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Abstract: Deep beams with shear span-to-depth ratios a/d ≤ 1 

2.5 are used to resist large shear forces due to their ability to 2 

develop direct strut action. To further enhance the shear 3 

strength and crack control of such members, researchers have 4 

studied the use of fibre-reinforced concrete (FRC). However, 5 

while this solution is promising, there is a need for rational me-6 

chanical models capable of predicting the shear strength of 7 

FRC deep beams in a sufficiently simple manner. This paper 8 

proposes such a model based on first principles: kinematics, 9 

equilibrium and constitutive relationships. The proposed model 10 

simplifies an earlier two-parameter kinematic theory (2PKT) 11 

for the complete shear behavior of FRC deep beams, to predict 12 

the shear strength and components of shear resistance in a 13 

straightforward manner. The new simplified method (S2PKT) 14 

is validated by comparing the predicted results to 22 tests from 15 

the literature, as well as to FEM and 2PKT predictions. It is 16 

shown that the proposed simplified kinematic approach predicts 17 

well the shear strength with an average experimental-to-18 

predicted shear strength ratio of 1.12 and a coefficient of varia-19 

tion of 12.9%. Furthermore, the model is used to discuss the 20 

effect of shear span-to-depth ratio and fibre volumetric ratio on 21 

the shear strength of FRC deep beams. 22 

Keywords: deep beams, shear, fibre-reinforced concrete, kin-23 

ematic model 24 
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1 Introduction 1 

Deep beams with small shear span-to-depth ratios (𝑎/𝑑 < 2.5) 2 

can carry high shear forces by means of strut action, and thus 3 

are widely used as transfer girders, cap beams, pile caps and 4 

other heavily loaded members. Researchers have investigated 5 

the possibility of further enhancing the shear strength of such 6 

members with the use of steel fibres [1-3], which bridge the 7 

critical shear cracks and act as an additional shear-carrying 8 

mechanism. However, while fibre-reinforced concrete (FRC) 9 

deep beams exhibit improved shear-carrying capacity and 10 

greater post-peak ductility than reinforced concrete, exactly 11 

quantifying these beneficial effects remains a challenging prob-12 

lem. This is in large part due to the difficulty in extending the 13 

strut-and-tie method [4] (Fig. 1a) for reinforced concrete (RC) 14 

deep beams to FRC members, as the this method neglects the 15 

tension in the concrete while enhanced behavior in tension is 16 

the main advantage of FRC.  17 

An alternative modeling approach for FRC deep beams that 18 

considers the effect of steel fibres based on compatibility of 19 

deformations, constitutive relationships and equilibrium was 20 

recently developed by Mihaylov et al. [5]. This approach is an 21 

extension of a two-parameter kinematic theory (2PKT) for RC 22 

deep beams [6], see Fig. 1b. It has been demonstrated that this 23 

kinematics-based approach is capable of modeling the complete 24 

shear response of FRC deep beams, including their post-peak 25 
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behavior [5], see Fig. 1c. As evident from Fig. 1c, the kinemat-1 

ics-based approach accounts for five shear-carrying mecha-2 

nisms in FRC deep beams; critical loading zone 𝑉𝐶𝐿𝑍, aggregate 3 

interlock 𝑉𝑐𝑖, transverse shear reinforcement 𝑉𝑠, dowel action of 4 

the longitudinal reinforcement 𝑉𝑑, and steel fibres 𝑉𝑓 . While it 5 

provides excellent shear strength predictions and complete 6 

pre-peak, peak and post-peak load-deformation behavior of 7 

FRC deep beams, this approach requires an iterative computa-8 

tion procedure and does not lend itself to simple calculations. 9 

The main aim of this paper is to simplify this approach to com-10 

pute only the peak resistance of FRC deep beams in a straight-11 

forward manner with negligible compromise on the accuracy of 12 

the predictions. The main assumption used to derive the simpli-13 

fied model can be inferred from inspecting Fig. 1c and results 14 

from other similar analyses: the peak resistance of FRC deep 15 

beams coincides with that of the critical loading zone (CLZ). 16 

Hence, it is assumed that the failure of the beam is triggered by 17 

the crushing of the CLZ. This is a reasonable assumption to 18 

make for FRC deep beams, as the CLZs of such D-region 19 

members typically carry a significant portion of the shear, and 20 

the crushing of which is brittle in nature leading to a sudden 21 

drop in shear capacity. Similar simplification [7] has been made 22 

for the kinematic model for complete shear behavior of FRC 23 

coupling beams [8].    24 

In addition to the derivation of the simplified kinematic model 25 
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(hereafter abbreviated as S2PKT), this paper presents compari-1 

sons with 22 tests as well as with nonlinear finite element simu-2 

lations. Furthermore, the predictions of the simplified method 3 

for shear strength of FRC deep beams are compared with those 4 

of the kinematic model for complete shear behavior. 5 

2 Kinematics of deep beams 6 

Figure 2 summarizes the compatibility equations of the two-7 

parameter kinematic theory for reinforced concrete deep beams 8 

which have been derived earlier [6]. It is assumed that the shear 9 

failure in short shear spans occurs along a straight crack that 10 

extends from the support to the load along the diagonal of the 11 

shear span (critical diagonal crack). The important defor-12 

mations in the crack include the average crack width w, crack 13 

slip s, and the strain in the stirrups 𝜀𝑣 halfway along the crack. 14 

As evident from Eqs. 5–7 in Fig. 2c, these deformations are 15 

expressed as functions of degrees of freedom (DOFs) 𝜀𝑡,𝑎𝑣𝑔 and 16 

Δ𝑐.  17 

The DOFs of the kinematic model are illustrated in Fig. 2a. The 18 

first DOF is the average strain 𝜀𝑡,𝑎𝑣𝑔  along the cracked length 19 

of the bottom reinforcement, which is assumed equal to the 20 

strain in the section with maximum bending moment as charac-21 

teristic of direct strut action in deep beams. This strain is asso-22 

ciated with a flexural deformation pattern (see top diagram in 23 

Fig. 2a) where the critical crack opens but does not undergo 24 

sliding displacements. In contrast, the second DOF Δ𝑐, which is 25 
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associated with a shear deformation pattern (see bottom dia-1 

