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This study extends the finite mixture model proposed by Landry and Liu (2009) to control
for on-site sampling in the context of a system of recreation demand equations. We apply
the model to a quasi-panel of recreational trip data under current and hypothetical
wildfire conditions. We use the estimated model to provide the first estimate of recrea-
tional value for heathland in a European protected area and for how wildfires affect this
value. Although we find statistical support for our proposed on-site sampling correction,
we find that the correction generates no significant impact on welfare measures in our
application.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Wildfire impacts on recreation demand

Uncontrolled wildfires pose an increasingly serious threat to a range of ecosystems (Depicker et al., 2020). The increasing
severity and frequency of droughts, predicted throughout Europe, are expected to increase the frequency and spread of
wildfires (Flannigan et al., 2016). Ecosystems that are susceptible to wildfires include those in temperate climate zones in
Northwest Europe, of which European dry heathland (hereafter, heathland) is particularly susceptible (Schepers et al., 2014).
Heathland is an important ecosystem that provides a variety of ecosystem goods and services (Fagúndez, 2013) and is
classified as a very rare and valuable habitat type under the Habitats Directive (European Commission,1992). Heathland areas
provides valuable recreational opportunities because they are considered aesthetically attractive. Although periodic
controlled burning of small patches of heathland is historically used to promote heathland conservation (Fagúndez, 2013),
large and uncontrolled wildfires may affect their overall attractiveness.

The available evidence on the impact of wildfires on recreation demand is ambiguous. Wildfires have been found to in-
crease recreation for two reasons: (1) Some visitors are curious to see the effects of a recent wildfire from up close (S�anchez
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et al., 2016); and (2) other visitors want to see how the vegetation recovers in the years following awildfire (Hilger and Englin,
2009). Other studies found that wildfires can result in lower visitation rates because they make natural areas less attractive
for recreational activities (e.g. Hesseln et al., 2003). Several studies have also found that the wildfire intensity and the time
since awildfire have non-linear impacts on recreation demand (Englin et al., 2001; Vaux et al., 1984). In addition to the mixed
evidence of wildfire impacts on recreation, the existing studies are strictly limited to recreation in forest ecosystems in the
United States. The recreational values and value changes provided by these studies may not be accurate for applications in
other geographical regions where ecosystems and recreational use are quite different (Sch€agner et al., 2016).

It is challenging to measure the impact of actual wildfires on recreation for two reasons. First, uncontrolled wildfires are
extreme events that occur infrequently. Second, notwithstanding that wildfire risk can be estimated with historical data
(Depicker et al., 2020), the exact timing and location of any givenwildfire is not known upfront. Hence, it is difficult to observe
actual changes of recreation demand after actual wildfires. One way to overcome this challenge is to collect revealed pref-
erence (RP) and stated preference (SP) data, where the latter provide anticipated visitation rates after hypothetical wildfires.
In this case, recreation demand changes can be estimated by combining RP data about current recreation demandwith stated
preference SP data about recreation demand after a hypothetical wildfire. This approach can be implemented cost-effectively
through on-site sampling of recreational users (Bateman et al., 2002). However, on-site sampling may result in biased and
inconsistent parameter estimates if zero-truncation and endogenous stratification are not properly accounted for in esti-
mation (Shaw, 1988).

1.2. Contribution of this study

This studymakes twomain contributions. First, this study combines a particular finitemixturemodel� the Discrete Factor
MethodeGeneralized Negative Binomial (DFM�GNB) model � with on-site survey data in order to estimate a system of
recreation demand equations while controlling for on-site sampling. Landry and Liu (2009) were the first to apply the
DFM�GNB model to recreation demand data but did not correct for on-site sampling in estimation. Several studies have
developed on-site sampling corrections for various model specifications (e.g. Egan and Herriges, 2006; Hynes and Greene,
2013; Moeltner; Shonkwiler, 2005). However, only Egan and Herriges (2006) incorporated on-site sampling adjustments
in a (quasi-)panel data context. The main advantage of DFM-GNB compared to parametric models, such as the one used by
Egan and Herriges (2006), is its computational tractability, which enables the inclusion of a larger set of hypothetical sce-
narios. Second, although some studies have estimated wildfire impacts on recreation for study areas outside the United States
using SP data (e.g. Molina et al., 2019), none of these studies used a joint RP-SP approach. Hence, we are the first to estimate a
joint RP-SP model for wildfire impacts in a study area outside the United States. We are also the first to provide estimates of
the recreational value for heathland in a European protected area, and estimates of howwildfires of varyingmagnitudes affect
this value, both immediately after a wildfire and in subsequent years.

The remainder of this paper is organized as follows. Section 2 introduces the theoretical framework used to quantify
recreational value changes. Section 3 discusses the econometric challenges that arise from estimating recreational value
changes with on-site survey data. This section also introduces a specification of the DFM-GNB model that controls for on-site
sampling bias. Section 4 describes the collection of the on-site survey data and provides summary statistics. Section 5 pre-
sents the main regression results and discusses how controlling for on-site sampling bias affects the parameter and welfare
results. Section 6 concludes.

2. Theoretical model

Welfare impacts caused by quality changes of public goods, such as recreational sites, cannot be inferred from markets,
because markets for public goods generally do not exist. However, it is possible to derive welfare changes due to quality
changes of public goods based on the demand for related private goods, as long as two necessary conditions are met
(Bockstael et al., 1989): First, the consumption of a private good is an essential input for individuals to receive value from the
quality of the public good. Second, changes of the quality of the public good have no effect on individuals if they do not
consume the private good. Within the context of demand for public recreational sites, Bockstael et al. (1989) showed that the
demand for quality changes of recreational sites can be inferred from visitation rates and the travel cost incurred by recre-
ational visitors, because travel is a prerequisite for recreational experiences at a recreational site. Furthermore, individuals
receive no value from quality changes of a recreational site if they do not use it for recreation.

In order to model the demand for quality of a recreational site, we start with the assumption that individuals maximize
utility, denoted as U, within an income constraint, denoted as Y (Pudney,1991). Furthermore, as we are interested inmodeling
the demand for recreational quality, we assume that two subsets of goods are available to individuals. The first subset consists
of recreational trips xwith a travel cost of px to a recreational sitewith quality Q, and the second consists of a vector of all other
goods z with prices pz. Formally, individuals are assumed to solve the following optimization problem:

max
x;z

½Uðx;Q ; zÞjpxxþ pzz¼ Y �: (1)
The solution to the first-order conditions of this optimization problem yields the Marshallian demand function:
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xm ¼ xmðpx;Q ; z;Y ; bÞ; (2)

where xm is theMarshallian (uncompensated) demand for the recreational site of interest and b is a vector of parameters to be
estimated. We do not explicitly model the demands for all other goods z and assume quasi-fixed values for pz, so that an
incomplete demand system arises. The advantage of this approach is that the demand for the quality of a good of interest can
be modeled while being consistent with consumer behavior theory (von Haefen, 2002).

On the condition that the specification of xm is integrable, the impact of quality moving from current level Q0 to new level
Q1 on consumer surplus can be approximated by calculating the difference between the integrals of the Marshallian demand
function before and after the quality change (Bockstael and McConnell, 1993).1 In other words:

DCSm ¼
Z px

c

px
0

xmðpx;Q1; Y ; bÞdp�
Z px

c

px
0

xmðpx;Q0;Y ; bÞdp; (3)

where DCSm denotes the approximation of consumer surplus change based on the Marshallian, uncompensated demand
function,2 and the interval bounds px0 and pxc indicate the initial price and the price that causes demand to fall to zero,
respectively.
3. Econometric estimation

3.1. Estimating quality change impacts on recreation demand

The nature of the data used to estimate recreation demand xm for a recreational site of interest introduces three potential
issues for the econometric estimation of xm: (1) Heterogeneity across individuals in the sample; (2) Inconsistency between
the preferences implied by different data sources; (3) On-site sampling bias.

The first issue arises from the fact that recreation demand xm is estimated based on observations of recreation demand in
function of varying prices, or travel cost. To obtain sample data with sufficient variation over a relevant price range, it is
common to use a cross-sectional dataset in which travel cost varies across individuals. This introduces individual level
observed and unobserved heterogeneity. Observed heterogeneity can be accounted for by including individuals’ character-
istics in the demand specification. However, any remaining unobserved heterogeneity across individuals implies that the
demand curve cannot be estimated deterministically. Instead, the demand curve needs to be estimated using a probability
density function that, in turn, can be linked to expected demand (Hellerstein andMendelsohn,1993). This probability density
function should be defined for non-negative integer values only, because recreation demand is expressed in terms of trip
frequencies (Hellerstein and Mendelsohn, 1993).

