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Abstract: In this paper, we prove some inequalities in terms of the normalized δ-Casorati curvatures
(extrinsic invariants) and the scalar curvature (intrinsic invariant) of statistical submanifolds in
holomorphic statistical manifolds with constant holomorphic sectional curvature. Moreover, we study
the equality cases of such inequalities. An example on these submanifolds is presented.
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1. Introduction

The problem of discovering simple relationships between the main intrinsic invariants and the
main extrinsic invariants of submanifolds is a basic problem in submanifold theory [1]. In this respect,
beautiful results focus on certain types of geometric inequalities. Moreover, another basic problem
in this field is to study the ideal submanifolds in a space form, namely to investigate the submanifolds
which satisfy the equality case of such inequalities [2].

The method of looking for Chen invariants answers the problems posed above. First, Chen demonstrated
in [3] an optimal inequality for a submanifold on a real space form between the intrinsically defined
δ-curvature and the extrinsically defined squared mean curvature. This approach initiated a new line
of research and was extended to various types of submanifolds in several types of ambient spaces,
e.g., submanifolds in complex space forms of constant holomorphic sectional curvature (see [4–7]).
The submanifolds attaining the equality of these inequalities (called Chen ideal submanifolds) were
also investigated. Recently, Chen et al. classified δ(2, n− 2)-ideal Lagrangian submanifolds in complex
space forms in [8].

Moreover, new solutions to the above problems are given by the inequalities involving δ-Casorati
curvatures, initiated in [9,10]. In the search for a true measure of curvature, Casorati in 1890 proposed
the curvature which nowadays bears his name because it better corresponds with our common
intuition of curvature than Gauss and mean curvature [11]. However, this notion of curvature was
soon forgotten and was rediscovered by Koenderink working in the field of computer vision [12].
Verstraelen developed some geometrical models for early vision, presenting perception via the Casorati
curvature of sensation [13]. A geometrical interpretation of this type of curvature for submanifolds in
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Riemannian spaces was given in [14]. In [15], the isotropical Casorati curvature of production surfaces
was studied. The Casorati curvature was used to obtain optimal inequalities between intrinsic and
extrinsic curvatures of submanifolds in real space forms in [9,10]. Later, this knowledge was extended
(e.g., see [16–21]). Submanifolds which satisfy these equalities are named Casorati ideal submanifolds.
Recently, Vîlcu established an optimal inequality for Lagrangian submanifolds in complex space forms
involving Casorati curvature [22]. Aquib et al. obtained a classification of Casorati ideal Lagrangian
submanifolds in complex space forms [23]. Very recently, Suceavă and Vajiac studied inequalities
involving some Chen invariants, mean curvature, and Casorati curvature for strictly convex Euclidean
hypersurfaces [24]. Brubaker and Suceavă investigated a geometric interpretation of Cauchy–Schwarz
inequality in terms of Casorati curvature [25].

The concept of statistical manifold was defined by Amari in 1985, in the basic study on information
geometry [26]. Currently, interest in the field of statistical manifolds is increasing, being focused on
applications in differential geometry, information geometry, statistics, machine learning, etc. (see,
e.g., [27–29]). Cuingnet et al. introduced a continuous framework to spatially regularize support vector
machines (SVM) for brain image analysis, considering the images as elements of a statistical manifold,
in order to classify patients with Alzheimer’s disease [30]. The study of curvature invariants of
submanifolds in statistical manifolds gives other solutions to the above research problems. Aydin et al.
established some inequalities (Chen–Ricci and Wintgen) for submanifolds in statistical manifolds
of constant curvature in [31,32]. Lee et al. obtained inequalities on Sasakian statistical manifolds
in terms of Casorati curvatures [33]. Aquib and Shahid [34] proved some inequalities involving
Casorati curvatures on statistical submanifolds in quaternion Kähler-like statistical space forms.
The quaternionic theory of statistical manifolds is investigated in [35]. Very recently, new results
have been published. Aytimur et al. established some Chen inequalities for submanifolds in
Kähler-like statistical manifolds [36]. Aquib et al. achieved generalized Wintgen-type inequalities
for submanifolds in generalized space forms [37]. Chen et al. established a Chen first inequality
for statistical submanifolds in Hessian manifolds of constant Hessian curvature [38]. Moreover,
Siddiqui et al. studied a Chen inequality for statistical warped products statistically immersed in a
statistical manifold of constant curvature [39].