gram in Fig. 2a), results in both opening and sliding displace-2 

ments. More specifically, Δ𝑐 is the vertical displacement be-3 

tween the crack faces associated with crushing of the concrete 4 

in the CLZ at the top of the crack. The size of the CLZ is de-5 

pendent on a key geometric property, namely the effective 6 

width of the loading plate 𝑙𝑏1𝑒  which can be determined with 7 

Eq. 1 in Fig. 2b. 8 

Other geometric properties that are necessary to describe the 9 

kinematic model are the angle of the critical diagonal crack α1, 10 

the cracked length along the bottom longitudinal reinforcement 11 

𝑙𝑡, and the length along the bottom reinforcement 𝑙𝑘 where the 12 

reinforcement works in double curvature. These geometric 13 

properties are expressed with Eqs. 2–4 in Fig. 2b. The angle of 14 

the crack coincides with the angle of the diagonal of the shear 15 

span α (from center of support plate to center of loading plate), 16 

except in the transition from deep to slender beams where α1 is 17 

fixed at 35̊. Angle α1 is used to evaluate the cracked length 𝑙𝑡, 18 

which is in turn necessary for the evaluation of the deflection of 19 

the shear span Δ expressed with Eq. 8 in Fig. 2c. 20 

The complete deformation pattern of the beam is obtained as a 21 

linear combination of the two basic patterns governed by DOFs 22 

𝜀𝑡,𝑎𝑣𝑔 and Δ𝑐. To determine the values of the DOFs at peak 23 

capacity, the kinematic equations are combined with equilibri-24 

um conditions and constitutive relationships for the mecha-25 
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nisms of shear resistance across the critical crack. 1 

3 Mechanisms of shear resistance  2 

As mentioned earlier, FRC deep beams carry shear through five 3 

mechanisms of shear resistance: 1) diagonal compression in the 4 

critical loading zone 𝑉𝐶𝐿𝑍 , 2) aggregate interlock across the 5 

critical diagonal crack 𝑉𝑐𝑖, 3) tension in the transverse shear 6 

reinforcement 𝑉𝑠, 4) dowel action of the bottom longitudinal 7 

reinforcement 𝑉𝑑 and 5) shear carried by the steel fibres 𝑉𝑓  (see 8 

Fig. 3). The first four mechanisms have been derived elsewhere 9 

[6, 9] and are expressed with Eqs. 9-12 in Fig. 3. The shear 10 

contribution of steel fibres 𝑉𝑓  is discussed in more detail below.  11 

The steel fibres enhance the shear behavior of FRC deep beams 12 

mainly in two ways: 1) they act as an additional shear-carrying 13 

mechanism by transferring tension across the critical diagonal 14 

crack and 2) they improve the post-peak ductility of the CLZ in 15 

compression [10] due to the confinement effect of the fibres. 16 

However, as the second effect mainly impacts the post-peak 17 

behavior of the beam and has an insignificant impact on its 18 

peak resistance (strength), it is neglected here for the sake of 19 

simplicity. Therefore, Eq. 9 in Fig. 3 for the shear carried in the 20 

CLZ is adopted directly from the 2PKT for RC deep beams. 21 

This expression was derived based on the assumption that the 22 

CLZ is at failure under principal compressive stresses inclined 23 

at angle 𝛼 (Fig. 2) [6]. 24 

The tensile behavior of steel fibres across cracks has been stud-25 
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ied by a number of researchers [11-14], particularly for the case 1 

of pure opening of the crack without slip displacements (Mode 2 

I fracture). It is understood that the relationship between normal 3 

stress across the crack and opening of the crack can be repre-4 

sented by the superimposition of two stresses (Fig. 4): tension 5 

transferred directly between the two crack faces (tension sof-6 

tening of concrete), and tension carried by the steel fibres 7 

which are anchored on each side of the crack. The tension sof-8 

tening of concrete is neglected here as the kinematic model for 9 

deep beams assumes a fully-cracked member. The tensile stress 10 

transferred by straight fibres can be computed by a variable 11 

engagement model proposed by Voo and Foster [11]:  12 

𝜎𝑓 =
0.396√𝑓𝑐

′𝜌𝑓𝑙𝑓

𝑑𝑓

tan−1 (
𝑤

𝑑𝑓/3.5)

𝜋
(1 −

2𝑤

𝑙𝑓
)

2

 
(13) 

where 0.396√𝑓𝑐
′ is the bond stress between the concrete and 13 

the fibres, 𝜌𝑓  is the volumetric ratio of steel fibres, 𝑙𝑓 is the 14 

length of the fibres, 𝑑𝑓 is the diameter of the fibres, and 𝑤 is 15 

the crack width. However, it must be noted that Eq. 13 only 16 

considers the frictional bond behavior of steel fibres and does 17 

not take into account the mechanical anchorage effect of 18 

hooked-end steel fibres. Thus, for the shear carried by the 19 

hooked-end fibres, it is recommended to use the simplified di-20 

verse embedment model proposed by Lee et al. [14] which ex-21 

plicitly considers both effects, while for straight fibres the sim-22 

pler model given in Eq. 13 can be used.   23 
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To use Eq. 13 to model the critical diagonal crack in FRC deep 1 