The issue of inconsistency between different data sources stems from the difficulty to obtain data about recreation de-
mand for a recreational site under quality conditions other than the historically observed quality conditions. In particular,
researchers increasingly rely on combinations of revealed preference (RP) data to estimate recreation demand under current
quality conditions and stated preference (SP) data to estimate recreation demand under hypothetical conditions (Adamowicz
et al., 1994). Combining RP and SP data has attracted considerable interest in the literature, partly because this approach
enables researchers to ground SP behavior in actual (RP) behavior, while extending the range of environmental quality
beyond what can be observed in real life. An advantage of employing RP and SP data in a (quasi-)panel setting is that it
increases the efficiency of parameter estimates (Ben-Akiva et al., 1994). However, approaches that combine RP and SP data are
based on the assumption that both data sources describe the same preferences (Cherchi and Ortúzar, 2011). Thus, we would
expect that preferences stated by individuals are consistent with the preferences they revealed in the real world, ceteris
paribus. However, many studies that combined RP and SP sources have found that parameters calibrated on RP data are
significantly different from parameters calibrated on SP data (Cherchi and Ortúzar, 2011). On one hand, the inconsistency
between RP and SP parameters is sometimes treated as proof that RP data are more valid than SP data because the former
involve actual behavior. In particular, preferences implied by anticipated (SP) trip behavior may be biased compared to
preferences implied by actual (RP) trip behavior, among other reasons because respondents are not familiar with the hy-
pothetical quality change, or because respondents ignore their budget constraint (Whitehead et al., 2008). Another expla-
nation is that respondents anticipate an income increase in the future, resulting in a different marginal utility of income
(Whitehead et al., 2011). The inconsistency can also be caused by uncertainties about the future, such as uncertainty about
family size or place of residence. On the other hand, RP data may be biased due to measurement error or recall error. Hence, it
is unknown whether RP or SP data are more valid in the case of parameter inconsistency. We deal with the potential
1 This difference equals the area between the before and after quality-change uncompensated demand curves bounded by the current price and the price
that lets demand fall to zero.

2 Willig (1978) derived the conditions under which observable demand can also be used to evaluate Hicksian (compensated) welfare measures. Hicksian
demand differs from Marshallian demand because real income is held constant in its calculation.
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inconsistency between RP and SP data by defining a system of equations with separate RP and SP parameters and error terms,
resulting in the following quasi-panel of recreational demand3:

xrpit ¼ f
�
Sit ;frp; ε

rp
it

�
; (4)

xspit ¼ f
�
Sit ;fsp; ε

sp
it

�
; (5)

where xit is the annual number of trips of individual i under treatment t, Sit represents a vector of observed individual and site
quality characteristics, frp and fsp parameter vectors, and ε

rp
it and ε

sp
it are equation-specific error terms. The consistency

between the preferences implied by RP and SP data sources can be tested by comparing a constrainedmodel with parameters
that are equal across RP and SP equations with an unconstrained model in a likelihood ratio test (LRT). Importantly, accurate
estimation of the system of equations in Eqs. (4) and (5) requires that the econometric model should allow for demand
equation-specific error terms, while allowing for correlation between the error terms because revealed and stated trips are
likely to be correlated for a given individual (Whitehead et al., 2011).

A common way to deal with count data from two data sources is to start with two separate count distributions e that is,
Poisson or negative binomial distributions � and add a form of randomness to the conditional mean of each of the distri-
butions (Herriges et al., 2008). Correlation across the conditional means of these distributions is induced by allowing the
randomness to come from a common source, such as a variance-covariance matrix or a latent class framework. An example of
the first approach is theMultivariate Poisson Log-Normal (MPLN)model (Egan and Herriges, 2006). TheMPLNmodel consists
of a Poisson distribution, in which a normally distributed error term is included in the conditional mean. The resulting model
is an example of a mixing distribution that can be estimated via simulation. To avoid likelihood optimization problems, it is
necessary to impose restrictions on the number of treatments or the correlation structure of such mixture models (Egan and
Herriges, 2006). However, an advantage of MPLN is that it may provide more efficient estimates if its distributional as-
sumptions hold (Landry and Liu, 2009). An example of the second approach is the Discrete Factor MethodeGeneralized
Negative Binomial (DFM�GNB) model. As we will explain below, DFM�GNB belongs to the class of finite mixture models,
which are now widely used for recreation demand analysis (e.g. Thiene et al., 2007). DFM�GNB assumes a multivariate
generalized negative binomial distribution in which the demand equations include an additive, discrete random error term
that is composed of two factors. In particular, the error term (εit) is modeled as the product of a demand equation-specific
factor g that is identical across individuals, and a factor lk that is identical across demand equations, but specific for the
individuals who belong to heterogeneity class k. In other words, the randomness added to the conditional mean has the form
εi;RP ¼ gRPlk for the RP demand equation, and εi;SP ¼ gSPlk for the SP demand equation.4 To date, the DFM�GNB model has
been applied to beach recreation data only (Landry and Liu, 2009). In this paper, the DFM�GNB model is used because it
enables us to include a relatively large number of treatments with different quality change magnitudes to cover a range of
possible wildfire outcomes.5 The drawback of the DFM�GNB model compared to normality-based estimators is that it may
produce less efficient estimates if data are normally distributed (Whitehead et al., 2011). We discuss the implications of this
drawback, and of choosing DFM�GNB for climate change impacts on recreation in general, in the discussion.
3.2. Discrete Factor MethodeGeneralized Negative Binomial model

The DFM�GNB model consists of a generalized negative binomial distribution combined with the discrete factor method
proposed by Heckman and Singer (1984). The probability mass function of the univariate DFM�GNB is specified as follows
(Landry and Liu, 2009):

gðxit jSitÞ¼
XK
k¼1

0
B@PrðlkÞ

G
�
xit þ a�1

t m2�p
itk

�
axitt m

ðpxit�2xitÞ
itk

�
1þ atm

p�1
itk

��ðxitþa�1
t m2�p

itk Þ

Gðxit þ 1ÞG
�
a�1
t m2�p

itk

�
1
CA; (6)

where PrðlkÞ denotes the probability that an individual belongs to class k,G denotes the gamma distribution, xit is the demand
for trips of individual i under treatment t, mitk is the expected conditional demand for trips of individual i under treatment t if
he or she belongs to heterogeneity class k, at is a treatment-specific parameter, and p is a dispersion parameter. This dis-
tribution can be extended to a multivariate distribution in which RP trip counts under current conditions are calculated with
3 For simplicity, we suppress the superscript m in xm and CSm in the remainder of this paper.
4 This approach differs from the latent class approach of Hynes and Greene (2013) in two respects. First, Hynes and Greene incorporate individual

heterogeneity by allowing slope coefficients to differ between classes. Second, they pool outcome data from different data sources in a single demand
equation. Hence, they implicitly assume that the magnitude of the impact of observed and unobserved heterogeneity on recreation demand is identical
across data sources.

5 To our knowledge, MPLN has been applied in recreation demand studies with up to four treatments (Egan and Herriges, 2006; Landry and Liu, 2009).
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an RP equation, and SP trip counts under hypothetical treatments are calculated with an SP equation. Expected demand,
conditional upon observed individual and site quality characteristics Sit and unobserved heterogeneity related to k class
membership is specified as:

mitk ¼ expðSitbþ εitÞ¼ expðSitbþgtlkÞ¼ expðSitbÞexpðgtlkÞ: (7)

Let the deterministic part of the demand equation in Eq. (7) be denoted as dit ¼ expðSitbtÞ; then, the variance of xit for a
generalized negative binomial distribution with random parameter l and dispersion parameters a and p is given by Landry
and Liu (2009) as:

varðxit jSitÞ¼ expðdit þgtlÞ þ atexpðdit þ gtlÞp: (8)