Recently, Furuhata et al. [40] defined the notion of a holomorphic statistical manifold, which can
be considered as a generalization of a special Kähler manifold. The authors establish the basics for
statistical submanifolds in holomorphic statistical manifolds.

In order to find out new solutions for the problems under debate, we obtain inequalities
for statistical submanifolds in holomorphic statistical manifolds. The invariants involved in such
inequalities are the extrinsic normalized δ-Casorati curvatures and the intrinsic scalar curvature.
The method is focused on a constrained extremum problem. Moreover, the equality cases are
investigated. This study revealed that the equality at all points characterizes submanifolds that
are totally geodesic with respect to the Levi–Civita connection.

2. Preliminaries

Let (M̃, g̃) be a 2n-dimensional manifold, ∇̃ an affine connection on M̃, and g̃ a Riemannian
metric on M̃. Consider T̃ ∈ Γ(TM̃(1,2)) the torsion tensor field of ∇̃.

A pair (∇̃, g̃) is called a statistical structure on M̃ if the torsion tensor field T̃ vanishes and
∇̃g̃ ∈ Γ(TM̃(0,3)) is symmetric.

A Riemannian manifold (M̃, g̃) is called a statistical manifold if it is endowed with a pair of
torsion-free affine connections ∇̃ and ∇̃∗ satisfying

Z g̃(X, Y) = g̃(∇̃ZX, Y) + g̃(X, ∇̃∗ZY),

for any X, Y, Z ∈ Γ(TM̃). Denote (M̃, g̃, ∇̃) as the statistical manifold. The connections ∇̃ and ∇̃∗ are
named dual connections or conjugate connections.
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Remark 1. If (M̃, g̃, ∇̃) is a statistical manifold, then we remark that

1. (∇̃∗)∗ = ∇̃;
2. (M̃, g̃, ∇̃∗) is also a statistical manifold;
3. ∇̃ always has a dual connection ∇̃∗ satisfying

∇̃+ ∇̃∗ = 2∇̃0, (1)

where ∇̃0 is the Levi–Civita connection on M̃.

Let M be an m-dimensional submanifold of a 2n-dimensional statistical manifold (M̃, g̃) and g
the induced metric on M. The Gauss formulas are given by

∇̃XY = ∇XY + h(X, Y),

∇̃∗XY = ∇∗XY + h∗(X, Y),

for any X, Y ∈ Γ(TM), where h and h∗ are symmetric and bilinear (0, 2)-tensors, called the imbedding
curvature tensor of M in M̃ for ∇̃ and ∇̃∗, respectively.

Denote the curvature tensor fields of ∇ and ∇̃ by R and R̃, respectively. Then, the Gauss equation
concerning the connection ∇̃ is ([41])

g̃(R̃(X, Y)Z, W) = g(R(X, Y)Z, W) + g̃(h(X, Z), h∗(Y, W))− g̃(h∗(X, W), h(Y, Z)), (2)

for any X, Y, Z, W ∈ Γ(TM).
In addition, denote the curvature tensor fields of the connections ∇∗ and ∇̃∗ by R∗ and R̃∗,

respectively. Then the Gauss equation concerning the connection ∇̃∗ is ([41])

g̃(R̃∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + g̃(h∗(X, Z), h(Y, W))− g̃(h(X, W), h∗(Y, Z)), (3)

for any X, Y, Z, W ∈ Γ(TM).
If M is a submanifold of a statistical manifold (M̃, g̃, ∇̃), then (M, g,∇) is also a statistical

manifold with the induced metric g and the induced connection ∇.
Let S be the statistical curvature tensor field of a statistical manifold (M, g,∇), where S ∈ Γ(TM(1,3))

is defined by [40]