beams, it is necessary to consider that the crack does not under-2 

go a pure opening, but a combination of opening and slip dis-3 

placements (mixed Mode I and II fracture). Therefore, based on 4 

experimental observations that the vertical displacements in the 5 

crack 𝑤𝑣 dominate the crack kinematics near shear failure [6], 6 

it is proposed to replace 𝑤 in Eq. 13 with 𝑤𝑣, and to assume 7 

that the tensile force in the fibres is aligned with 𝑤𝑣. The verti-8 

cal crack displacement halfway along the critical crack is de-9 

rived directly from the kinematic model by applying small-10 

displacement kinematics: 11 

𝑤𝑣 = 0.5𝜀𝑡,𝑎𝑣𝑔𝑙𝑘 cot 𝛼1 + ∆𝑐 (14) 

where the two terms of this equation are associated with the 12 

two DOFs of the model. Thus, with an expressed fibre stress 13 

𝜎𝑓(𝑤𝑣), the shear contribution of the fibres across the critical 14 

crack is: 15 

𝑉𝑓 = 𝜎𝑓(𝑤𝑣)𝑏𝑑/ sin 𝛼1 (15) 

where 𝑏 is the width of the section, 𝑑 is the effective depth of 16 

the section, 𝛼1 is the angle of the critical crack, and 𝑑/ sin 𝛼1 is 17 

the length of the crack.   18 

As all shear-carrying mechanisms are expressed in terms of the 19 

two DOFs of the kinematic model, it is necessary to compute 20 

the values 𝜀𝑡,𝑎𝑣𝑔 and ∆𝑐 at peak resistance in order to predict 21 

the shear strength of FRC deep beams.  22 
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4 Shear strength prediction 1 

Degree of freedom ∆𝑐 at peak resistance is derived by follow-2 

ing the same assumption used in the derivation of 𝑉𝐶𝐿𝑍 , that the 3 

failure of FRC deep beams is triggered by the crushing of the 4 

CLZ. As the CLZ is at crushing, the strain along its bottom 5 

inclined face is assumed equal to -0.0035, and the strain along 6 

its top horizontal face is neglected. By also defining the geome-7 

try of the CLZ in terms of the effective width of the loading 8 

plate 𝑙𝑏1𝑒  (Eq. 1) and the angle of the critical crack in the vicin-9 

ity of the loading plate (Eq. 2), ∆𝑐 has been expressed as [6]: 10 

∆𝑐= 0.0035 × 3𝑙𝑏1𝑒 cot 𝛼 (16) 

To predict the second DOF 𝜀𝑡,𝑎𝑣𝑔 , it is necessary to consider 11 

the equilibrium between the internal and external forces acting 12 

on the deep beam. This is performed by equating the summa-13 

tion of all the shear resistance mechanisms expressed in terms 14 

of one unknown 𝜀𝑡,𝑎𝑣𝑔 (Eq. 9-12 and 15), with the shear de-15 

mand expressed from the tension in the longitudinal reinforce-16 

ment, also given in terms of 𝜀𝑡,𝑎𝑣𝑔 . Assuming that the longitu-17 

dinal reinforcement remains linear elastic and the tension 18 

stiffening effect of the concrete around the reinforcement is 19 

negligible near failure, the force in the longitudinal reinforce-20 

ment is: 21 

𝑇 = 𝐸𝑠𝐴𝑠𝜀𝑡,𝑎𝑣𝑔 (17) 

where 𝐸𝑠 is the Young’s modulus of steel and 𝐴𝑠 is the area of 22 

the bottom longitudinal reinforcement.  23 
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This force is used to evaluate the shear demand 𝑉 by using the 1 

moment equilibrium of the shear span: 2 

𝑉 = 𝑇𝑧/𝑎 (18) 

where 𝑧 ≈ 0.9𝑑 is the approximate lever arm of the longitudi-3 

nal internal forces at the section with the maximum moment, 4 

and 𝑎 is the shear span. 5 

The solution procedure of finding 𝜀𝑡,𝑎𝑣𝑔 that satisfies equilibri-6 

um between the shear capacity and the shear demand at failure 7 

is summarized in the flowchart in Fig. 5. Although the solution 8 

procedure is iterative, the convergence is very fast as demon-9 

strated in the step-by-step calculation given in the following 10 

section. 11 

5 Example of S2PKT calculations 12 

The S2PKT calculation procedure will be illustrated by provid-13 

ing the steps taken in computing the shear strength of specimen 14 

B7 by Mansur and Ong [2], with reference to the flowchart 15 

given in Fig. 5. Specimen B7 had an 𝑎/𝑑 ratio of 1.23 and a 16 

fibre volumetric ratio 𝜌𝑓 = 0.5%. The effective depth of the 17 

member was 𝑑 = 463 mm, the flexural reinforcement ratio was 18 

𝜌𝑙 = 1.93%, and the stirrup ratio was 𝜌𝑣 = 0.47%. The com-19 

plete set of material and geometric properties of specimen B7 20 

are given in the database of shear critical FRC deep beams in 21 

Table 1.  22 

The first step of the procedure is to compute the geometry of 23 

the kinematic model. For a shear force-to-applied point load 24 
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ratio 𝑉/𝑃 = 1 (symmetrical three-point bending), the effective 1 

