinations is highlighted in

bold.

to a similar range and removing inter-individual differences.
Table 4 compares all possible combinations of the normalization
procedures for both the features and the target data by reporting
the overall MAE% averaged over all locations (left and right
hip and knee) for each of combination. The best performing
combination is the dataset-level feature standardization and no
target normalization. Surprisingly, subject-level standardization
does not result in more accurate models compared to dataset-
level standardization.

3.4. Comparison of Learning Settings
In section 2.6.3, we hypothesized that the SE setting yields
more accurate results as this setting increases the number of
training examples by combining multiple exercises. To evaluate
this hypothesis, Table 5 compares the SE setting with the OE
setting. Overall, the SE models are more accurate than the OE
models for all locations except for the left knee. For the hip
joint impulse, the SE models show the largest improvement for
walking. However, the results are slightly less accurate for other
exercises (e.g., forward lunge and side lunge) which indicates that
the SE models are suitable for walking but not for other exercises.

4. DISCUSSION

The goal of this study was to explore the possibility of using a
minimal number of sensors for predicting joint loading in hipOA
patients. We proposed a machine learning pipeline that requires
only the IMU data collected from amobile phone. In this section,
we discuss our choices for the different building blocks of this
pipeline. We then discuss the differences in the obtained errors
with respect to the joints and exercise types. Finally, we discuss
the accuracy vs. ease-of-use trade-off of our approach and suggest
future directions with respect to this trade-off.

4.1. Building Blocks of the Machine
Learning Pipeline
The proposed machine learning pipeline required making
several decisions for the different building blocks. For
the feature extraction block, we used an automated
approach (De Brabandere et al., 2019) to define the feature
representation. For the normalization block, we compared
different normalization procedures and found that dataset-level
feature standardization was important. For the model block, we
only considered a linear regression model, since the small dataset

TABLE 5 | MAE% of the similar exercises (SE) models and one exercise (OE)

models.

Exercise Setting Left hip Right hip Left knee Right knee

Gait
OE 0.439 0.460 0.286 0.291

SE 0.168 0.155 0.430 0.406

Ascend stairs
OE 0.158 0.077 0.193 0.076

SE 0.158 0.077 0.193 0.183

Descend stairs
OE 0.184 0.340 0.207 0.164

SE 0.184 0.227 0.319 0.478

Sit down
OE 0.360 0.324 0.380 0.214

SE 0.360 0.324 0.279 0.214

Stand up
OE 0.296 0.204 0.269 0.142

SE 0.296 0.204 0.269 0.142

Forward lunge
OE 0.202 0.265 0.174 0.264

SE 0.263 0.265 0.178 0.256

Side lunge
OE 0.277 0.293 0.254 0.314

SE 0.325 0.330 0.243 0.269

Stand on one leg
OE 0.462 0.292 0.582 0.352

SE 0.531 0.315 0.744 0.401

Squat on one leg
OE 0.196 1.167 0.242 2.058

SE 0.251 1.081 0.223 1.811

Overall
OE 0.296 0.407 0.295 0.482

SE 0.290 0.360 0.321 0.482

The SE errors which outperform the OE errors are highlighted in bold.

size prevented us from using non-linear models. Whereas we
used the pipeline for predicting the joint impulses of the hip and
knee, it could be relevant for other locations as well. It could also
be interesting to explore whether this pipeline (potentially with
a non-linear model) can be used for other types of exercises and
for other types of sensors as input.

