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Abstract

A set of GPS traces for bicyclists and a set of notifications by bicyclists of problematic situations (spots identified by GPS records)
had been collected independently. The data collection periods did not coincide but overlapped and none was contained in the other
one. The aim is to use both datasets to determine an optimal action plan for problem solving given a limited budget.

First, problematic locations are clustered. Each cluster corresponds to an impediment. Impediments are then associated with
trips using a distance function. The aim is to find out which impediments to solve under a given budget constraint in order to
maximize the number of impediment free trips. Thereto the trip set is partitioned by matching each trip with the largest set of its
affecting impediments. Solving all impediments in such set induces a cost and makes the associated part of trips impediment free.
An optimizer is presented and evaluated.
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1. Introduction

Two datasets have been collected in mutually independent projects. A set of GPS traces for 350 bicyclists has
been recorded at high frequency (period between recordings in the range of [1 .. 5] seconds). A dataset containing
timestamped GPS records (called clickPoints) has been recorded by 79 bicyclists during an overlapping period. Each
clickPoint identifies a situation perceived by the bicyclist as problematic. Several clickPoints generated by multiple
individuals at different times may identify a single impediment (e.g. a dangerous junction, a pavement problem, etc).
The clickPoints identifying an impediment may have different coordinates. No information about the kind of imped-
iment is supplied by the bicyclist. The datasets have been generated by participants in the two mutually independent
projects (but it is not guaranteed that the respondent sets are disjoint).
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An analyst is in charge of generating a semantic interpretation of the impediments using a GIS tool, estimating the
cost to solve each impediment and advising which impediments to resolve given a budget constraint.

In order to support the analyst, impediments are identified by spatial clustering of intended clickPoints. Imped-
iments are assumed to affect trips that pass nearby. We associate impediments with affected trips and find a set of
impediments whose resolution makes as many trips as possible impediment free.

2. Related Work

Trajectory clustering is the focus of a lot of research (e.g. T-OPTICS and several variants). In many cases, tra-
jectories are not considered to be network bound. Clustering is based on geometric properties of time series of GPS
recordings. Many researchers [7, 21, 20, 1, 6] focus on trajectory annotation (mining of travel behaviour e.g. in order
to establish route choice sets [15]). The authors of [9] use DBSCAN to find traffic stream clusters and define the
concept of cluster representative subsequence. Others focus on applications where pairwise specific overlap of routes
is required like in matching for carpooling [3]. In [18, 19] the authors present methods for subtrajectory clustering
(and solve the problem of subtrajectory identification).

Few research applies map-matching prior to trajectory clustering; e.g. [8]) describes map matching based trajectory
compression. Map-matching is not only interesting for storage of network constrained trajectories but also allows
clustering based on link sequences. However map-matching is nontrivial [12, 16, 17, 11, 13, 2, 5, 4, 10] and is
required only in particular applications.

Mobility related problem reporting is a hot topic. Using the search string ”app report problem to municipality”
in a browser delivers dozens of problem reporting apps aimed at notifying issues to the municipality government.
Examples are (in alphabetical order) Box Clever (Canada), Cit2Adm (France), Colab (Brazil), FixMyCity (Germany),
FixMyStreet (UK), iChangeMyCity (India), Improve My City (Greece), Link (South Africa), MobiMelder (Belgium),
Munizapp (Iceland), OneService (Singapore), PublicStuff (USA) and probably more. Many allow to show the location
of the issue on a map. Some are aimed at particular purposes (e.g. dedicated to pedestrians).

This paper aims to combine the results of issue reporting tools with GPS traces representing bicycle (regular and
e-bike) trips. Thereto, clickPoints are spatially clustered using DBSCAN . Each cluster represents an impediment. In
a preliminary research, k-means clustering was applied clustering to the same dataset of clickPoints [14].

Prior trajectory clustering using geometric properties is not applied. Each trip is processed individually and the
combination (set) of impediments affecting the trip is determined. Impediment combinations then are used to partition
the set of trips. This intermediate result is used as input for the optimizer.