length of the loading plate 𝑙𝑏1𝑒  (Eq. 1) is 80 mm, and hence, the 2 

angle of the critical diagonal crack 𝛼1 = 𝛼 is 41.3° (Eq. 2). The 3 

cracked length along the bottom reinforcement 𝑙𝑡 (Eq. 3), 4 

which is needed to express the deflection of the beam, is 528 5 

mm. The dowel length of the bottom longitudinal reinforce-6 

ment 𝑙𝑘 (Eq. 4) is 63 mm. 7 

The next step of S2PKT calculations is to compute DOF ∆𝑐 at 8 

peak capacity. As mentioned before, the proposed simplified 9 

kinematic method assumes that the peak capacity of an FRC 10 

deep beam coincides with that of the CLZ. Therefore, from Eq. 11 

16, DOF ∆𝑐 at the crushing of the CLZ is 0.96 mm. 12 

The solution procedure now requires an iteration, which com-13 

mences with an initial estimate of the shear strength 𝑉 – for 14 

example 0.1𝑏𝑑𝑓𝑐 ′ ≈ 140 kN. At this load, the force in the lon-15 

gitudinal reinforcement 𝑇 from Eq. 18 is 192 kN. Then, the 16 

second DOF 𝜀𝑡,𝑎𝑣𝑔 is computed from Eq. 17 as 0.0012. Once 17 

both DOFs are known, it allows the computation of the defor-18 

mations along the critical diagonal crack; crack width 𝑤 (Eq. 5) 19 

and average strain in the stirrups 𝜀𝑣 (Eq. 7), which are respec-20 

tively 0.78 mm and 0.0055. From Eq. 9, the shear carried by 21 

the CLZ 𝑉𝐶𝐿𝑍  is calculated as 75 kN. This value will stay con-22 

stant during the iterations as it is governed by DOF ∆𝑐, which 23 

remains unchanged. The shear carried by aggregate interlock 24 

𝑉𝑐𝑖 (Eq. 10), which depends on the crack width, is 43 kN. The 25 
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shear strength component 𝑉𝑠 depends on 𝜀𝑣, and is calculated 1 

from Eq. 11 to be 62 kN. Note that as 𝜀𝑣 exceeds the yield 2 

strain of the steel, the stirrups are yielding at this level of load-3 

ing. Furthermore, applying Eq. 12 for the dowel action of the 4 

flexural reinforcement which depends directly on DOF 𝜀𝑡,𝑎𝑣𝑔, 5 

shear component 𝑉𝑑 is evaluated at 27 kN. The final shear-6 

strength component 𝑉𝑓   (Eq. 15), which depends on the vertical 7 

displacement of the critical crack 𝑤𝑣 (Eq. 14), is calculated to 8 

be 15 kN. Thus, at the end of the first iteration, the calculated 9 

shear capacity is ∑ 𝑉𝑖 = 75 + 43 + 62 + 27 + 15 = 222 kN, 10 

and the difference between the assumed shear strength and the 11 

calculated shear capacity is |𝑉 − ∑ 𝑉𝑖| = |140 − 222| = 82 12 

kN. As the two shear forces differ significantly, the iterations 13 

continue with the calculated shear capacity ∑ 𝑉𝑖 as the new es-14 

timate of shear strength. After only 3 additional iterations, the 15 

error |𝑉 − ∑ 𝑉𝑖| decreases monotonically to only 1 kN, and 16 

therefore the solution can be considered converged. This fast 17 

convergence is not limited to the selected example only, but it 18 

is typical of the proposed solution procedure. Finally, at equi-19 

librium between the internal and external forces acting on the 20 

deep beam, the predicted shear strength for this specimen is 21 

208 kN.  22 

The described solution procedure of the kinematic model equa-23 

tions performed for specimen B7 is illustrated graphically in 24 

Fig. 6. The plot shows the variation of the components of shear 25 
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resistance 𝑉𝑑 , 𝑉𝑠, 𝑉𝑐𝑖, 𝑉𝐶𝐿𝑍  and 𝑉𝑓 , the shear capacity ∑𝑉𝑖  (thick 1 

black line) and the shear demand (dashed line), with increasing 2 

average tensile strain in the bottom longitudinal reinforcement 3 

𝜀𝑡,𝑎𝑣𝑔. As evident from the plot, the shear capacity decreases 4 

slightly with increasing 𝜀𝑡,𝑎𝑣𝑔. This is due to the diminishing 5 

aggregate interlock as the critical diagonal crack widens, and 6 

the loss of dowel action as the dowels are subjected to increas-7 

ing axial tension. Component 𝑉𝐶𝐿𝑍, which provides the largest 8 

contribution to the shear capacity, remains unchanged as it is 9 

governed by DOF ∆𝑐 only, and not DOF 𝜀𝑡,𝑎𝑣𝑔. The iterative 10 

calculations performed earlier, which started with an estimated 11 

value of the shear strength of 140 kN, are illustrated with the 12 

spiraling set of arrows. As evident from the plot, the arrows 13 

spiral towards the solution where the shear capacity and de-14 

mand curves intersect, and thus the shear forces are in equilib-15 

rium. For this beam, the obtained shear strength experimental-16 

to-predicted ratio is 𝑉𝑒𝑥𝑝/𝑉𝑝𝑟𝑒𝑑 = 220 kN/208 kN = 1.06. 17 

6 Comparisons with tests and FEM simulations 18 

Similar analyses were performed for 22 tests from three exper-19 

imental studies reported by Cho and Kim [3], Mansur and Ong 20 

[2], and Mansur and Alwist [1]. Table 1 lists the properties of 21 

the test specimens, the measured shear strengths 𝑉𝑒𝑥𝑝 and the 22 

predictions of the proposed simplified kinematics-based ap-23 

proach 𝑉𝑆2𝑃𝐾𝑇 . The shear span-to-depth ratio 𝑎/𝑑 of the beams 24 
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vary from 0.31 to 1.85, the effective depth 𝑑 from 168 mm to 1 