S(X, Y)Z =
1
2
{R(X, Y)Z + R∗(X, Y)Z}, (4)

for X, Y, Z ∈ Γ(TM).
If π = spanR{u1, u2} is a 2-dimensional subspace of Tp M, for p ∈ M, then the sectional curvature

of M is defined by [40]:

σ(π) =
g(S(u1, u2)u2, u1)

g(u1, u1)g(u2, u2)− g2(u1, u2)
. (5)

Let {e1, ..., em} be an orthonormal basis of the tangent space Tp M, for p ∈ M, and let {em+1, ..., e2n}
be an orthonormal basis of the normal space T⊥p M. The scalar curvature τ at p is given by

τ(p) = ∑
1≤i<j≤m

σ(ei ∧ ej) = ∑
1≤i<j≤m

g(S(ei, ej)ej, ei), (6)

and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

m(m− 1)
. (7)

The mean curvature vector fields of M, denoted by H and H∗, are given by
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H =
1
m

m

∑
i=1

h(ei, ei), H∗ =
1
m

m

∑
i=1

h∗(ei, ei).

From Equation (1), we get 2h0 = h + h∗ and 2H0 = H + H∗, where h0 and H0 are the second
fundamental form and the mean curvature field of M, respectively, with respect to the Levi–Civita
connection ∇0 on M.

The squared mean curvatures of the submanifold M in M̃ have the expressions

‖H‖2 =
1

m2

2n

∑
α=m+1

(
m

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1

m2

2n

∑
α=m+1

(
m

∑
i=1

h∗αii

)2

,

where hα
ij = g̃(h(ei, ej), eα) and h∗αij = g̃(h∗(ei, ej), eα), for i, j ∈ {1, ..., m}, α ∈ {m + 1, ..., 2n}.

Denote by C and C∗ the Casorati curvatures of the submanifold M, defined by the squared norms
of h and h∗, respectively, over the dimension m, as follows:

C = 1
m
‖h‖2 =

1
m

2n

∑
α=m+1

m

∑
i,j=1

(
hα

ij

)2
,

C∗ = 1
m
‖h∗‖2 =

1
m

2n

∑
α=m+1

m

∑
i,j=1

(
h∗αij

)2
.

Let L be an s-dimensional subspace of Tp M, s ≥ 2 and let {e1, . . . , es} be an orthonormal basis of
L. Hence, the Casorati curvatures C(L) and C∗(L) of L are given by

C(L) =
1
s

2n

∑
α=m+1

s

∑
i,j=1

(
hα

ij

)2
, C∗(L) =

1
s

2n

∑
α=m+1

s

∑
i,j=1

(
h∗αij

)2
.

The normalized δ-Casorati curvatures δC(m− 1) and δ̂C(m− 1) of the submanifold Mn are given by

δC(m− 1)|p =
1
2
C |p +

m + 1
2m

inf{C(L)|L a hyperplane of Tp M}

and
δ̂C(m− 1)|p = 2C |p −

2m− 1
2m

sup{C(L)|L a hyperplane of Tp M}.

Moreover, the dual normalized δ∗-Casorati curvatures δ∗C(m− 1) and δ̂∗C(m− 1) of the submanifold
M in M̃ are defined as

δ∗C(m− 1)|p =
1
2
C∗ |p +

m + 1
2m

inf{C∗(L)|L a hyperplane of Tp M}

and
δ̂∗C(m− 1)|p = 2C∗ |p −

2m− 1
2m

sup{C∗(L)|L a hyperplane of Tp M}.