The treatment-specific factors in Eq. (7) and Eq. (8) are restricted to be equal across SP trip counts, so that the scale of un-
observed heterogeneity differs across RP and SP demand equations only and not across different SP trip counts. The number of
classes and towhich class each individual belongs are not known upfront. Hence, the probability of k class membership PrðlkÞ
is estimated empirically. The probability density function is then summed up over all possible classes. Hence, the resulting
probability distribution is a finite mixture model. The likelihood contribution of individual i is:

g:ðxijSi:Þ¼
XK
k¼1

ðPrðlkÞ$
YT
t¼1

G
�
xit þ a�1

t m2�p
itk

�
axitt m

ðpxit�2xitÞ
itk

�
1þ atm

p�1
itk

��ðxitþa�1
t m2�p

itk Þ

Gðxit þ 1ÞG
�
a�1
t m2�p

itk

� : (9)

where the estimates of heterogeneity class factors lk are confined to the interval [0,1]. Furthermore, the probabilities of
individuals belonging to heterogeneity class k, denoted as f ðqkÞ, are transformed to a multinomial logit, so that the
probabilities sum up to 1. It is also possible to incorporate class membership predictors into f ðqkÞ. However, such a specifi-
cation is less parsimonious than the DFM approach because of the marked increase of the number of parameters to be
estimated evenwith a small number of latent classes. Furthermore, the identification of the parameters of latent class models
with class membership covariates can be problematic because the same covariates may show up in both the recreation
demand equation and the class probabilities (Landry and Liu, 2009).6
3.3. Correcting for on-site sampling bias

The third econometric issue stems from the fact that RP and SP data about recreation demand for a site of interest are often
obtained by means of on-site surveys (Egan and Herriges, 2006). This sampling method introduces endogenous stratification
and zero-truncation. Endogenous stratification means that frequent visitors are over-represented in the sample, and zero-
truncation means that the sample does not include non-visitors because they do not visit the site (Egan and Herriges,
2006). In more general terms, endogenous stratification and zero-truncation arise because the probability of an individual
being included in the sample depends on the value of the response variable (that is, the number of trips), and failure to correct
for the resulting sampling bias can result in biased and inconsistent welfare estimates (Englin and Shonkwiler, 1995).

Shaw (1988) showed that an on-site probability mass function can be obtained by assuming that the probability of an
individual being included in the on-site sample is proportional to his or her actual trip frequency, relative to the conditional
mean. In this case, the conditional on-site probability mass function hð $Þ can be defined as:

hðxijSiÞ¼
xi$gðxijSiÞPm
v¼1v$gðvjSiÞ

; (10)

where xi denotes actual trip frequency of a visitor, v denotes all possible values for xi and gð $Þ denotes the probability that an
individual drawn from the general population made yi trips during a specified, historical period. In our case, gð $Þ is generated
by the mixing distribution in Eq. (6). This means that we can obtain the on-site probability mass function conditional on Si by
integrating the probability mass function over lk for k ¼ 1; ::; K, so that Eq. (10) becomes:
6 The latent class framework can be used to relate latent class membership to individual characteristics. In order to provide a point of comparison for the
DFM approach we also estimated regression models using the traditional latent class approach (see Regression results section).
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h
�
xi;RP

��Si;RP� ¼ xi;RP$g
�
xi;RP ; Si;RP

�
PK

k¼1
�
f ðqkÞ$

Pm
v¼1

�
v$g

�
v
��Si;RP� � �

¼ xi;RP$g
�
xi;RP ; Si;RP

�
PK

k¼1
�
f ðqkÞ$mi;RP;k

�
¼ xi;RP$g

�
xi;RP

��Si;RP�
mi;RP

;

(11)

where subscript RP emphasizes that hð $Þ and gð $Þ are the probability mass functions of revealed, actual trips. The third line of
Eq. (11) shows that hð $Þ is a function of the general population probability mass function gð $Þ and conditional expectation
mð $Þ.

Implementing Eq. (11) in Eq. (6) yields the following likelihood contribution for individual i:

h
�
xi;RP

��Si;RP�¼ xi;RP
mi;RP

XK
k

ðPrðlkÞ
G
�
xi;RP þ a�1

RP m
2�p
i;RP;k

�
axi;RPRP m

ðpxi;RP�2xi;RPÞ
i;RP;k

�
1þ aRPm

p�1
i;RP;k

���xi;RPþa�1
RP m

2�p
i;RP;k

�

G
�
xi;RP þ 1

�
G
�
a�1
RP m

2�p
i;RP;k

� : (12)

Based on Patil and Rao (1978), weighting the population probability mass function gð $Þ according to Eq. (12) leads to the
following relationship between the expected mean of the on-site sample and its population counterpart:

Eð~xRP jSRPÞ¼ EðxRP jSRPÞ þ
varðxRP ; SRPÞ
EðxRP jSRPÞ

; (13)

where ~x denotes the on-site sample mean. Eq. (13) shows that the on-site sampling bias of trips depends on the degree of
over-dispersion in the population distribution, which is the ratio of the conditional variance and conditional mean.

The above equations can be used to obtain population means for RP trips in the univariate case. However, in some studies,
including the present study, multiple RP and SP observations are obtained for each individual. If these observations are in-
dependent, then the SP observations are not affected by on-site sampling bias because the sample inclusion probability for SP
observations would not depend on RP observations. However, SP trips may be correlated with RP trips, hence potentially
carrying over some of the on-site sampling bias from RP trips to SP trips. Intuitively, this makes sense because frequent
visitors are also more likely to report higher trip counts in the future.

Analogous to Eq. (13), the relationship between the expected sample mean for SP trips and the population is given by Egan
and Herriges (2006):

Eð~xRP jSRPÞ¼ EðxRP jSRPÞ þ
varðxRP ; xRPÞ
EðxRP jSRPÞ

: (14)

Eq. (14) shows that the magnitude of the on-site sampling bias of SP trips depends on the covariance of SP and RP trips.
In our specification, RP and SP trips are dependent because class membership is fixed over time. Hence, unobserved

heterogeneity associatedwith each class is a common factor in the specification of both conditional means, that is, xRP and xSP :
However, conditional on class membership, the covariance between the jointly distributed random variables is zero. This
means that the covariance between xRP and xSP comes only from the specification of the conditional means given in Eq. (7)
(analogous to Proposition I in Gurmu and Elder (2012)):

covðxRP ; xSP jS:Þ¼ covðdRPexpðgRPlÞ; dSPexpðgSPlÞÞ: (15)

Substituting Eq. (8) and Eq. (15) in Eq. (13) and Eq. (14), respectively, gives the following expression of the on-site sample
means:

Eð~xt jStÞ¼

8>>><
>>>:

Eðx1jS1Þ þ
expðd1 þ gRPlÞ þ a1expðd1 þ gRPlÞp

Eðx1jS1Þ
; t ¼ 1

Eðxt jStÞ þ d1dtcovðexpðgRPlÞ; expðgSPlÞÞ
Eðxt jStÞ ; ts1:

(16)

The first line of Eq. (16) shows that if a1 ¼ 0, there is no over-dispersion in RP trips; that is, the conditional variance is equal to
the conditional mean. In this case, the on-site sample mean becomes one more than the population mean. The second line of
Eq. (16) shows that when the correlation between RP and SP trips increases � that is, when covðexpðgRPlÞ ; expðgSPlÞÞ in-
creases � the on-site sample mean of SP trips becomes increasingly upward biased from the population mean.
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Now that we have shown how on-site sampling bias can affect both RP and SP trips, we extend the correction of the
univariate probability mass function to the multivariate case. Similar to Eq. (11), the on-site sample probability mass function
becomes:

hðxi$j Si$Þ ¼
xi;RP
mi;RP

gðxi$j Si$Þ: (17)

Finally, this results in the following joint likelihood function for the on-site sample:

L ¼ hðx:j S:Þ ¼
YN
i¼1

YT
t¼1

ðhðxit jSit ; b;g; l; q;a; pÞ
�
; (18)

where b (for observable heterogeneity), g; l and q (for unobserved heterogeneity), and a; p (for model dispersion) are the
model parameters to be estimated.
3.4. Model estimation

Expectation maximization (EM) algorithms (Allman et al., 2019) and quasi-Newton algorithms (see e.g. Landry and Liu,
2009), are commonly used to estimate the model parameters of finite mixture models. EM algorithms employ an iterative
procedure in which conditional probabilities are constructed in a first expectation step, and the model parameters related to
class membership probabilities and the other model parameters are separately maximized in a second step (von Haefen and
Domanski, 2018). Quasi-Newton algorithms use an approximation of the Hessian matrix to find a local minimum of an
objective function. In the present study, we use the Bayesian Adaptive Direct Search (BADS) algorithm. The BADS algorithm is
a general optimizer that estimates all parameters of a model simultaneously bymaximizing an objective function. We use the
BADS algorithm to directly maximize the unconditional full likelihood function by estimating all model parameters. The BADS
algorithm belongs to the class of direct search algorithms. These algorithms sequentially compare candidate solutions with
the current best solution in order to determine the next candidate solution (Acerbi and Ma, 2017). BADS performs direct
searches by alternating between two steps. First, BADS performs a local optimization step in which solutions in the neigh-
borhood of the current parameter values are randomly selected and evaluated. The algorithm is able to escape locally optimal
solutions due to the Gaussian nature of this search process. As soon as the objective value does not improve any further, BADS
switches to the polling step. In this step, a set of candidate solutions are selected along a set of polling directions and
evaluated. These points lie on a mesh grid that increases in size when a better solution is found and decreases in size when no
improvement is found. The algorithm continues to alternate between the two steps until the improvements of the objective
function are arbitrarily small for a pre-defined number of iterations. The polling step guarantees theoretical convergence to an
optimum (Audet and Dennis, 2006), so that BADS converges to maximum likelihood parameter estimates.