624 mm, the compressive strength of the FRC 𝑓𝑐
′ from 25.7 2 

MPa to 86.1 MPa, the longitudinal reinforcement ratio 𝜌𝑙 from 3 

0.81% to 2.82%, the transverse reinforcement ratio 𝜌𝑣 from 0% 4 

to 1.26% and the fibre volumetric ratio 𝜌𝑓  from 0% to 1.5%. 5 

The tests contained both straight and hooked-end fibres, with 6 

the length of fibres 𝑙𝑓 varying from 30 mm to 36 mm and the 7 

diameter of fibres 𝑑𝑓 from 0.4 mm to 0.6 mm. Table 1 also in-8 

cludes the shear strength predictions from the 2PKT method for 9 

complete shear response of FRC beams 𝑉2𝑃𝐾𝑇 , as well as pre-10 

dictions 𝑉𝐹𝐸𝑀  obtained with nonlinear finite element program 11 

VecTor2 based on the Disturbed Stress Field Model (DSFM 12 

[15]). The DSFM is a smeared rotating crack model that origi-13 

nates from the Modified Compression Field Theory [16] for 14 

reinforced concrete elements subjected to shear. To model the 15 

behavior of steel fibres across cracks, the DSFM incorporates 16 

the diverse embedment model [12, 14]. The finite element 17 

analyses were performed as part of this study following the 18 

modeling procedure described elsewhere for short FRC cou-19 

pling beams [8]. It should be noted that this modeling approach 20 

is significantly more complex than the 2PKT as it requires con-21 

siderable time for modeling and computations, as well as sig-22 

nificant expertise to use properly.  23 

For all 22 tests in Table 1, the proposed simplified kinematic 24 

approach produces an average shear strength experimental-to-25 
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predicted ratio of 1.12 with a coefficient of variation (COV) of 1 

12.9%. For the same tests, the respective values obtained from 2 

the nonlinear FEM analyses are an average of 1.04 and a COV 3 

of 13.4 %. It is therefore evident that, as compared to the far 4 

more complex nonlinear FEM model, the proposed simplified 5 

kinematic approach produces slightly more conservative shear 6 

strength predictions with less scatter, while being rational and 7 

simple enough to be calculated by hand or spreadsheet. Figure 8 

7a and 7b display the variation of the experimental-to-predicted 9 

ratios for all 22 tests plotted as functions of 𝑎/𝑑 and 𝜌𝑓 , respec-10 

tively. The largest scatter in the predictions is observed for the 11 

beams by Cho and Kim [3] without shear reinforcement and 12 

without fibres. It should be noted that these specimens are the 13 

smallest in the database with an effective depth of only 168 14 

mm, meaning that the relative size of aggregates and voids in a 15 

concrete section is larger, and thus the shear strength of these 16 

specimens is more sensitive to random variations in the path of 17 

the shear cracks. As shown in a previous study [9], the addition 18 

of shear reinforcement and/or fibres tends to control the cracks 19 

better and reduce this sensitivity.   20 

To further illustrate the advantages of the proposed simplified 21 

kinematic approach, comparisons were made with the shear 22 

strength predictions obtained with the kinematic model for 23 

complete shear behavior of FRC deep beams [5]. Figure 8a and 24 

8b plot the ratio of the shear strengths calculated with the com-25 
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plete and simplified kinematic approaches as functions of 𝑎/𝑑 1 

and 𝜌𝑓 , respectively. It is evident from these plots that the pro-2 

posed simplified kinematic approach is able to nearly replicate 3 

the shear strength predictions of the kinematic model for com-4 

plete shear behavior of FRC deep beams, for the entire range of 5 

𝑎/𝑑 and 𝜌𝑓  values without any apparent bias. As it can be ex-6 

pected from a simplified model, it results in slightly more con-7 

servative predictions than the complete model from which it is 8 

derived. 9 

7 Effect of test variables 10 

Validated in this manner, the simplified kinematic approach is 11 

used to systematically study the effect of span-to-depth ratio 12 

𝑎/𝑑 and the volumetric ratio of fibres 𝜌𝑓  on the shear strength 13 

of FRC deep beams. For the purpose of comparison, the tests 14 

conducted by Mansur and Ong [2] were selected. 15 

7.1 Effect of shear span-to-depth ratio 𝐚/𝐝 16 

Figure 9 shows the effect of 𝑎/𝑑 on the measured (shown as 17 

black dots) and predicted shear strengths (shown as a thick 18 

black line) for six FRC deep beams (beams B1, B2, B3, B4, B5 19 

and B9 in Table 1). The experimental points show a decrease in 20 

shear strength as 𝑎/𝑑 increases from 0.31 to 1.85, and the sim-21 

plified kinematic approach captures well this trend, albeit with 22 

slightly conservative predictions. The predicted components of 23 

shear resistance show that the global trend of decreasing shear 24 
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strength with increasing 𝑎/𝑑 is mainly due to the diminishing 1 

of components 𝑉𝑐𝑖 and 𝑉𝐶𝐿𝑍 . As the shear span 𝑎 increases for a 2 

constant 𝑑, the flexural strains 𝜀𝑡,𝑎𝑣𝑔 also increase resulting in a 3 

wider critical diagonal crack and diminishing aggregate inter-4 

lock resistance 𝑉𝑐𝑖. Also, at smaller 𝑎/𝑑 the angle of the critical 5 

diagonal crack is steeper, resulting in a larger CLZ and higher 6 

𝑉𝐶𝐿𝑍 , while at higher 𝑎/𝑑 the critical diagonal crack becomes 7 

flatter, resulting in a smaller and weaker critical loading zone. 8 

A flatter and longer critical diagonal crack crosses more stir-9 

rups and fibres, and therefore results in larger shear compo-10 

nents 𝑉𝑠 and 𝑉𝑓 . The contribution of the dowel action of the 11 

longitudinal reinforcement to the shear resistance 𝑉𝑑 also de-12 

creases with increasing 𝑎/𝑑 and diminishes completely once 13 

the longitudinal reinforcement yields in tension.  14 

It can be seen that the shear strength predictions made by the 15 

simplified kinematic approach tend to become more conserva-16 

tive at very small shear span-to-depth ratios. This is because of 17 

the inherently conservative simplification to neglect the en-18 

hancing effect of the steel fibres on the shear resistance of the 19 

critical loading zone 𝑉𝐶𝐿𝑍 . As 𝑎/𝑑 decreases, the relative con-20 

tribution of 𝑉𝐶𝐿𝑍  increases, and so does the effect of the adopt-21 

ed simplifying assumption. 22 

Also shown in Fig. 9 are the predicted shear strengths of the six 23 

beams by nonlinear FEM analyses (shown as hollow triangles) 24 

and by the kinematic model for complete shear behavior of 25 
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FRC deep beams (shown as hollow dots). It is evident from the 1 