3. Data Properties

3.1. Notifications by Push Button: clickPoint

Data have been generated using a push button mounted on the bike and communicating to the bicyclist’s smartphone
using Bluetooth. A clickPoint record contains the button identifier, a coordinate pair generated by the smartphone, a
click-timestamp and a coord-timestamp. The click-timestamp applies to the moment the button is pressed. The coord-
timestamp applies to the GPS coordinates: if the coordinate pair cached in the smartphone is too old, a new pair is
fetched; this sometimes takes a long time to complete. Records for which the difference between both timestamps is
larger than 60[s] are discarded.

The difference between click-timestamps in consecutive records is often very small (less than 10[ms]); this is
expected to stem from contact bounce. We assume that noise due to contact bounce only occurs for intended use of
the button (hence does not emerge spontaneously e.g. due to vibrations caused by rough road pavement). We assume
that a person does not press the button at a frequency higher than 1[Hz]. For every individual, we consider a clickPoint
with timestamp t to be an intended clickpoint (IntClickPoint) if and only if (i) it has no predecessor in the period t−∆t
or (ii) the duration of the noise sequence exceeds the value of the resolution parameter δmax. In the experiments the
values ∆t = 1[s] and δmax = 5[s] have been used. Contact bounce noise removal reduced the set of 3101 notifications
to 2142 IntClickPoints. Figure 1a shows the IntClickPoints and the interactively selected relevant domain on a map.

Figure 1b shows trips for a particular individual.
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Relevant domain and clickpoints

2.5 0 2.5 5 7.5 10 km

(a) Relevant domain (shaded area) and clickPoints

100 0 100 200 300 400 m Several trips by person 3091024234

(b) Several trips for a particular individual.

Fig. 1: Data overview: relevant domain, clickPoints and trips for a particular bicyclist.

3.2. Trips

Traces had been delivered as sequences of records specifying the smartphone identifier, the location and the times-
tamp. Data were recorded in the period 2018-Jul-11 to 2018-Oct-08 (included). Location data are not original raw
GPS coordinates. Data seem to have been pre-processed by map-matching using fluent curves that approximate links
on the underlying road network. The raw data clearly have been replaced by the smoothed coordinates. An example
is shown in Figure 1b

The set of relevant domain trips consists of all bike mode trips that have at least one point in the relevant domain.
Trips have been extracted by splitting the traces using spatial and temporal thresholds. A trip is terminated at record

ri if and only if �ri+1 ∨ δe(ri, ri+1) > ∆s ∨ dt(ri, ri+1) > ∆t where δe() denotes the Euclidean distance and dt() denotes
the time difference. In the experiments, ∆s = 1200[m] and ∆t = 120[s] were used.

4. Associating Impediments and Trips

4.1. Impediments

An impediment is an obstacle, nuisance or problematic situation flagged by bicyclists generating IntClickPoints.
An impediment may be associated to a road network node (junction) or link (road segment). Multiple IntClickPoints
may be associated to a single impediment.

In this study it is assumed that the shape of an impediment can be stretched. Therefore, IntClickPoints are clustered
using DBSCAN . Clustering by DBSCAN uses parameters ε (maximum distance between cluster members) and k
(minimum cluster size). The following assumptions are used to determine the parameter values. An impediment has
a length of 48[m], bicyclists drive at 6[m/s] in opposite directions and push the button not later than 3[s] after having
passed the impediment. The distance between the cyclists when they push the button is at most 48 + 2 ∗ 18 = 84[m].
The values for ε used in the initial sensitivity analysis presented below are found in Section 6.1. The minimum cluster
size is arbitrarily chosen to be k = 8. Note that IntClickPoints in a cluster may have been generated by one or more
persons. Figure 2a shows how the number of clusters found by DBSCAN depends on ε for a minimum cluster size
k = 8. Figure 2b shows the IntClickPoints belonging to identified clusters for ε = 62.5[m]. Each cluster has its own
color. Note that many clusters are stretched along road segments. Note the clusters near the city center: for ε = 100
they merge into a single one.