When finite mixture models are concerned, the advantage of using BADS algorithm is that it is theoretically more likely to
converge to a global optimum than EM and quasi-Newton algorithms because it continues searching for better solutions after
reaching a local optimum or saddle point. EM and quasi-Newton algorithms stop searching when a local optimum or saddle
point is found because the zero gradient condition is met in these points. This is important because the unconditional
likelihood function of finite mixture models is non-convex and possibly contains multiple local optima. However, depending
on the stopping criteria, such as the maximum number of iterations, it is possible that the BADS algorithm does not reach
global convergence within the allocated computational time. Hence, the use of the BADS algorithm reduces but not fully
eliminates the need to start from different initial parameter values. It should be noted that the benchmark results reported by
Acerbi and Ma (2017) show that the BADS algorithm may converge slightly faster than other quasi-Newton and direct search
algorithmswhen the number of unknownmodel parameters is large. However, speed comparisons of the BADS algorithm and
the EM algorithm e which is frequently reported to be slow for models with many parameters (Jollois and Nadif, 2007) e
remain an avenue for future research.

The BADS algorithm has two drawbacks when finite mixture models are concerned. First, the BADS algorithm requires the
specification of optimization constraints in order to assure the identification of meaningful parameter estimates. In particular,
the weights of the mixture distribution need to be constrained to be positive and sum up to one. Hence, the BADS algorithm
may be considered less elegant compared to the EM algorithm which automatically produces valid parameters for the
mixture distribution in the Expectation step. Second, the stochastic search process of the BADS algorithm causes optimization
results to slightly differ between runs even if the same starting values are used. In order to assess whether our results are
sensitive to the algorithm used in estimation, we compare the log likelihood and parameter results obtained with the BADS
algorithm with those obtained with the EM algorithm.
3.5. Model selection

The on-site corrected likelihood function leads to a model with maximum likelihood parameter estimates that are
different from those obtained with an uncorrected likelihood function. When comparing non-nested models, the standard
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likelihood ratio test (LRT) cannot be used because the limiting distribution of the standard LRT will generally not be a chi-
squared distribution under the null hypothesis (Lewis et al., 2011). Alternatively, the Akaike Information Criterion (AIC)
(Akaike, 1973) and Bayesian Information Criterion (BIC) are often suggested for non-nested model comparison (Huang, 2017).
Models with lower AIC and BIC values indicate higher support compared to models with higher AIC and BIC values.
Furthermore, a Vuong non-nested likelihood ratio test (Vuong, 1989) can be applied to formally test if one of two non-nested
models is more appropriate than the other.7 In this study we employ the Vuong test to assess whether controlling for on-site
sampling bias leads to a significant model improvement. Specifically, under the null hypothesis that the corrected and un-
corrected models fit equally well to the data, the contributions of individuals to the log likelihood ratio follow a normal
distribution with a mean of zero (Hynes and Greene, 2013). A large positive Vuong statistic beyond a critical t value then
indicates that the corrected model is more favorable than the uncorrected model.
4. Data

4.1. Study site

The data used in this study come from an on-site survey among visitors of a heathland area in the Hoge Kempen National
Park (hereafter also called HKNP) in Belgium (N 50 58.674, E 5 39.555). The HKNP, which received over 1 million visitors in
2013, hosts a variety of recreational activities such as walking, cycling, jogging, mountain biking, and horseback riding
(Agentschap Natuur en Bos, 2016). Within the HKNP, an area of nearly 6000 ha of nature is protected under the EU Habitats
Directive. Twenty percent of this protected area is heathland. The largest patch of heathland in the HKNP is located within
walking distance from the main access point, which is used by the majority of visitors. This heathland is located in an area
with a high-to-very-high wildfire risk (Depicker et al., 2020). The most recent major wildfire in this heathland occurred in
1996, when 200 ha of heathland vegetation was burned.
4.2. Survey design

We define six treatments, two of which are ‘no quality change’ treatments and four are hypothetical quality change
treatments. The two ‘no quality change’ treatments refer to the current situation without and with a hypothetical travel cost
increase, respectively. To reduce the chance of protest responses caused by an unfamiliar or unrealistic payment vehicle, we
choose the payment vehicles for the travel cost increase to be identical to howaccess fees are collected for entrance to another
part of the National Park. In particular, visitors are asked to choose between an entrance fee of EUR 3 per day trip and an
annual subscription pass of EUR 5 per person.8

The first hypothetical quality change treatment relates to the calendar year that comes after the year inwhich the survey is
conducted. In this treatment, a hypothetical wildfire occurs. As wildfires are most likely to ignite in April of any given year9

(Depicker et al., 2020), we assume, for this treatment, that a spring wildfire causes 50 percent of the heathland to be burned,
leaving an area with blackened Calluna Vulgaris plant material.

In the year following a wildfire, grass species such as Molinia Caerulea encroach post-burn heathland (Schepers et al.,
2014). It can take up to 10 years before the heather plant has fully grown back and the grasses have disappeared (Hobbs
and Gimingham, 1984). To measure recreation demand during this recovery period, we define a second hypothetical qual-
ity change treatment in which 50 percent of the heathland is fully covered by grasses throughout the year. This treatment
takes place in the year after the first treatment.

The third and fourth hypothetical quality change treatments are similar to the first and second hypothetical quality change
treatments, respectively, in terms of physical change and timing, but the affected area is 100 percent instead of 50 percent. We
have two reasons for defining these treatments. First, the fragment size of heathland areas is important for their recreational
value (Cordingley et al., 2015), implying that including affected areas of varying size may reveal scope or contrasting effects on
recreation demand.10 Second, grass encroachment can reduce the aesthetic value of heathland (Van Marwijk et al., 2012), but
a 50 percent grass cover can also increase the aesthetic value of the heathland area if it causes an increase in overall landscape
diversity (Sch€agner et al., 2016). Thus, defining 50 percent and 100 percent treatments may potentially reveal non-linear or
contrasting effects of the affected area on recreational value.

We include the treatments in a paper-based survey that is structured as follows. First, respondents are asked a general
‘warm-up’ question about the purpose of their trip. Second, respondents are asked for travel cost details. Third, recreation
demand under a ‘no quality change’ treatment without hypothetical travel cost increase is elicited by asking the respondents
about their actual number of visits to the heathland area during the past 12 months. Respondents are then asked about their
7 The Vuong test has been applied previously to test for on-site correction of recreation demand models (Beaumais and App�er�e, 2010; Landry and Liu,
2009; Moeltner; Shonkwiler, 2005).

8 We divide the annual amount by the annual number of trips, so that it can be included in the travel cost calculation according to Eq. (19).
9 More than 30 percent of the wildfires between 1994 and 2016 in Belgium ignited in the month of April (Depicker et al., 2020).

10 For example, Vaux et al. (1984) found that less intense wildfires have a positive impact on demand for recreation in Californian forests, while intense
wildfires have a negative impact.



Table 1
Survey versions.

Survey version

1 2 3 4 5 6 7 8 9 10 11 12

Hypothetical quality change treatment
50% Grass cover in yearþ2 (dummy) A B A B A B
100% Grass cover in yearþ2 (dummy) B A A B A B
50% Burned cover in yearþ1 (dummy) B A B A A B
100% Burned cover in yearþ1 (dummy) B A B A B A

Table 2
Summary of contingent behavior section.

Question 1. How
often did you visit
the Mechelse Heide in
the past 12 months?

Question 2. How often would you visit
the Mechelse Heide in 2019 if it looks as
described in Scenario 1, in which 50
percent of the area is burned?a

Question 3. How often would you visit
the Mechelse Heide in 2020 if it looks as
described in Scenario 2, in which 50
percent of the area is covered with
grasses?a

Question 4. How often would you
visit the Mechelse Heide in 2019 if
you had to pay for access in the
way you indicated aboveb?