Denote by δC(r; m − 1) and δ̂C(r; m − 1), the generalized normalized δ-Casorati curvatures of M,
defined in [10] as

δC(r; m− 1)|p = r C |p +a(r) inf{C(L) | L a hyperplane of Tp M},

if 0 < r < m(m− 1), and

δ̂C(r; m− 1)|p = r C |p +a(r) sup{C(L) | L a hyperplane of Tp M},
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if r > m(m− 1), for a(r) set as

a(r) =
(m− 1)(r + m)(m2 −m− r)

mr
,

where r ∈ R+ and r 6= m(m− 1).
Furthermore, denote by δ∗C(r; m− 1) and δ̂∗C(r; m− 1) the dual generalized normalized δ∗-Casorati

curvatures of the submanifold M, defined as follows:

δ∗C(r; m− 1)|p = r C∗ |p +a(r) inf{C∗(L) | L a hyperplane of Tp M},

if 0 < r < m(m− 1), and

δ̂∗C(r; m− 1)|p = r C∗ |p +a(r) sup{C∗(L) | L a hyperplane of Tp M},

if r > m(m− 1), for a(r) set above.
A statistical submanifold (M, g,∇) of (M̃, g̃, ∇̃) is called totally geodesic with respect to the

connection ∇̃ if the second fundamental form h of M for ∇̃ vanishes identically [40].

Let M̃ be an almost complex manifold with almost complex structure J ∈ Γ(TM̃(1,1)).
A quadruplet (M̃, ∇̃, g̃, J) is called a holomorphic statistical manifold if

1. (∇̃, g̃) is a statistical structure on M̃; and
2. ω is a ∇̃-parallel 2-form on M̃,

where ω is defined by ω(X, Y) = g̃(X, JY), for any X, Y ∈ Γ(TM̃).
For a holomorphic statistical manifold, the following formula holds:

g̃(S̃(Z, W)JY, JX) = g̃(S̃(JZ, JW)Y, X) = g̃(S̃(Z, W)Y, X), (8)

for any X, Y, Z, W ∈ Γ(TM̃).
A holomorphic statistical manifold (M̃, ∇̃, g̃, J) is said to be of constant holomorphic sectional

curvature c ∈ R if the following formula holds [42]:

S̃(X, Y)Z =
c
4
{g̃(Y, Z)X− g̃(X, Z)Y + g̃(JY, Z)JX− g̃(JX, Z)JY + 2g̃(X, JY)JZ}, (9)

for any X, Y, Z ∈ Γ(TM̃), where S̃ is the statistical curvature tensor field of M̃.

Remark 2 ([43]). Let (M̃, g̃, J) be a Kähler manifold. If we define a connection ∇̃ as ∇̃ = ∇g̃ + K, where K ∈
Γ(TM̃(1,2)) satisfying the conditions

K(X, Y) = K(Y, X), (10)

g̃(K(X, Y), Z) = g̃(Y, K(X, Z)), (11)

K(X, JY) = −JK(X, Y), (12)

for any X, Y, Z ∈ Γ(TM̃), then (M̃, ∇̃, g̃, J) is a holomorphic statistical manifold.

Let M be an m-dimensional statistical submanifold of a holomorphic statistical manifold
(M̃, ∇̃, g̃, J). For any vector field X tangent to M we can decompose

JX = PX + FX, (13)
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where PX and FX are the tangent component and the normal component, respectively, of JX. Given a
local orthonormal frame {e1, e2, · · · , em} of M, then the squared norm of P is expressed by

‖P‖2 =
m

∑
i,j=1

g2(Pei, ej).

Next, we consider the constrained extremum problem

min
x∈M

f (x), (14)

where M is a Riemannian submanifold of a Riemannian manifold (M̃, g̃), and f : M̃→ R is a function
of differentiability class C2.

Theorem 1 ([44]). If M is complete and connected, (grad f )(p) ∈ T⊥p M for a point p ∈ M, and the bilinear
form A : Tp M× Tp M→ R defined by

A(X, Y) = Hess( f )(X, Y) + g̃(h0(X, Y), grad f ), (15)

is positive definite in p, then p is the optimal solution of the Problem (14).

Remark 3 ([44]). If the bilinear form A defined by Equation (15) is positive semi-definite on the submanifold
M, then the critical points of f |M are global optimal solutions of the Problem (14).