Table 1 shows data for the first and last clusters found for ε = 50. Nr is the cluster identifier. nPts is the number
of IntClickPoints in the cluster (impediment). nPrs is the number of people who generated the IntClickPoints. Each
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(a) Number of clusters as a function of ε for k = 8.

750 0 750 1500 2250 3000 m DBSCAN clusters: epsilon=62.5  k=8

(b) Clustered IntClickPoints in the relevant area.

Fig. 2: DBSCAN clustering: the sensitivity analysis uses ε ∈ {50, 62.5, 75}

Table 1: Sample clusters for ε = 50. Nr: cluster number, nPts: number of IntClickPoints in the cluster, nPrs: number of people who clicked.

Nr nPts nPrs Nr nPts nPrs Nr nPts nPrs Nr nPts nPrs Nr nPts nPrs
0 26 10 1 17 9 2 69 16 3 71 14 4 21 7
5 18 8 6 22 8 7 14 6 8 10 2 9 8 3

10 15 3 11 18 6 12 15 1 13 46 4 14 8 2
15 18 5 32 9 3 33 11 2 34 13 1 35 8 4
36 11 6 37 8 5 38 12 2 39 8 5 40 10 4
41 69 1 42 10 1 43 8 1 44 9 6 45 10 2

DBSCAN cluster corresponds to an impediment. The number of clusters identified depends on the values for ε and k
is reported in Table 2.

4.2. Association

Map matching was not used because it induces a two step method involving road network links (i.e. IntClickPoint-
link and link-traces matching) and hence the risk to induce matching errors than can be avoided.

We are interested in clusters of trajectories that match in particular sets of regions each one corresponding to an
impediment (as opposed to matching over the complete trajectory length).

When raw data are available, a distance threshold to determine whether or not a pair of GPS coordinates can have
been produced from a given location. Thereto it is assumed that the GPS error obeys a Rayleigh distribution [2, 10].
The parameter for the distribution is determined by assuming that the observed error exceeds the specified device
accuracy with a probability p < 0.05. However, because of the availability of pre-processed GPS traces, we choose
∆s = 50[m] for the distance threshold based on visual inspection of the smoothed data.

The threshold ∆s is used to associate an impediment (cluster of IntClickPoints) to a trip. Consider the set of pairs
〈pT

i , p
C
j 〉 where pT

i is the coordinate pair for the i-th point in the trace T and pI
j is the coordinate pair for the j-th

IntClickPoint in the impediment. We consider T and I to be associated if and only if | {〈pT
i , p

I
j〉 | de(pT

i , p
I
j) ≤ ∆s} | ≥ N

where de(·, ·) denotes the Euclidean distance and N = 3. Note that both cases (i) ”single trace point, multiple IntClick-
Points” and (ii) ”multiple trace point, single IntClickPoint” can occur.
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5. Optimal Impediment Resolving under Budget Constraints

In order to make as many trips as possible impediment free under a given budget constraint, a method consisting
of following steps is proposed.

1. Impediments that have no associated trips are ignored.

2. The set of all impediments that apply to a particular trip T is called the impediment combination (impedComb)
for T . Solving all impediments in an impedComb makes the associated trips impediment free. Some trips have
no associated impediments: their impedComb=∅.

3. For each trip the impedComb is determined. Consider for each impedComb Ki the set Ti ∈ T of trips that
are affected by exactly the impediments in Ki; this is the strict trip set T S (Ki) for Ki. The set of impedCombs
contains the empty set ∅ and defines a partition of T because each trip is associated with exactly one imped-
Comb. The set of impedCombs and the parts constituting the partition are related by a bijection. The set of
impedCombs is a small subset of the powerset℘(I) of the set of impediments I.

Figure 3a shows the strict trip sets for impedComb 2 (red, impediments {0, 2, 5}) and impedComb 8 (green,
impediments {0, 2}). Both are parts in the partition of trip set T and hence disjoint. The number of impedCombs
found for each case is reported in Table 2 for each ε value.