Response
format

__ visits per week
__ visits per month
__ visits per year

__ visits per week
__ visits per month
__ visits per year

__ visits per week
__ visits per month
__ visits per year

__ visits per week
__ visits per month
__ visits per year

a The hypothetical quality changes are randomly selected and ordered from a total of four hypothetical quality change treatments.
b Respondents indicated in a preceding question whether they prefer to pay for a day pass (EUR 3 per visit) or an annual subscription pass (EUR 5 per year).
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anticipated annual number of visits under two hypothetical quality change treatments. These treatments, say A and B, are
randomly selected from a total of four hypothetical quality change treatments and randomly ordered, leading to a total of 12
survey versions (see Table 1). The random ordering of the hypothetical quality change treatments is intended to reduce
ordering effects, if any.11 Finally, respondents are asked about anticipated number of visits during the next year if an access fee
is imposed, without any site quality changes. The contingent behavior section of the survey is summarized in Table 2.12

The treatments are presented as textual descriptions, supported with pictures, in order to facilitate the respondent’s
understanding of the treatments, taking seasonal variations into account (a full example of the treatment descriptions is
provided in Online Online Appendix 1). It is explicitly stated that the surroundings of the heathland area and substitute sites
are not subject to wildfires or other changes. To increase credibility, respondents are also made aware of the most recent
wildfire in the study area, and of the fact that such wildfires may happen again in the future. Fourth, respondents are asked to
provide demographic details. Fifth, two debriefing questions are asked in order to identify protest responses to the hypo-
thetical travel cost increase (Loomis et al., 2011).

4.3. Data collection

The survey was pilot-testedwith 40 park visitors in April 2018 and subsequently improved.13 Survey datawere collected at
the Mechelse Heide access point by two interviewers on 25 days between May and September 2018. Individual visitors and
groups with up to six members who intended to exit the Mechelse Heide were randomly asked to participate in the survey,
after ensuring that they are proficient in Dutch. In total, we approached 562 individuals, 364 of whom (64.8 percent) were
willing and able to fill out the questionnaire. The completed questionnaires were entered into a database. Individuals were
removed from this database for any of four reasons,14 listed here in chronological order: (1) They did not provide demographic
details (n ¼ 14) or travel cost details (n ¼ 3); it is not possible to calculate recreation demand without these details; (2) They
did not provide answers to all the contingent behavior questions (n ¼ 16); the inclusion of these responses would make the
panel unbalanced, requiringmodifications of the likelihood function (the total number of incomplete responses, including the
respondents mentioned under the first bullet point, is 26); (3) They visited the heathland area every other day (n ¼ 11) or
11 One may argue that the fixed position of the first (current situation) and last (access fee) treatments can still cause some ordering effects. However, the
paper-based survey format allows respondents to see all contingent behavior questions prior to providing the responses. The advance disclosure of the
contingent behavior questions may reduce potential ordering effects (Bateman et al., 2002). We test whether visitation rates reported under the first
presented hypothetical quality change scenario are different from those reported under the second scenario by pooling these responses and estimating a
recreation demand model that includes a “First scenario” dummy variable (see Section 5).
12 A complete translated version of this survey section is included in Online Appendix 1.
13 e.g. in the final survey we emphasized the unit of the payment by writing it in bold and we removed two ‘warm-up’ questions to reduce the total length
of the survey.
14 The excluded individuals do not differ significantly from the individuals remaining in the sample in terms of income (p ¼ 0.41), age (p ¼ 0.25),
membership of environmental organizations (p ¼ 0.28), or gender (p ¼ 0.31); educational attainment is significantly lower among excluded individuals (p ¼
0.06).
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daily (n ¼ 15).15 We assumed that these visitors derive little or no recreational value from the presence of heathland because
they routinely visit the National Park mainly because of its close proximity to their homes. Approximately two-thirds of these
visitors indicated “letting the dog out” as the purpose of their visit; (4) Informed consent could not be assumed because the
individual had not reached the age of 18 (n ¼ 1). We also removed one respondent, whose inconsistent answers (the
respondent stated a one-way travel time by car of 2 h for a distance of less than 5 km) impeded the travel cost calculation. We
also excluded 18 individuals because they provided a protest response; that is, they indicated a zero visitation rate if they
would have to pay an entrance fee and their motivation for doing do sowas identified as a typical protest response (Meyerhoff
and Liebe, 2008). Of the remaining respondents, 93 did provide details about their employment status, but not about their
household income bracket. Based on their reported employment status (employed, business owner or manager, or unem-
ployed) we replaced missing income values with the sample mean income of the respondents with the same employment
status.16 We investigated whether recreation demand differs between respondents who did not report their income
compared to other respondents by including a missing income dummy variable in the regression model. Consequently, the
econometric analysis was conducted on a final dataset of 1172 observations from 293 individuals.
4.4. Descriptive statistics of sample data

Summary statistics of the travel cost determinants are provided in Table 3. We used these data to calculate the travel cost
for each respondent (pxi ) as follows:
Table 3
Summary statistics of travel cost determinants (n ¼ 293).

Mean Std
deviation

Minimum Maximum Median

Travel cost elementc

Stated relative importance of heathland for decision to make the current trip (on a seven-point scale,
where one is totally unimportant and seven is most important)

5.27 1.68 1 7 6

Mean group size (number of adults) 3.48 4.05 1 60 2
One-way travel timea (minutes) 25.34 24.91 0b 210 20
One-way travel distance (fastest route between postal code centroid andMechelse Heide access point, in

kilometers)
21.61 31.93 0b 200.80 12.15

Number of respondents Percentage (%)

Travel mode
Car 241 82
Small cars 50
Medium cars 135
Large cars 58
By foot 23 7.8
Bicycle 24 8.2
By horse 1 0.3
Motorbike 2 0.7
Public transport 2 0.7

Fuel cost per kilometer (in 2018 EUR)

Car size category
Small cars 0.07
Medium cars 0.08
Large cars 0.11

a We used self-reported travel times. Traffic congestion can be significant during peak hours in Belgium, and ex post travel time calculations may be
inaccurate without additional information about the relevant traffic conditions. We compared self-reported travel times with the calculated travel distances
and, based on this, removed one respondent who reported an implausibly large travel time.

b One respondent indicated a travel time of zero minutes as he stayed in the adjacent campsite.
c Income statistics are reported in Table 4.

15 We explore whether the inclusion of these observations affects our results in the robustness analysis.
16 A Kruskal-Wallis test indicates that income differs significantly across three sub-samples stratified by employment status (employee, business owner or
manager, unemployed) (c2 ¼ 33:27; p <0:0001Þ.



Table 4
Summary statistics of final sample (n ¼ 293).

Mean Std deviation Minimum Maximum Median

Variable
Current travel cost (EUR per person per trip) 4.9 5.9 0.1 45.9 3.1
After-tax household incomea (EUR per month) (n ¼ 200) 2719 1346 500 6500 2500
Age (in years) 48.3 16.5 18 84 50
Member of environmental organization (1 ¼ yes, 0 ¼ no) 0.26 0.44 0 1 0
Gender (1 ¼ male, 0 ¼ female) 0.46 0.50 0 1 0
Higher education (1 ¼ diploma of higher professional education or higher, 0 ¼ otherwise) 0.56 0.50 0 1 1

RP trips (t ¼ 1 � current situation) 29.9 78.9 1 182 8
SP trips (t ¼ 2 � 50% grass cover in yearþ2) 32.5 39.5 0 156 12
SP trips (t ¼ 3 � 100% grass cover in yearþ2) 25.6 42.0 0 182 12
SP trips (t ¼ 4 � 50% burned area in yearþ1) 27.1 38.8 0 182 6
SP trips (t ¼ 5 � 100% burned area in yearþ1) 19.4 32.5 0 182 10
SP trips (t ¼ 6 � current situation, but with access fee in yearþ1) 28.5 41.6 0 156 3

a Based on the mid-points of the income brackets.

Table 5
Correlations between revealed and stated trips (r).