3. Main Inequalities

Theorem 2. Let M be an m-dimensional statistical submanifold of a 2n-dimensional holomorphic statistical
manifold (M̃, ∇̃, g̃, J) of constant holomorphic sectional curvature c. Then we have

(i)

2τ ≤ δ0
C(r; m− 1) + mC0 − 2m2‖H0‖2 (16)

+ m2 g̃(H, H∗) +
3c
4
‖P‖2 +

c
4

m(m− 1),

for any real number r such that 0 < r < m(m − 1), where δ0
C(r; m − 1) =

δC (r;m−1)+δ∗C (r;m−1)
2 and

C0 = C+C∗
2 ; and

(ii)

2τ ≤ δ̂0
C(r; m− 1) + mC0 − 2m2‖H0‖2 (17)

+ m2 g̃(H, H∗) +
3c
4
‖P‖2 +

c
4

m(m− 1),

for any real number r such that r > m(m− 1), where δ̂0
C(r; m− 1) = δ̂C (r;m−1)+δ̂∗C (r;m−1)

2 .

Moreover, the equality cases of Inequalities (16) and (17) hold identically at all points p ∈ M if and only if
the following condition is satisfied:

h + h∗ = 0, (18)

where h and h∗ are the imbedding curvature tensors of the submanifold associated to the dual connections ∇̃ and
∇̃∗, respectively.

Proof. The relations (Equations (2)–(4)) imply

2g̃(S̃(X, Y)Z, W) = 2g(S(X, Y)Z, W)− g̃(h(Y, Z), h∗(X, W)) + g̃(h(X, Z), h∗(Y, W))

−g̃(h∗(Y, Z), h(X, W)) + g̃(h∗(X, Z), h(Y, W)), (19)
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where X, Y, Z, W ∈ Γ(TM).
For p ∈ M, we choose {e1, ..., em} and {em+1, ..., e2n} orthonormal bases of Tp M and T⊥p M,

respectively. For X = Z = ei and Y = W = ej with i, j ∈ {1, ..., m}, from the Equation (19),
it follows that

2τ(p) = m2 g̃(H, H∗)− ∑
1≤i,j≤m

g̃(h∗(ei, ej), h(ei, ej)) (20)

+
c
4
(m2 −m + 3‖P‖2).

Denoting 2H0 = H + H∗ and 2C0 = C + C∗, Equation (20) becomes

2τ(p) = 2m2‖H0‖2 − m2

2
‖H‖2 − m2

2
‖H∗‖2

−2mC0 +
m
2
(C + C∗) + c

4
(m2 −m + 3‖P‖2). (21)

Let P be the quadratic polynomial defined by

P = rC0 + a(r) C0(L) +
m
2
(C + C∗)− m2

2
(‖H‖2 + ‖H∗‖2)

−2τ(p) +
c
4
(m2 −m + 3‖P‖2), (22)

where L is a hyperplane of Tp M.
We consider that the hyperplane L is spanned by the tangent vectors e1, ..., em−1, without loss of

generality. Therefore, we get

P =
2n

∑
α=m+1

2m + r
m

m

∑
i,j=1

(h0α
ij )

2 + a(r)
1

m− 1

m−1

∑
i,j=1

(h0α
ij )

2 − 2

(
m

∑
i=1

h0α
ii

)2
 . (23)

Then, Equation (23) yields

P =
2n

∑
α=m+1

{ [2(2m + r)
m

+
2a(r)
m− 1

]
∑

1≤i<j≤m−1
(h0α

ij )
2 +

[
2(2m + r)

m
+

2a(r)
m− 1

] m−1

∑
i=1

(h0α
i m)

2

+

(
2m + r

m
+

a(r)
m− 1

− 2
) m−1

∑
i=1

(h0α
ii )

2

−4 ∑
1≤i<j≤m

h0α
ii h0α

jj +

(
2m + r

m
− 2
)
(h0α

mm)
2
}

≥
2n

∑
α=m+1

[
r(m− 1) + a(r)m

m(m− 1)

m−1

∑
i=1

(h0α
ii )

2 +
( r

m

)
(h0α

mm)
2 − 4 ∑

1≤i<j≤m
h0α

ii h0α
jj

]
.