4. An acyclic digraph (the smallest superset graph) GH(VH , EH) is defined as follows. VH is the set of imped-
Combs. Two impedCombs Ki,Kj ∈ K are connected by an edge if an only if (Ki ⊂ Kj)∧(� Km | Ki ⊂ Km ⊂ Kj).
The superscript H is used because this is similar to a Hasse diagram. Graph GH is used to compute the set of
all trips affected by Ki (complete trip set) T K(Ki) =

⋃
k∈K | �(k,Ki)

T S (k) where �(k,Ki) indicates that in GH vertex

k is on a path connecting Ki to a leaf vertex. Note that ¬(Ki � Kj ⇒ T K(Ki) ∩ T K(Kj) = ∅) (the complete trip
sets of different impedCombs may overlap).
The cost C(Ki) to solve all impediments in the impedComb Ki is given by C(Ki) =

∑
I∈Ki

C(I).

5. The objective is to determine the set of impediments for which the total cost is below a given budget threshold
and that maximizes the impediment free trips when resolved. Note that solving a strict subset of an impedComb
Ki is only useful if ∃Kj ⊂ Ki because any part T (K) of the trip set partition is made impediment free only if all
impediments in K are solved. Hence, the basic concept in the optimization is the impedComb.

6. Because not all impedComb pairs are disjoint, the cost to resolve an impedComb and the gain (the number of
trips made impediment free) depend on which impedComb have been (partially) resolved before. Hence, the
impedComb intersection graph is used to guide the computation. The optimizer is a recursive algorithm that
consecutively considers sets of impediments to resolve or to block. Obviously, the corresponding undo actions
occur during backtracking. The states for an impediment then are: waiting (for resolution), resolved and blocked
(for resolution). The states for an impedComb are nominally similar.

state =


blocked if at least one of it elements is blocked
resolved if all impediments are resolved
waiting else

(1)

The state transition diagram is shown in Figure 3b

The optimizer uses two main structures: (i) an ordered list of impedCombsorted by decreasing complete affected
trip set size (ii) the intersection graph for impedCombs It basically uses recursion to enumerate solutions
by finding the first non-blocked impedComb in the sorted list for which the resolution is within budget and
then considers both the resolve and block actions. The intersection graph is used to update the state of each
impedComb based on the selected action. Finally, this is repeated recursively and the action is undone. The use
of the intersection graph aims to minimize the computational cost to maintain the state.
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75 0 75 150 225 300 m Trips: green for impedComb=2, red for
impedComb=5

Impediment 5

Impediment 0

Impediment 2

(a) Trips for two impedCombs

waiting

blocked

resolved

resolve

resolve

unresolve

block

unblock

unresolve

(b) State transition diagram for impedComb

Fig. 3: impedCombs : Associated trips - State transition diagram

Resolving an impedComb Ki resolves all impedCombs in the containment diagram on each path connecting a
leaf vertex to Ki. This does not hold for blocking because blocking a single impedimentIm blocks Ki if Im ∈ Ki

but does not necessarily block all Kj ⊂ Ki. On the other hand, blocking an impediment blocks all impedCombs
it is contained in. The effectiveness of the mentioned operations and the high density of the intersection graph
(e.g. 0.176 for the ε = 50 case) make enumeration feasible for practical cases.

6. Results - Discussion

6.1. Results

1. In reality cost to solve impediment is determined by user. For evaluation of the technique we used a dummy
cost specified by c(i) = | i | · max

q∈i
n(q) where i denotes the impediment, | i | is the impediment size (number of

IntClickPoint) and n(q) is a IntClickPoint number. The cost range for the ε = 50 case is [16448 , 258795]. The
other cases show similar ranges. python3 and postgresql 11 were used.

2. The experiments have been carried out on a Debian Linux 10.2 (Buster) on a Pentium(R) Dual-Core CPU E5200
@ 2.50GHz and the optimizer was allowed to run for at most 1200 seconds but that limit was never exceeded.