plot that the proposed simplified kinematic approach is able to 2 

capture the effect of 𝑎/𝑑 equally well as the aforementioned 3 

more complex methods.  4 

7.2 Effect of fibre volumetric ratio 𝛒𝐟 5 

Fig. 10 shows that the shear strength of FRC deep beams in-6 

creases with increasing amount of steel fibres. The four test 7 

specimens used for comparison (beams B4, B6, B7 and B8 in 8 

Table 1) had a shear span-to-depth ratio of 1.23, compressive 9 

strength of the FRC of about 33 MPa, longitudinal reinforce-10 

ment ratio of 1.93%, and transverse reinforcement ratio of 11 

0.47%. As the fibre volumetric ratio increases from 0 to 1.5%, 12 

the measured shear strength increases by a factor of 1.27. The 13 

predicted shear strengths from the proposed simplified kine-14 

matic approach agree well with the observed trend in the exper-15 

imental points, providing a slightly conservative estimate of the 16 

shear capacity. The nonlinear FEM analyses and the kinematic 17 

model for complete shear behavior of FRC deep beams provide 18 

equally adequate estimates of the shear strength, however in the 19 

case of the former, the predictions are slightly unconservative 20 

for the beams with fibre volumetric ratios of 0 and 0.5%. As 21 

can be seen from the predicted shear strength components, all 22 

shear resistance mechanisms remain nearly constant, except for 23 

the contribution of the fibres which increases linearly with 𝜌𝑓 . 24 
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8 Concluding remarks 1 

This paper presented a simplified kinematic approach for eval-2 

uating the shear strength of FRC deep beams. The proposed 3 

model identifies that the peak resistance of FRC deep beams 4 

occurs simultaneously with that of the critical loading zone, and 5 

uses that to simplify an earlier two-parameter kinematic model 6 

(2PKT) for complete shear behavior of FRC deep beams.  7 

This approach was validated with 22 tests from the literature 8 

and its accuracy was compared to that of nonlinear FEM mod-9 

els and the original 2PKT. The simplified kinematic approach 10 

(S2PKT) predicts the shear strength of the test specimens with 11 

an average shear strength experimental-to-predicted ratio of 12 

1.12 and a COV of only 12.9%. It was shown that the S2PKT, 13 

which uses only two degrees of freedom to describe the defor-14 

mation patterns of FRC deep beams, predicts the shear strength 15 

with similar accuracy and less scatter than the complex FEM 16 

models with thousands of DOFs. Furthermore, it was demon-17 

strated that the proposed model replicates the shear strength 18 

predictions of the 2PKT for the entire range of 𝑎/𝑑 and 𝜌𝑓  val-19 

ues without any apparent bias. Hence, the S2PKT offers a quick 20 

and rational method of computing the shear strength of FRC 21 

deep beams without the need to perform a full load-22 

displacement analysis. In addition to that, the proposed simpli-23 

fied approach captures well the decreasing and increasing 24 

trends of shear strength variation of FRC deep beams with in-25 
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creasing 𝑎/𝑑 and 𝜌𝑓 , and explains them in a rational manner 1 

with the help of five components of shear resistance.   2 

Notation 3 

𝑎 = shear span 

𝑎𝑔 = maximum size of coarse aggregate 

𝐴𝑠 = area of longitudinal bars on flexural tension side 

𝑏 = width of the section 

𝑑 = effective depth of section 

𝑑𝑏 = diameter of bottom longitudinal bars 

𝑑𝑓 = diameter of fibres 

𝐸𝑠 = Young’s modulus of steel 

𝑓𝑐
′ = concrete cylinder strength 

𝑓𝑦 = yield strength of longitudinal bars 

𝑓𝑦𝑣 = yield strength of stirrups 

ℎ = total depth of section 

𝑘 = crack shape factor 

𝑙0 = length of heavily cracked zone at bottom of critical crack 

𝑙𝑏1 = width of loading plate parallel to longitudinal axis of member 

𝑙𝑏1𝑒  = effective width of loading plate parallel to longitudinal axis of member 

𝑙𝑏2 = width of support plate parallel to longitudinal axis of member 

𝑙𝑓 = length of fibres 

𝑙𝑘 = length of dowels provided by bottom longitudinal reinforcement 

𝑙𝑡  = cracked length along bottom reinforcement 

𝑛𝑏 = number of bottom longitudinal bars 

𝑃 = applied concentrated load 

𝑠 = crack slip 

𝑠𝑐𝑟 = distance between radial cracks along bottom edge of member 

𝑇 = tensile force in bottom reinforcement 

𝑉 = shear force 

𝑉𝑐𝑖 = shear resisted by aggregate interlock 

𝑉𝐶𝐿𝑍 = shear resisted by CLZ 
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𝑉𝑑  = shear resisted by dowel action 