Let fα be a quadratic form defined by fα : Rm → R for any α ∈ {m + 1, ..., 2n},

fα(h0α
11 , h0α

22 , ..., h0α
mm) =

m−1

∑
i=1

r(m− 1) + a(r)m
m(m− 1)

(h0α
ii )

2

+
r
m
(h0α

mm)
2 − 4 ∑

1≤i<j≤m
h0α

ii h0α
jj .

We investigate the constrained extremum problem

min fα
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with the constraint
Q : h0α

11 + h0α
22 + ... + h0α

mm = kα,

where kα is a real constant.
We obtain the system of first-order partial derivatives:

∂ fα

∂h0α
ii

= 2
r(m− 1) + a(r)m

m(m− 1)
h0α

ii − 4

(
m

∑
k=1

h0α
kk − h0α

ii

)
= 0

∂ fα

∂h0α
mm

=
2r
m

h0α
mm − 4

m−1

∑
k=1

h0α
kk = 0,

for every i ∈ {1, ..., m− 1}, α ∈ {m + 1, ..., 2n}.
It follows that the constrained critical point is

h0α
ii =

2m(m− 1)
(m− 1)(2m + r) + ma(r)

kα

h0α
mm =

2m
2m + r

kα,

for any i ∈ {1, ..., m− 1}, α ∈ {m + 1, ..., 2n}.
For p ∈ Q, let A be a 2-form, A : TpQ× TpQ→ R defined by

A(X, Y) = Hess( fα)(X, Y) + 〈h′(X, Y), (grad fα)(p)〉,

where h′ is the second fundamental form of Q in Rm+1 and 〈·,·〉 is the standard inner product on Rm.
The Hessian matrix of fα is given by

Hess( fα) =


λ −4 . . . −4 −4
−4 λ . . . −4 −4

...
...

. . .
...

...
−4 −4 . . . λ −4
−4 −4 . . . −4 2r

m

 ,

where λ = 2 (m−1)(r+2m)+ma(r)
m(m−1) is a real constant.

The condition ∑m
i=1 Xi = 0 is satisfied, for a vector field X ∈ TpQ, as the hyperplane Q is totally

geodesic in Rm. Then, we achieve

A(X, X) = λ
m−1

∑
i=1

X2
i +

2r
m

X2
m − 8

m

∑
i,j=1(i 6=j)

XiXj

= λ
m−1

∑
i=1

X2
i +

2r
m

X2
m + 4

(
m

∑
i=1

Xi

)2

− 8
m

∑
i,j=1(i 6=j)

XiXj

= λ
m−1

∑
i=1

X2
i +

2r
m

X2
m + 4

m

∑
i=1

X2
i

≥ 0.

Applying Remark 3, the critical point (h0α
11 , ..., h0α

mm) of fα is the global minimum point of the
problem. Since fα(h0α

11 , ..., h0α
mm) = 0, we get P ≥ 0.

We have then proved Inequalities (16) and (17), considering infimum and supremum, respectively,
over all tangent hyperplanes L of Tp M.
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In addition, we study the equality cases of Inequalities (16) and (17). First, we find out the critical
points of P

hc = (h0 m+1
11 , h0 m+1

12 , . . . , h0 m+1
m m , . . . , h0 2n

11 , . . . , h0 2n
m m)

as the solutions of following system of linear homogeneous equations:

∂P
∂h0α

ii
= 2

[
2m + r

m
+

a(r)
m− 1

− 2
]

h0α
ii − 4

m

∑
k 6=i,k=1

h0α
kk = 0,

∂P
∂h0α

mm
= 2

r
m

h0α
mm − 4

m−1

∑
k=1

h0α
kk = 0,

∂P
∂h0α

ij
= 4

[
2m + r

m
+

a(r)
m− 1

]
h0α

ij = 0, i 6= j,

∂P
∂h0α

im
= 4

[
2m + r

m
+

a(r)
m− 1

]
h0α

im = 0.

The critical points satisfy h0α
ij = 0, with i, j ∈ {1, ..., m} and α ∈ {m + 1, ..., 2n}. On the other hand,

we know that P ≥ 0 and P(hc) = 0, then the critical point hc is a minimum point of P . Consequently,
the cases of equality hold in both Inequalities (16) and (17) if and only if hα

ij = −h∗αij , for i, j ∈ {1, ..., m},
α ∈ {m + 1, ..., 2n}.