4.2. Errors Across Different Joints
The results of Table 2 show a clear difference in accuracy for
the hip and knee joints. The obtained results indicate that the
proposed pipeline is able to predict the hip impulse, but it
remains hard to outperform the naïve baseline for the knee
impulse. Perhaps placing the IMU closer to the target joint
might lead to better results in predicting knee contact forces.
An IMU sensor on the hip might not capture the higher
linear accelerations and angular velocities that are found on the
segments connected to the knee joint. Considering the body’s
ability to attenuate shock, the acceleration signal amplitude
has already weakened when reaching the IMU placed at hip
level (Kavanagh and Menz, 2008). Placing an IMU on the shank
could better capture these initial loading shocks (distal part of the
shank), or higher acceleration signals (middle part of the shank).
However, which placement is best to obtain better joint loading
predictions should be investigated. Therefore, different IMU
placements should be investigated to examine if personalizing
the placement based on the type of patient (i.e., hip or knee
osteoarthritis patient) leads to better joint loading prediction
results during these types of exercises.
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Similar to the difference between the hip and knee, there are
also different errors for the left and right side. Interestingly, this
difference does not only hold for the linear models, but also for
the baselines, which suggests that there may be a larger variability
in the joint impulses for the right side compared to the left
side. One possible reason could be the side of the hip that was
affected. However, this is unlikely as the right hip was affected
for 6 patients and the left hip for 4 patients. To evaluate whether
the difference between left and right is significant, we performed
a two-sided paired t-test for the overall MAE% of the baseline.
That is, we tested whether [x1, . . . , x10] is significantly different
from [y1, . . . , y10] where xi is subject i’s MAE% of the baseline for
the left hip/knee and yi is subject i’s MAE% of the baseline for the
right hip/knee. The resulting p-values are 0.3694 (for the hip) and
0.4458 (for the knee)meaning that the difference between left and
right was not significant. Most likely, the difference is due to the
small sample size (only 10 subjects) and does not hold in general.

4.3. Errors Across Different Exercise Types
The errors of the linear model are different for the different
exercise types, which suggests that predicting joint impulses is
easier for some exercises compared to others. Given that there
are large differences in the movements between exercises, the
differences in the joint impulse prediction errors can depend
on the relation between the data collected by the phone and
the contact force at each point in time. Figure 3 shows these
contact forces along with the resultant acceleration for each
exercise type. For those exercises for which both the left and right
hip joint impulse predictions are better than the baseline (walk
and forward lunge), the contact force signal shows two main
peaks for which also the resultant acceleration has a clear peak.
The potential relation between the height of these acceleration
peaks and the height of the contact force peaks could make the
prediction of the joint impulses easier.

4.4. Selected Features
The linear models in the model block were trained using L1-
regularization (lasso), which select a small number of features
out of the 63 generated features. Since the selected features are
different for each fold, it is hard to visualize which features are
used in themodels given the large number of models (10 subjects,
4 groups of exercises and 4 locations result in 160 models).
Instead, we run stability selection (Meinshausen and Bühlmann,
2010) for each group of exercises and for each location to get an
idea of which features were selectedmost often. Stability selection
repeatedly trains Lasso models (with random subsampling) and
reports each feature’s importance as the percentage of models in
which the feature was used. Supplementary Table 2 shows the
top 5 features with the corresponding importance scores, for each
location and each group of exercises. One observation is that sum
and length features are commonly used. Since the joint impulse
is defined as an integral of the contact force, it is expected that
this feature is important to capture the duration of the exercise
repetition. Unfortunately, it is hard to interpret the importance
of the other selected features. Future work could explore using
more specific (manually handcrafted) features when the goal is to
get a better insight in the learned models.

4.5. Trade-Off Between Accuracy and
Ease-of-Use
This study explores a trade-off between accuracy and ease-of-
use. The most accurate model would be the one that uses all
lab equipment needed for calculating joint contact forces using a
musculoskeletal modeling workflow. However, this model would
also be the most inconvenient as it requires the patient to come
to the lab (which is probably not located in the hospital), attach
38 reflective markers to the patient and analyze the collected
data in order to calculate the joint contact forces from the
collected measurements.

Our model only requires attaching a mobile phone to the
patient’s left hip2. Given that a patient consultation typically takes
approximately only 15 min, using a small number of sensors is an
important requirement for developing a joint loading estimation
tool. In addition, using a mobile phone reduces the cost of such a
tool, since clinicians most likely already own a mobile phone and
only need to install an app to apply the model.