3. The number of trips having at least one point in the relevant domain is 22953.

4. Two parameters have been varied for a first sensitivity analysis. The maximum distance ε to the nearest neigh-
bour for each IntClickPoint in DBSCAN clusters was set to 40, 50, 60, 70 and 80 meters respectively. The
available budget to resolve impediments was set to 1M, 2M and 3M respectively. The results are summarized
in Table 2: (i) nTrips is the number of trips made impediment free, (ii) nImped is the number of impediments
to solve (they are not all listed in the table), (iii) cost is the amount required to solve the impediments and
(iv) searchTime is the optimizer execution time in seconds.

6.2. Discussion and future work

The data preparation to associate trips with IntClickPoints takes 1466[sec] (much more than the optimizer). How-
ever, this step needs to be performed only once and is embarrassingly parallel.
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Table 2: Results summary for first sensitivity analysis: (U) absolute numbers in upper part, (M) relative numbers (fractions) in middle part, (L) cost
and time [sec] after which no better solution was found in the lower part. # Imp the number of impediments # ImpC is the number of impedCombs.
Cost is the total cost to solve all impediments. # AffT is the number of trips affected by impediments.

ε = 40 [m] ε = 50 [m] ε = 60 [m] ε = 70 [m] ε = 80 [m]
nTrips nImped nTrips nImped nTrips nImped nTrips nImped nTrips nImped

Budget 1M 3454 13 2537 11 2879 13 2556 13 2284 9
Budget 2M 7593 37 6561 31 5880 29 5082 24 4095 13
Budget 3M 8390 46 8688 46 9134 47 8549 42 7290 30

Budget 1M 0.411 0.282 0.292 0.239 0.312 0.265 0.265 0.254 0.233 0.187
Budget 2M 0.905 0.804 0.755 0.673 0.639 0.591 0.527 0.470 0.419 0.270
Budget 3M 1.000 1.000 1.000 1.000 0.992 0.959 0.886 0.823 0.746 0.625

cost dur[s] cost dur[s] cost dur[s] cost dur[s] cost dur[s]

Budget 1M 991306 0.028 995102 0.015 997303 0.008 999460 0.007 993379 0.006
Budget 2M 1998484 0.016 1986900 36.155 1999024 1.109 1994177 0.165 1999989 0.059
Budget 3M 2400405 0.020 2779005 0.076 2969726 0.022 2988972 0.597 2997958 1.217

# Imp # ImpC # Imp # ImpC # Imp # ImpC # Imp # ImpC # Imp # ImpC
46 823 46 846 49 978 51 1047 48 922

Cost # AffT Cost # AffT Cost # AffT Cost # AffT Cost # AffT
2400405 8390 2779005 8688 3129388 9199 3411246 9636 3729974 9771

In general exhaustive enumeration is never guaranteed to run in a decent time. The problem, although not trivial and
using real data, was solved in very short time in most of the cases. In case budget=2M, ε = 50 the best solution was
found after 0.504[s] but it is obvious that the solution is known to be optimal only after 36[s] when the enumeration
is complete. Therefore, further research will focus on a finding tight upper bounds for the potential gain in order to
support a branch and bound method.

The optimizer is sufficiently fast to be used in interactive optimization sessions where the analyst has to determine
the cost to solve the impediments.

7. Conclusion

An optimization method to support the analyst when selecting impediments to solve under a budget constraint.
Impediments are determined by clustering IntClickPoints. The sensitivity analysis shows the effect of the selection of
the parameter ε in DBSCAN . If the budget is much lower than the total resolution cost (1M case), the number of
impediment free trips decreases monotonically with ε. In the case the budget is comparatively large (3M case) the
optimum occurs in the range where ε maximizes the number of clusters. The proposed technique is sufficiently fast
for interactive use. This is important because impediment solution cost estimation is iterative and interactive.

Nomenclature

clickPoint Notification (location, time) from button operated by bicyclist
IntClickPoint Intended clickPoint (intentionally generated) determined by filtering contact bounce noise
Impediment Set of spatially clustered IntClickPoints
impedComb Impediment combination: maximal set of impediments affecting at least one trip
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