Remark 4. Under Equation (18), the submanifold M is totally geodesic with respect to the Levi–Civita
connection ∇̃0. Then, the equality cases of Inequalities (16) and (17) hold for all unit tangent vectors at p if and
only if p is a totally geodesic point with respect to the Levi–Civita connection.

By virtue of Theorem 2, the generalized normalized δ-Casorati curvatures satisfy Inequalities (16)
and (17). If the normalized δ-Casorati curvatures δC(m− 1) and δ∗C(m− 1), respectively, δ̂C(m− 1) and
δ̂∗C(m− 1) are involved, then we can state the following result.

Corollary 1. Let M be an m-dimensional statistical submanifold of a 2n-dimensional holomorphic statistical
manifold (M̃, ∇̃, g̃, J) of constant holomorphic sectional curvature c. Then, we have

(i)

ρ ≤ δ0
C(m− 1) +

1
m− 1

C0 − 2m
m− 1

‖H0‖2 (24)

+
m

m− 1
g̃(H, H∗) +

3c
4m(m− 1)

‖P‖2 +
c
4

,

where 2δ0
C(m− 1) = δC(m− 1) + δ∗C(m− 1) and 2C0 = C + C∗, and

(ii)

ρ ≤ δ̂0
C(m− 1) +

1
m− 1

C0 − 2m
m− 1

‖H0‖2 (25)

+
m

m− 1
g̃(H, H∗) +

3c
4m(m− 1)

‖P‖2 +
c
4

,

where 2δ̂0
C(m− 1) = δ̂C(m− 1) + δ̂∗C(m− 1).

Moreover, the equality cases of Inequalities (24) and (25) hold identically at all points if and only if h and
h∗ satisfy the condition in Equation (18), which implies that M is a totally geodesic submanifold with respect to
the Levi–Civita connection.
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4. An Example

Example 1. Let (x1, x2, y1, y2) be a standard system on R4, g the Euclidean metric. Define t = (y2
1 + y2

2)/2
(t ≥ 0) and the functions u, v on R4 as

u(x1, x2, y1, y2) = a(t), v(x1, x2, y1, y2) = b(t),

where a is a function a : [0, ∞) → (0, ∞), and b(t) = −a(t)a′(t)(2ta′(t)− a(t))−1, assuming that a(t) +
2tb(t) > 0 for t ≥ 0.

Let G be a g-natural metric on R4 and J a complex structure defined by Oproiu ([45]) such that R4 is
Kählerian, as follows:

G = (u + vy2
1)dx1dx1 + 2vy1y2dx1dx2 + (u + vy2

2)dx2dx2 +
u + vy2

2
u(u + 2tv)

dy1dy1 (26)

− 2
vy1y2

u(u + 2tv)
dy1dy2 +

u + vy2
1

u(u + 2tv)
dy2dy2,



J
∂

∂x1
= (u + vy2

1)
∂

∂y1
+ vy1y2

∂

∂y2
,

J
∂

∂x2
= vy1y2

∂

∂y1
+ (u + vy2

2)
∂

∂y2
,

J
∂

∂y1
= −

u + vy2
2

u(u + 2tv)
∂

∂x1
+

vy1y2

u(u + 2tv)
∂

∂x2
,

J
∂

∂y2
=

vy1y2

u(u + 2tv)
∂

∂x1
−

u + vy2
1

u(u + 2tv)
∂

∂x2
.

(27)

Let the function u be defined as u(x1, x2, y1, y2) = 1+
√

1+4t
2 . Therefore, the function v becomes

v(x1, x2, y1, y2) = 1. Then, for the metric G and the complex structure J, there exists a tensor field K
such that (R4, ∇̃ := ∇G + K, g̃ := G, J) is a special Kähler manifold [46]. Notice that a holomorphic statistical
structure of holomorphic curvature 0 is nothing but a special Kähler manifold [43].