RP trips (t ¼ 1) SP trips (t ¼ 2) SP trips (t ¼ 3) SP trips (t ¼ 4) SP trips (t ¼ 5) SP trips (t ¼ 6)

RP trips (t ¼ 1 � current situation) 1
SP trips (t ¼ 2 � 50% grass) 0.93 1
SP trips (t ¼ 3 � 100% grass) 0.84 0.94 1
SP trips (t ¼ 4 � 50% burned) 0.89 0.87 0.87 1
SP trips (t ¼ 5 � 100% burned) 0.79 0.97 0.80 0.85 1
SP trips (t ¼ 6 � current situation plus access fee) 0.92 0.91 0.84 0.87 0.81 1
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pxi ¼
Stated importance

of heathlandi
$

�
2$Travel distancei$ðPetrol cost per kmjCar sizeiÞ

Group sizei
þ 1
3
Net monthly wagei
165 Hours=month

2$Travel timei

�
þ Access feei:

(19)

We used individual data for this calculation, except for fuel cost per kilometer, which we based on national data. The fuel cost
per kilometerwas calculated bymultiplying theweighted average price per liter based on the share of diesel and gasoline cars
in Belgium by the average fuel consumption of the car size category (small, medium, large) to which the car of the individual
belongs. Travel distances were obtained by means of Google Maps. We account for multiple purpose day trips by weighting
the on-the-road cost with the stated, relative importance of the heathland for the decision to make the current day trip
(Martínez-Espi~neira and Amoako-Tuffour, 2008). This measure was obtained directly from the respondents. Respondents
were asked to indicate the relative importance of the heathland on a seven-point scale, where one is totally unimportant and
seven is most important. Subsequently, the relative importance of the heathland is obtained by dividing the response by
seven. The fee to be paid to enter the heathland area is hypothetical since entrance is currently free of charge.

Summary statistics of the overall dataset are provided in Table 4. Furthermore, the correlations between RP and SP trips are
presented in Table 5. The correlations, which are all 0.79 or higher, suggest that on-site sampling bias may affect both
observed RP trips and observed SP trips (see Eq. (16)).
5. Results and discussion

5.1. Regression results

The recreation demand model specification includes travel cost and demand-shifting dummies for the hypothetical
quality change treatments as the core variables, and several demographic and travel behavior variables that previous studies
have found to influence recreation demand. Initially, these variables include income, gender, age, educational attainment,
membership of an environmental organization, and whether the respondent visits as part of a family trip with children
(Englin and Shonkwiler, 1995; Richardson and Loomis, 2004). The recreation demand model is estimated with and without
constraining the intercept, travel cost, and income parameters across RP and SP equations. In the recreation demand model
without constraints, the intercept, travel cost and income parameters in the RP equation are estimated with actual visitation



Table 6
Recreation demand models.a

Corrected for on-site sampling bias Not corrected for on-site sampling bias

Coeff. Standard error Coeff. Standard error

Variable
Travel Cost (RP) �0.110 0.029*** �0.077 0.010***
Travel Cost (SP) �0.070 0.011*** �0.067 0.007***
Gender 0.190 0.137 0.188 0.103*
Family visit �0.157 0.695 0.581 0.202***
Missing income 0.303 0.166* 0.201 0.113*
50% Grass cover in yearþ2 (dummy) 0.011 0.161 �0.168 0.081**
100% Grass cover in yearþ2 (dummy) �0.185 0.106* �0.259 0.076***
50% Burned cover in yearþ1 (dummy) �0.216 0.083*** �0.209 0.071***
100% Burned cover in yearþ1 (dummy) �0.414 0.091*** �0.443 0.096***
Constant (RP) �0.170 0.392 0.731 0.159***
Constant (SP) 0.776 0.169*** 0.933 0.142***
arp 0.383 0.457 0.016 0.024
asp 0.181 0.142 0.023 0.034
p 2.196 0.288*** 2.796 0.399***
grp 4.409 0.527*** 3.799 0.187***
gsp 3.858 0.197*** 3.605 0.155***
l2

b 0.544 0.120*** 0.534 0.114***
l3

b �1.046 0.235*** �1.113 0.146***
q1

b 0.419 0.292 0.387 0.150***
q2

b 0.360 0.379 0.000 0.204
q3

b 0.271 0.370 �0.173 0.327

Log Likelihood �4076.0 �4103.1
AIC 8193.9 8248.2
BIC 8300.3 8354.6

a Robust standard errors clustered by individual are reported. Significance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
b The estimated parameter values of l and q before transformation are presented.
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data only, and the same parameters in the SP equation are estimated with contingent behavior data only. Furthermore, these
models are estimated with and without on-site sampling bias correction, resulting in a total of four initial models. From these
initial models we obtained a set of final models, which we present in this section.17 We selected the final models based on
three grounds. First, we tested the parameter restrictions across the RP and SP equations. We found that the unconstrained
models outperform the constrained models (brp ¼ bsp) based on an LRT18 at a significance level of 1%. Given the rejection of
constrained parameters, we selected the unconstrained models for further consideration. Second, following von Haefen and
Domanski (2018), we selected the optimal number of discrete classes based on the corrected Akaike Information Criterion
(cAIC). This criterion imposes a higher penalty on a larger number of parameters than the uncorrected AIC and Bayesian
Information Criterion (BIC). The cAIC supports four discrete classes over three discrete classes for all initial models.19 Third,
the covariates income, membership of environmental organization, age and higher education are not significant in any of the
initial models. Hence, we dropped these covariates and re-estimated the unconstrainedmodels with four discrete classes. The
conditional mean of these final models is specified as:

mitk ¼
(
exp

�
b0;RP þ bp;SPp

x
i þ bDDi þ gRPlk

�
; t ¼ 1

exp
�
b0;SP þ bp;SPp

x
i þ bDDi þ bQ ;SPQt þ gSPlk

�
; t ¼ 2;3;4;5;6

; for k¼1; 2;3;4 ; (20)
17 The initial model specifications and regression results are included in Online Appendix 2.
18 For the models corrected for on-site sampling bias, c2

df¼3 ¼ 104:2 ð p <0:0001Þ. For the models uncorrected for on-site sampling bias, c2
df¼3 ¼

14:4 ð p ¼ 0:006Þ. We also explored parameter consistency by pooling the RP and SP data in a single demand equation in which we interacted an RP
dummy variable with the constant, the travel cost and income parameters, and the factor loading (see Online Appendix 3). Even though all interaction
terms (apart from Constant*RP in the corrected model) are insignificant, LRTs favor the models in which these interaction terms are not constrained to zero
(c2

df¼4 ¼ 138:2 ð p <0:0001Þ for the corrected model, and c2
df¼4 ¼ 11:8 ð p¼ 0:018Þ for the uncorrected model). Since we found that the DFM approach is

more appropriate based on an AIC-adjusted Vuong non-nested test (p ¼ 0.0001 and p ¼ 0.018 for the corrected and uncorrected models, respectively), we
focus on the DFM model in the remainder of this paper.
19 The cAIC scores of the initial models with three classes are included in Online Appendix 2. We also attempted to estimate the initial models with five
classes. These models consistently converged to more negative log likelihood values, with several parameters converging to values that are theoretically
inconsistent with utility maximizing behavior.
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where pxi is travel cost, Di is a vector of the demographic variables: gender, family visit, missing income, and Qt is a vector of
dummy variables for: 50% grass cover, 100% grass cover, 50% burned cover and 100% burned cover. The regression results of
the final models are presented in Table 6. The regression results shown in this paper are obtained by selecting the set of
parameter estimates with the least negative log-likelihood value after running the BADS algorithm from 20 different starting
value sets. Following the same procedure for the EM algorithm, we found that both algorithms produced the same
convergence results in terms of log likelihood value and parameter values. We also found that the BADS algorithm did not
converge to local optima, whereas the EM algorithm sometimes converged to local optima when the initial parameter values
were far off the final parameter values. Finally, in cases where the initial parameter values were set such that both algorithms
converged to the maximum likelihood values in Table 6, the BADS algorithm converged faster than the EM algorithm.20

Both travel cost parameters are negative and significant. Being a male has a significant positive effect on recreation de-
mand, but this effect is only significant in the uncorrected model. Recreation demand is significantly higher when a visitor
comes as part of a family in the uncorrected model. This effect is negative and not significant in the corrected model.
Furthermore, respondents who did not report their income bracket have a significantly higher visitation rate than other
respondents, in both models.