𝑉𝑓 = shear resisted by steel fibres 

𝑉𝑠 = shear resisted by stirrups 

𝑤 = crack width 

𝑤𝑣 = vertical crack displacement 

𝑧 = lever arm of longitudinal internal forces at section with maximum moment 

𝛼 = angle of the diagonal of the shear span 

𝛼1 = angle of critical diagonal crack 

𝜀𝑣 = transverse web strain 

𝜀𝑡,𝑎𝑣𝑔 = average strain along bottom longitudinal reinforcement 

𝜀𝑦𝑣  = yield strain of stirrups 

𝜎𝑓 = tensile stress transferred by fibres 

𝜎𝑣,𝑎𝑣𝑔 = average stress in stirrups along the critical crack 

∆ = total deflection 

Δ𝑐 = shear distortion of critical loading zone 

Δ𝑡 = deflection due to elongation of bottom longitudinal reinforcement 

𝜌𝑓 = volumetric ratio of fibres 

𝜌𝑙 = ratio of bottom longitudinal reinforcement 

𝜌𝑣 = ratio of transverse reinforcement 

 1 

References 2 

1. Mansur MA, Alwist WAM. Reinforced fibre concrete deep beams 3 

with web openings. Int J Cem Compos Lightweight Concr. 4 

1984;6(4):263-271.  5 

2. Mansur MA, Ong KCG. Behavior of reinforced fibre concrete deep 6 

beams in shear. ACI Struct J. 1991;88(1):98-105.  7 

3. Cho SH, Kim YI. Effects of steel fibres on short beams loaded in 8 

shear. ACI Struct J. 2003;100(6):765-774. 9 

4. Schlaich J, Schäfer K, Jennewein M. Toward a consistent design of 10 

structural concrete. PCI journal. 1987;32(3):74-150. 11 

5. Mihaylov B, Liu J, Tvrznikova K. Two-parameter kinematic ap-12 



 

23 

 

proach for complete shear behavior of deep FRC beams. Struct 1 

Concr. 2019;1-14.                                                      2 

6. Mihaylov BI, Bentz EC, Collins MP. Two-parameter kinematic 3 

theory for shear behaviour of deep beams. ACI Struct J. 4 

2013;110(3):447-456. 5 

7. Mihaylov B. A kinematics-based approach for the shear strength of 6 

short fibre-reinforced concrete coupling beams. Eng Struct. 7 

2019;182:501-509. 8 

8. Mihaylov BI, Liu J, Lobet R. A kinematic approach for the com-9 

plete shear behavior of short FRC coupling beams. ACI Struct J 10 

Spec Publ. 2018;SP-328:8:1-8.20. 11 

9. Mihaylov BI. Five spring model for complete shear behaviour of 12 

deep beams. Struct Concr. 2015; 16(44):71-83.  13 

10. Lee SC, Oh JH, Cho JY. Compressive behaviour of fibre-14 

reinforced concrete with end-hooked steel fibres. Mater. 15 

2015;8(4)1442-1458. 16 

11. Voo JYL, Foster SJ. Variable engagement model for fibre-17 

reinforced concrete in tension. Uniciv Report No R-420, School of 18 

Civil and Environmental Engineering, University of New South 19 

Wales; 2003. 20 

12. Lee SC, Cho JY, Vecchio FJ. Diverse embedment model for steel 21 

fiber-reinforced concrete in tension: model development. ACI Mat 22 

J. 2011;108(5):516.  23 

13. Lee SC, Cho JY, Vecchio FJ. Diverse embedment model for steel 24 

fiber-reinforced concrete in tension: model verification. ACI Mat J. 25 

2011;108(5):526. 26 

14. Lee SC, Cho JY, Vecchio, FJ. Simplified diverse embedment mod-27 

el for steel fibre-reinforced concrete elements in tension. ACI 28 

Struct J. 2013;110(4):403-412.  29 

15. Vecchio FJ. Disturbed stress field model for reinforced concrete: 30 



 

24 

 

formulation. J Struct Eng. 2000; 126(9):1070-7.  1 

16. Vecchio FJ, Collins MP. The modified compression-field theory 2 

for reinforced concrete elements subjected to shear. ACI J. 3 

1986;83(2):219-31. 4 



 

25 

 

Table 1 Database of shear critical FRC deep beams 1 

No. Ref. Beam a/d b d h a lb1 V/P fc' ag ρl fy ρv fyv ρf lf df Fibre fyf Vexp VS2PKT Vexp/ 
VS2PKT 

V2PKT Vexp/ 
V2PKT 

VFEM Vexp/ 
VFEM   Name  (mm) (mm) (mm) (mm) (mm)  (MPa) (mm) (%) (MPa) (%) (MPa) (%) (mm) (mm) type (MPa) (kN) (kN) (kN) (kN) 