However, given the results of this work, we recognize that
using a mobile phone may be an easy solution, but unfortunately,
one that is not accurate enough for valid clinical use. A better
compromise between accuracy and ease-of-use would be to use
a combination of IMU sensors at more than one location. This
would allow having a better view of the patient’s movements. Still,
the number of sensors should be kept to a minimum in order to
keep the tool practical. More research is needed to evaluate which
locations are most suitable.

Even though the results are far from perfect, we argue that our
phone-based model is a step in the right direction in estimating
joint loading in a clinical setting using a very limited amount
of sensors. Especially the results for predicting the joint impulse
during level walking are interesting, where distinct reduction in
mean absolute error from the baseline can be seen (MAE% from
43.9 to 16.8%). When monitoring a patient during daily life, this
result is promising as walking is one of the most commonly
performed daily activities and might be responsible for the
majority of the joint loading during a day. The improvement
over the baseline indicates that clinicians are able to obtain more
accurate estimates of a patient’s joint load compared to using
a population average. In the future, a “hip OA” profile using
population averages could shift to a “personal” profile using
a more individualized estimate of joint loading. This in turn
could help clinicians align a person’s exercise prescription to their
individual loading profile based onmore accuratemethods which
could improve their rehabilitation. Given that joint contact forces
are believed to be important in the initiation and progression
of OA (Felson, 2013), this might be a promising tool in the
rehabilitation setting to asses patients’ joint impulses during
walking over time and adjust the rehabilitation and exercise
prescription accordingly.

2Alternatively, the patient could wear the phone in his left pocket, but further

research is needed to evaluate whether this does not decrease the accuracy of

the estimations. Both ways of wearing the phone are convenient in a clinician’s

practice.
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FIGURE 3 | Hip contact force (N/kg) along with the resultant acceleration (m/s2) as measured by the mobile phone. For each exercise type, the figure shows a single

repetition performed by one subject.
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5. CONCLUSION AND FUTURE WORK

This work presented a machine learning pipeline to estimate the
hip and knee joint impulse based on a mobile phone. In terms
of the mean absolute error, we found that the proposed pipeline
is able to slightly outperform a population average baseline for
the hip (left hip: 29.0% for the linear model vs. 31.4% for the
baseline; left hip: 36.0 vs. 41.7% for the right hip), but not for
the knee. Our approach has two key advantages over existing
methods for predicting joint loading. First, the proposed pipeline
only requires a mobile phone as input. Second, we trained and
evaluated the pipeline using data of patients instead of healthy
subjects, which is relevant with respect to the setting in which the
proposed pipeline is applicable, i.e., monitoring patients.

However, even though our phone-based model is a step
in the direction of estimating joint contact forces using a
minimal number of sensors, the current approach still has several
limitations that need to be addressed in future work. First,
the overall error of our approach should be reduced further
in order to be applicable in a clinical context. One possibility
is to use multiple sensors, but still only a few such that the
model remains easy to use. Related work by Wesseling et al.
(2018) has shown that a combination of six IMU kinematic
variables can estimate hip joint loading but that for accurate
knee joint loading estimates both kinematic variables and ground
reaction forces are needed. Future work can investigate how to
extract sufficiently informative features from a minimal number
of sensors. For example, extracting joint angles could improve
the prediction error (McLean et al., 2003), but this requires at
least two sensors. Second, while we always attached the phone at
a fixed position, the phone’s orientation could be slightly different
due to variations across experiments with different subjects. This
means that our learned models are evaluated on data that may
have been collected using a slightly different reference frame for
the sensor measurements. Hence, our model should be robust
against minor perturbations of the phone’s orientation, but not
against attaching the phone at different locations. Future work
should develop models that are robust against variations in the
position of the sensors as well. This can be done by collecting data
with sensors at different locations and using machine learning to
train a model that works for various locations. Third, we decided
to only use linear models, since non-linear models did not

improve the results for this small dataset of 10 patients. Training
non-linear models using data from more patients can potentially
detect non-linear relations between the sensor data and the joint
impulse. Moreover, additional data can improve the model’s
accuracy by learning from a larger number of training examples.
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