The estimates for the treatment parameters are negative and statistically significant in both models, except for the 50
percent grass cover treatment, which is also negative, but significant in the uncorrected model only. Based on the size of the
treatment parameters, we expect the biggest decrease in visitation rates directly after a 100 percent wildfire. Visitation in-
creases but does not fully recover when the burned area becomes encroached by grasses in the years after a 100 percent
wildfire. After a 50 percent wildfire we also expect a decrease in visitation, but as soon as the burned area is covered with
grasses, we expect no significant difference with pre-burn visitation rates.21

The dispersion parameter a is not statistically significant, whereas dispersion parameter p is statistically significant in both
models. The unobserved heterogeneity parameters l2 and l3 are statistically significant in both models. However, the pa-
rameters q, which enter the multinomial logit used to calculate class probabilities, are all insignificant except q1 in the un-
corrected model.22 This implies that individuals are equally likely to belong to each of the classes with insignificant q

parameters.
A comparison of the RP and SP parameters for the travel cost parameter, intercept, and factor loadings reveals that these

parameters diverge to a larger extent in the on-site sampling bias corrected model compared to the uncorrected model.
Specifically, whenmoving from the uncorrectedmodel to the correctedmodel, the RP factor loading becomes larger, whereas
the travel cost parameter and intercept become smaller. This implies that, in the corrected model, some of the RP variation
that can be explained in the uncorrected model is shifted to unobserved heterogeneity. The SP parameters do not show this
shift. A possible explanation is that RP parameter estimates are directly affected by the on-site sampling bias correction
because a lower expected RP demand directly improves the sample likelihood function (see Eq. (18)).

Based on the AIC and BIC, we find support for using the model corrected for on-site sampling bias. A Vuong non-nested
likelihood ratio test also lends support to using the corrected model (p ¼ 0.07).

The travel cost and hypothetical quality change parameter estimatesmay be sensitive to the selection of covariates. We use
the definition of robustness introduced by Neumayer and Plümper (2017) to assess the extent to which these two parameter
estimates are sensitive to covariate selection. Specifically, we quantify the percentage of the probability density distribution of
the estimate from the initial model that lies within the 95% confidence bounds of the estimate from the final model. The
results of this test indicate that the effects of the travel cost and quality changes on recreation demand do not depend much
on covariate selection, because the robustness of the parameter estimates varies between 0.90 and 1.00. Furthermore, the
statistical significance of these parameters is not sensitive to the model specification.23

We also estimated the final models without removing highly frequent visitors (see Online Appendix 6). The parameter
estimates for the quality change dummy variables remain similar in magnitude and statistical significance, except that the
“50% burned” dummy variable becomes insignificant in the uncorrected model. Furthermore, the travel cost parameter es-
timate is smaller in both the corrected and uncorrected models and remains significant in the corrected model only. These
results suggest that, on average, predicted recreation demand is less sensitive to travel cost if highly frequent visitors are
20 For example, when estimating the final on-site corrected model with zero starting values for all parameters, the BADS algorithm converged to the log
likelihood value in Table 4 in approximately 6 min, while the EM algorithm stopped after reaching a local optimum of the objective function (�4312.44).
When the starting values of all parameters were set to an arbitrary value between �0.05 and þ0.05 relative to the maximum likelihood parameter values,
we found that the estimation time of the BADS and EM algorithms was 4 and 11 min, respectively.
21 We find that the “First scenario” dummy variable is an insignificant predictor of SP trips (Online Appendix 4), suggesting that there are no ordering
effects.
22 The regression results for the latent class models with class membership covariates are included in Online Appendix 5. Using an AIC-adjusted Vuong
non-nested test statistic (Vuong, 1989) (that is, adjusted for the number of parameters), we find that our DFM approach with three classes is more
appropriate than the latent class model with three classes (on-site corrected model: p ¼ 0.003; uncorrected model: p < 0.0001). Furthermore, our DFM
approach with four classes is more appropriate than the latent classes model with four classes (on-site corrected model: p < 0.0001; uncorrected model: p
¼ 0.038). We have not included the latent class model with four classes in the appendix because we are not completely confident that all 27 parameters
were recovered without identification issues.
23 The Vuong statistic also supports the on-site correction based on the models with all initial covariates included (p ¼ 0.05).



Table 7
Predicted trips and consumer surplus.a

Corrected for on-site sampling bias Not corrected for on-site sampling
bias

Mean 95% CI Mean 95% CI

Predicted trips per person per year
Current situation 28.90 (18.02e39.77) 31.80 (24.92e38.67)
50% grass cover in yearþ2 29.22 (18.06e40.37) 26.89 (20.57e33.20)
100% grass cover in yearþ2 24.02 (12.80e35.23) 24.55 (18.65e30.44)
50% burned cover in yearþ1 23.28 (14.77e31.78) 25.80 (19.95e31.64)
100% burned cover in yearþ1 19.09 (11.32e26.85) 20.41 (15.21e25.60)
Current situation, but with access fee in yearþ1 26.30 (16.18e36.41) 29.07 (22.75e35.38)

Predicted consumer surplus per trip 14.28 (12.24e16.31) 14.96 (13.00e16.92)
Predicted consumer surplus per person per year
Current situation 412.59 (208.37e616.80) 475.85 (350.76e600.93)
50% grass cover in yearþ2 417.15 (224.07e610.22) 402.35 (287.55e517.14)
100% grass cover in yearþ2 342.95 (142.26e543.63) 367.31 (258.78e475.83)
50% burned cover in yearþ1 332.44 (175.60e489.27) 386.09 (277.32e494.85)
100% burned cover in yearþ1 272.62 (136.06e409.17) 305.42 (215.63e395.20)
Current situation, but with access fee in yearþ1 375.55 (184.97e566.12) 434.95 (316.93e552.96)

a Standard errors are obtained by means of the delta method.
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included in the analysis. Again, based on a Vuong test, we find support for the on-site correction using these models (p ¼
0.09).
5.2. Welfare change estimation

The expected consumer surplus of individual i under treatment t belonging to class k is calculated by (Hellerstein and
Mendelsohn, 1993):

EðCSitkÞ¼
Zpx

c

px
0

Z
E

f ðεÞmitkdεdp; (21)

where ε represents unobserved heterogeneity, of which the probability density function is f over a range E. We integrate over
the probability density function by computing the probability weighted sum over K discrete classes. Taking into account the
semi-log functional form of recreation demand (Bockstael et al., 1989), the expected consumer surplus can be calculated as:

EðCSitÞ¼
XK
k¼1

PrðlkÞ
mitk

�btp
; (22)

where btp is the travel cost coefficient of treatment t. The inconsistency between RP and SP parameters makes the use of both
demand equations somewhat problematic for welfare estimation, because the difference between recreation demand and
consumer surplus in the current situation and hypothetical treatments is not only caused by quality or price changes, but also
by the difference between the RP and SP parameter estimates for the travel cost, intercept and factor loading. Whereas the
difference in factor loadings indicates inconsistency between the degree of preference dispersion of the RP and SP data sets,
the difference of the intercept and travel cost terms implies a difference between actual and intended behavior under the
same quality and price. This means that quality-induced changes in recreation demand are confounded by the change caused
by inconsistency between actual and intended behavior if both the RP and SP equations are used for prediction. This implies
that we have to use either the RP or SP equation to examine the effect of quality changes on recreation demand only.24 Since
only the SP equation was informed with recreation demand after quality changes, we use the SP equation to forecast future
recreation demand. In particular, we use the SP equation to calculate trips and consumer surplus under baseline conditions by
setting the treatment variables to zero, and for each hypothetical treatment by setting the associated treatment variable to
one and the others to zero. We obtain predicted mean trips and consumer surplus under relevant demand conditions by
computing the mean for each individual in the sample and subsequently computing the sample average. The predicted trips
and consumer surplus are provided in Table 7.
24 Another commonly adopted approach is to estimate an SP dummy covariate and set it to zero in welfare estimation. However, this requires including an
extra treatment in which anticipated recreation demand under the status quo is elicited.
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The corrected and uncorrectedmodel predict similar impacts of the hypothetical scenarios on trips and consumer surplus.
Expected trips show the largest decrease directly after a wildfire in which 100 percent of the heathland area was burned in
bothmodels. Expected trips are also lower in the subsequent years compared to the pre-burn situation but are higher than the
expected trips in the year immediately following a 100 percent wildfire. The same pattern is observed for consumer surplus.
Furthermore, expected trips and consumer surplus are not significantly affected by a hypothetical access fee.
5.3. Discussion

The consumer surplus calculatedwith the SP travel cost coefficient (EUR 14.28 (95% CI: 12.24e16.32)) is significantly larger
than its RP counterpart (EUR 9.08 (95% CI: 6.93e11.23)). However, it is common for actual and hypothetical stated values to
differ by a factor of three (List and Gallet, 2001). In general, our consumer surplus estimates are higher than comparable
estimates in the literature. For example, a recent meta-analysis of recreational valuation studies concerning European Na-
tional Parks found a mean consumer surplus of EUR 7.55 per trip (Sch€agner et al., 2016). A potential explanation for this
difference might lie in the fact that the study area is the only National Park in Belgium, potentially attracting more visitors
from relatively far away due to the lack of substitutes. A second potential explanation for this difference might lie in the
relatively high mean household income of the sample (EUR 2719 per household per month), which was 64 percent higher
than the mean household income across European Union Member States in the study year (2018) (Eurostat, 2019).