In this respect, define a (1, 2)-tensor field K on R4:

K =
4

∑
i,j,l=1

kl
ij

∂

∂xl ⊗ dxi ⊗ dxj. (28)

Let α1, ..., α7 be functions on R4 and denote p := u + vy2
1, q := u + vy2

2, r := u + 2tv, s := vy1y2. Suppose
that α2 has the expression

α2 =
1
2

s(uy1 + 2y1) +
1
2

quy2 . (29)

Moreover, α1 and α3 satisfy the equation(
α2

q
sur
− α3

1
ur
− α1

q
s

)
pur
q

+ α1
sur
q

+ α2
s
q
=

1
2

p(uy1 + 2y1) +
1
2

suy2 , (30)

where uy1 := ∂u
∂y1

and uy2 := ∂u
∂y2

.
If K performs the conditions in Equations (10)–(12) and also the conditions in Equations (29), (30), then

we get (R4, ∇̃ := ∇G + K, g̃ := G, J) a special Kähler manifold [46] with K constructed as follows:

k1
14 = k1

41 = k2
13 = k2

31 = −k3
34 = −k3

43 = α1, k4
11 = k3

12 = k3
21 = α2, k4

12 = k4
21 = k3

22 = α3,

k1
24 = k1

42 = k2
23 = k2

32 = −k4
34 = −k4

43 = α4, k2
22 = −k4

24 = −k4
42 = α5,
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k1
11 = k1

12 = k1
21 = −k3

23 = −k3
32 = 0, k2

12 = k2
21 = −k3

24 = −k3
42 = α7

q
s

,

k1
33 = α6, k2

11 = k3
14 = k3

41 = 0, k2
14 = k2

41 = −α2
s

urq
+ α3

p
urq
− α1

s
q

,

k1
23 = k1

32 = α2
q

urp
− α4

s
p
− α3

s
urp

, k3
11 = α1

2s4 − u2r2

sq
+ α2

ur + 2s2

sq
− α3

p
q

,

k4
22 = −α2

q
p
− α4

u2r2

sp
+ α3

ur + 2s2

sp
, k1

13 = k1
31 = α2

q
sur
− α3

1
ur
− α1

q
s

,

k1
33 = −α2

q
urp

+ α3
s

urp
+ α4

s
p

, k1
44 = −k2

24 = −k2
42 = α2

1
ur
− α3

p
sur

+ α4
p
s

,

k3
44 = α2

s
qur
− α3

p
qur

+ α1
s
q

, k3
33 = −α2

q
sur

+ α3
1
ur

+ α1
q
s

,

k1
22 = −k4

23 = −k4
32 = −α5

s
p

,

k1
34 = k1

43 = −α6
s
q
− α5

s2

urpq
,

k1
44 = α6

s2

q2 + α5
s(2s2 + ur)

urpq2 ,

k3
13 = k3

31 = k4
14 = k4

41 = 0,

k4
13 = k4

31 = 0, k2
33 = −α6

p
s

,

k2
34 = k2

43 = α6
p
q
+ α5

s
urq

,

k2
44 = −α5

pq + s2

urq2 − α6
sp
q2 .

Then, M̃ = (R4, ∇̃ := ∇G + K, G, J) is a holomorphic statistical manifold of holomorphic curvature 0.
Next, let M be any m-dimensional submanifold (m < 4) of M̃. Then, Inequalities (16) and (17) are

satisfied. Moreover, the statistical submanifold M of M̃ attains equality in both these inequalities, provided that
M is totally geodesic.

5. Conclusions

In this research study, we provided new solutions to the fundamental problem of finding simple
relationships between various invariants (intrinsic and extrinsic) of the submanifolds. In this respect,
we obtained inequalities involving the normalized δ-Casorati curvatures (extrinsic invariants) and the
scalar curvature (intrinsic invariant) of statistical submanifolds in holomorphic statistical manifolds
with constant holomorphic sectional curvature. In addition, we characterized the equality cases.
These results may stimulate new research aimed at obtaining similar relationships in terms of various
invariants, for statistical submanifolds in other ambient spaces.
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