1 

3 

F30-0.0-13 1.43 120 168 200 240 30 1 34.4 13 1.32 399 0 623 0 - - H 1100 73.8 58 1.28 58 1.27 71 1.04 

2 F30-0.5-13 1.43 120 168 200 240 30 1 25.7 13 1.32 399 0 623 0.5 36 0.6 H 1100 60.9 62 0.98 65 0.94 72 0.85 

3 F60-0.0-13 1.43 120 168 200 240 30 1 54.3 13 1.32 399 0 623 0 - - H 1100 65.1 76 0.86 78 0.84 83 0.79 

4 F70-0.0-19 1.43 120 168 200 240 30 1 65.3 13 2.82 456 0 623 0 - - H 1100 117.6 104 1.13 106 1.11 123 0.96 

5 F70-0.5-19 1.43 120 168 200 240 30 1 70.5 13 2.82 456 0 623 0.5 36 0.6 H 1100 178.8 129 1.39 141 1.26 170 1.05 

6 F70-1.0-19 1.43 120 168 200 240 30 1 67.3 13 2.82 456 0 623 1 36 0.6 H 1100 169.5 147 1.16 164 1.03 167 1.02 

7 F70-1.5-19 1.43 120 168 200 240 30 1 67.3 13 2.82 456 0 623 1.5 36 0.6 H 1100 186.7 169 1.10 195 0.96 176 1.06 

8 F80-0.0-16 1.43 120 168 200 240 30 1 74.1 13 2.00 442 0 623 0 - - H 1100 146.1 99 1.48 102 1.44 115 1.28 

9 F80-0.5-16 1.43 120 168 200 240 30 1 82.4 13 2.00 442 0 623 0.5 36 0.6 H 1100 157.9 132 1.20 150 1.05 129 1.22 

10 F80-0.0-19 1.43 120 168 200 240 30 1 85.2 13 2.82 343 0 623 0 - - H 1100 108.4 112 0.97 115 0.94 132 0.82 

11 F80-0.5-19 1.43 120 168 200 240 30 1 86.1 13 2.82 343 0 623 0.5 36 0.6 H 1100 153.5 138 1.11 158 0.97 137 1.12 

12 

2 

B1 0.31 90 463 500 145 80 1 35.7 10 1.93 440 0.42 375 1 30 0.56 S - 375 326 1.15 348 1.08 323 1.16 

13 B2 0.62 90 463 500 285 80 1 35.7 10 1.93 440 0.49 375 1 30 0.56 S - 360 291 1.24 311 1.16 285 1.26 

14 B3 0.93 90 463 500 430 80 1 35.5 10 1.93 440 0.48 375 1 30 0.56 S - 291 252 1.16 267 1.09 262 1.11 

15 B4 1.23 90 463 500 570 80 1 31.1 10 1.93 440 0.47 375 1 30 0.56 S - 228 212 1.08 221 1.03 229 1.00 

16 B5 1.85 90 463 500 855 80 1 31.5 10 1.93 440 0.49 375 1 30 0.56 S - 183 184 0.99 190 0.97 185 0.99 

17 B6 1.23 90 463 500 570 80 1 34.4 10 1.93 440 0.47 375 0 - - - - 205 194 1.06 195 1.05 223 0.92 

18 B7 1.23 90 463 500 570 80 1 33.8 10 1.93 440 0.47 375 0.5 30 0.56 S - 220 208 1.06 213 1.04 229 0.96 

19 B8 1.23 90 463 500 570 80 1 33.2 10 1.93 440 0.47 375 1.5 30 0.56 S - 260 229 1.14 240 1.09 249 1.05 

20 B9 1.51 90 463 500 700 80 1 29.5 10 1.93 440 0.48 375 1 30 0.56 S - 224 198 1.13 203 1.10 226 0.99 

21 B10 1.51 90 463 500 700 80 1 30.1 10 1.93 440 1.26 375 1 30 0.56 S - 290 322 0.90 333 0.87 226 1.28 

22 1 WO-1/1 0.58 80 624 650 360 100 1 40 10 0.81 418 0.43 304 1 30 0.4 H - 345 316 1.09 351 0.98 334 1.03 

                      Avg. 1.12 
 

1.06  1.04 

                      COV 12.9% 
 

12.9%  13.4% 

Notation: a = shear span; b = section width; d = effective depth; h = full depth; lb1 = width of loading plate parallel to beam axis; V/P = shear-force-to-applied-point-load ratio; fc’ = concrete cylinder 2 
strength; ag = maximum size of coarse aggregates; ρl = ratio of flexural reinforcement; fy = yield strength of flexural reinforcement; ρv = stirrup ratio; fy = yield strength of stirrups; ρf = fibre volume ratio; 3 
lf = fibre length; df = fibre diameter; S = straight fibres; H = hooked fibres; fyf = yield strength of fibres; Vexp = measured shear strength; VS2PKT = predicted shear strength from simplified kinematic ap-4 
proach; V2PKT = predicted shear strength from 2PKT for complete shear behavior; VFEM = predicted shear strength from nonlinear FEM analysis; COV = coefficient of variation. 5 
Note: The bold numbers in the database are assumed values as the original values were not provided by the authors of the publication.6 
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Figure captions 1 

 2 

No.  Caption 

Figure 1 

Models for deep reinforced concrete beams; (a) Strut-and-tie model [4], (b) Two-parameter kine-

matic theory [6] and (c) Predicted response of an FRC deep beam without stirrups (Vs=0) based 

on the 2PKT [5] 

Figure 2  2PKT for deep beams [6] 

Figure 3  

 

Fig. 3. Mechanisms of shear resistance in deep beams [5], [8]; fc
′ = concrete compressive strength; 

k = crack shape factor; b = section width; ag = maximum diameter of coarse aggregates; σv,avg = 

average stress in the stirrups along the critical crack; ρv = stirrup ratio; α1 = angle of the critical 

diagonal crack; Es = modulus of elasticity of stirrups; εyv = yield strain of stirrups; fyv = yield 

strength of stirrups; nb = number of bottom longitudinal bars; db = diameter of longitudinal bars; 

lk = length of bar-dowels; fy = yield strength of longitudinal bars; εy = yield strain of longitudinal 

bars    

Figure 4 Tension behavior of FRC (adapted from Voo and Foster [11]) 

Figure 5 Flow chart of the S2PKT solution procedure 

Figure 6 Solution of S2PKT equations (test B7 by Mansur and Ong [2]) 

Figure 7 

Variation of experimental-to-predicted strength ratios for 22 tests with; (a) span-to-depth ratio and 

(b) fibre volumetric ratio (Avg. = 1.12 and COV = 12.9% for 22 tests) 

Figure 8 

Variation of 2PKT complete behavior-to-simplified method strength prediction ratios for 22 tests 

with; (a) span-to-depth ratio and (b) fibre volumetric ratio (Avg. = 1.07 and COV = 5.70%) 

Figure 9 Effect of a/d ratio (tests by Mansur and Ong [2]) 

Figure 10 Effect of fibre volumetric ratio (tests by Mansur and Ong [2]) 
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