As noted, we found that the dummy variables for all hypothetical quality change treatments, except “50 percent grass
cover,” have significant coefficients in the regression models, but the predicted decrease of expected consumer surplus is
significant only for the “100 percent burned” scenario. This finding could be the result of DFM�GNB producing relatively large
standard errors in the final welfare estimates relative to parametric estimators (Landry and Liu, 2009). Another explanation is
that visitors are indifferent about whether there is grass or heath vegetation during recovery years. Indeed, some respondents
who did not report a change of visitation rates after a hypothetical wildfire indicated that the vegetation is not important for
their visitation rates, because they come to enjoy nature in general. Another possible explanation is that visitors anticipate
that the heathland area will recover in the future, and do not change their visitation behavior during the process of resto-
ration. With regard to the hypothetical increase of travel cost, we also find that an access fee of EUR 3 per visit or an annual
subscription pass of EUR 5 appears not to significantly decrease visitation rates to the study area. This implies that the park
management may consider asking for a contribution from visitors without significantly decreasing current visitation rates.

Our finding that recreation demand decreases after an extremewildfire is consistent with decreases found in early studies
on forest recreation in the United States (Flowers et al., 1985; Hesseln et al., 2003). Some recent studies have reported an
increase of annual visitation rates immediately or several years after forest fires (Hilger and Englin, 2009; S�anchez et al., 2016),
which can be (partially) attributed to the attractiveness of observing the sudden change in the ecosystem induced by the fire
or of observing a slowly recovering ecosystem. Our study showed no corresponding increases in recreation demand
immediately or several years after the wildfire, except that the on-site corrected model predicts a small but insignificant
increase of recreation demand immediately after an intermediate wildfire. This finding suggests that the negative impact
caused by the loss of heath vegetation weights heavier than the positive experience of observing wildfire effects. We also
observed that visitation rates partly recover during the years following an initial wildfire year. This contrasts with the findings
of Englin et al. (2001) who found that recreation demand declines during post-wildfire recovery years compared to imme-
diately after the wildfire.

Comparing the corrected model with the uncorrected model, the predicted trips in the former are, on average, 5 percent
lower. For example, without correcting for on-site sampling bias, the predicted number of trips per person per year in the
current situation is 31.8 (95% confidence interval (CI): 24.9e38.7). With correction of on-site sampling bias, the number of
predicted trips decreases to 28.9 (95% CI: 18.0e39.8). The opposite pattern is observed for consumer surplus, because the
uncorrected model has a smaller travel cost parameter than the corrected model, which reduces the consumer surplus per
trip. The estimated consumer surplus in the current situation is EUR 476 (95% CI: 351e601) per person per year without on-
site sampling bias correction, and with on-site sampling bias correction this amount decreases to EUR 41325 (95% CI:
208e617). On average, the correction for on-site sampling bias via the cross-equation correlation imposed by the discrete
factormethod decreases RP and SPwelfare estimates by 13 percent and 8 percent, respectively. The impact of the correction is
at the lower end of the range of impacts found in previous studies in which recreation demand models are corrected for on-
site sampling bias. For example, regarding the number of expected trips under current conditions, we found a 5 percent
decrease due to the correction, whereas Beaumais and App�er�e (2010), Egan and Herriges (2006), and Moeltner and
Shonkwiler (2005) reported decreases of 3 percent, 71 percent, and 94 percent, respectively.26 The relatively small impact
of on-site correction on welfare estimates may be attributed to the fact that RP-SP parameter inconsistency and a lack of RP
observations regarding wildfire impacts on recreation necessitate the use of SP coefficients for the computation of welfare
estimates. However, the SP coefficients are affected by the on-site correction less than the RP coefficients.
25 This is equal to 1.3% of mean annual household income.
26 Other studies that estimated corrected recreation demand models with empirical data (e.g. Hynes and Greene, 2013) did not report the impact of the
correction on welfare estimation.
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We note the following limitations of this study: First, the hypothetical treatments presented to the respondents imply that
a wildfire occurs with 100 percent probability. Within a risk analysis framework, the welfare loss after a wildfire can then be
multiplied with the expected increase in probability of a wildfire to obtain the expected value of increased wildfire risk in the
future. It is possible that different welfare estimates would be obtained if visitors were asked directly about their ex-ante
willingness to avoid an increase of wildfire risk. Hence, a possible avenue for future research is to investigate whether such an
alternative approach would lead to different welfare estimates. Second, we did not take into account the travel cost to
substitute sites. Ignoring the travel cost to substitute sites may have introduced some omitted variable bias. However, the
assumption that there are no close substitutes for our study area seems reasonable because it is located in the only national
park in Belgium and the availability of other accessible heathland areas of similar size is low. Third, the rejection of con-
sistency between revealed and stated preference parameters indicates that the data sources should not be combined. The
difference of the RP and SP parameter estimates implies that the provided welfare estimates are upward biased under the
assumption that revealed preference data are more valid than stated preference data. However, the rejection of parameter
consistency does not tell us which data source is more valid, or whether neither is valid. Further research should address the
sources of bias in the revealed and stated preference data, particularly when the effect of climate hazards on visitation
behavior is concerned. Fourth, the estimates may be less efficient than estimates obtained with competing parametric
models, such as the Multivariate Poisson Log-Normal model. However, the latter model may not be able to deal with the
relatively large number of treatments. This implies that a tradeoff exists between the number of treatments that researchers
want to include and the need for efficiency in the estimates. This tradeoff is particularly relevant for valuing the impact of
climate-induced events on recreation, because the magnitude of climate-induced events is unknown and different magni-
tudes can have contrasting effects on recreation. In our case, without including treatments with wildfires of different
magnitude, the non-linearity property of the effect of wildfires on recreational value would have gone unnoticed. This means
that DFM�GNBmay be able to provide useful information in studies inwhich the quality change is uncertain, and the aim is to
investigate a range of outcomes. On the other hand, parametric models may be preferred if the magnitude of the quality
change is less uncertain. Finally, we used Marshallian consumer surplus to compute welfare changes, in the absence of
sufficient data to reliably estimate the income coefficients. In many cases, Marshallian welfare is a reasonable approximation
of Hicksian welfare, although the approximation error depends on the income elasticity and the amount of income spent on
the good (Hausman, 1981).
6. Conclusions and recommendations

In this study we combined a finite mixture model � the Discrete Factor MethodeGeneralized Negative Binomial
(DFM�GNB) model�with on-site survey data after extending themodel to control for on-site sampling bias. The survey data
consisted of revealed and stated preference data collected among heathland visitors in the Hoge Kempen National Park
(Belgium).

Consumer surplus estimates obtained with the on-site sampling bias corrected and uncorrected models suggest that if a
heathland area is affected by an intermediate or extreme wildfire, recreation demand will significantly decrease. Consumer
surplus significantly decreases in the case of an extreme wildfire only. In the years after an intermediate or extreme wildfire,
there is no significant effect on recreation demand or consumer surplus.

We find that our model specification provides robust estimates for the travel cost and hypothetical quality change pa-
rameters. We reject consistency between revealed and stated preference parameters based on a likelihood ratio test. How-
ever, based on a Vuong test, we conclude that the models corrected for on-site sampling have a better model fit relative to the
uncorrected models. This implies that our analysis still benefits from joint RP�SP estimation, because without the estimation
of an RP equation we are not able to properly correct for on-site sampling bias correction. However, we do note that this
correction does not have a significant impact on welfare measures in our specific application.

The welfare estimates obtained in this study can be compared with the costs of wildfire prevention measures, which
include a combination of mowing, grazing, controlled burning, and maintaining compartments that prevent the spread of
wildfires. Verburg et al. (2017) recently estimated the costs of these measures for a number of European, terrestrial eco-
systems. Based on this, the conservation costs of our study area are estimated to amount to EUR 240,000 per year. Depending
onwhether revealed or stated preference data are used, we estimate that the recreational value exceeds these costs by a factor
6 or 10 (EUR 1,590,750 per year or 2,500,750 per year, respectively, based on 175,000 trips to the Mechelse Heide per year
(Pollaris, 2018)). Our results also suggest that recreational value alone may not fully justify investment in restoration man-
agement after wildfires because of the relatively small difference between visitation rates in a grass-encroached area and the
current situation. However, heathland areas also provide a variety of other benefits that are not accounted for in our study and
that would need to be included in a comprehensive cost-benefit assessment of wildfire prevention measures.
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