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ARTICLE INFO ABSTRACT

Keywords: Vibrational spectroscopy techniques are some of the most-used tools for materials characterization. Their si-
Phonons mulation is therefore of significant interest, but commonly performed using low cost approximate computational
Vibrational spectra methods, such as force-fields. Highly accurate quantum-mechanical methods, on the other hand are generally
DAEfeCts L only used in the context of molecules or small unit cell solids. For extended solid systems, such as defects, the
Fingerprinting . . . . . s .

DFT computational cost of plane wave based quantum mechanical simulations remains prohibitive for routine cal-
Diamond culations. In this work, we present a computational scheme for isolating the vibrational spectrum of a defect in a

solid. By quantifying the defect character of the atom-projected vibrational spectra, the contributing atoms are
identified and the strength of their contribution determined. This method could be used to systematically im-
prove phonon fragment calculations. More interestingly, using the atom-projected vibrational spectra of the
defect atoms directly, it is possible to obtain a well-converged defect spectrum at lower computational cost,
which also incorporates the host-lattice interactions. Using diamond as the host material, four point-defect test
cases, each presenting a distinctly different vibrational behaviour, are considered: a heavy substitutional dopant
(Eu), two intrinsic point-defects (neutral vacancy and split interstitial), and the negatively charged N-vacancy
center. The heavy dopant and split interstitial present localized modes at low and high frequencies, respectively,
showing little overlap with the host spectrum. In contrast, the neutral vacancy and the N-vacancy center show a
broad contribution to the upper spectral range of the host spectrum, making them challenging to extract.
Independent of the vibrational behaviour, the main atoms contributing to the defect spectrum can be clearly
identified. Recombination of their atom-projected spectra results in the isolated spectrum of the point-defect.

First principles

1. Introduction

Vibrational spectroscopy is a widely used tool for the structural
characterization of solids [1-9]. Modeling these experimental spectra at
the quantum mechanical level starts from the calculated vibrational
spectrum of the system, with the appropriate intensities for the in-
dividual spectral modes determined depending on the target experi-
mental technique (e.g., Infra-Red, Raman,...) [10,2]. Since atomic scale
calculations allow for full control over the underlying atomic structure,
they also provide a direct link to the features of the resulting vibrational
spectrum. As such, they give access to an invaluable source of structural
information and fundamental understanding; e.g., about the impact of
(point-) defects [11-16]. However, such calculations for point-defect
systems at the quantum mechanical level face a significant limitation:
the calculation of an accurate and converged vibrational spectrum

requires the use of large cells, which is computationally very de-
manding [17,18,9]. Furthermore, in the case of point-defects, the main
interest goes to the modifications of the host spectrum due to the defect.
It is therefore of interest not to spend computational resources on the
reconstruction of the host spectrum, but to limit the calculations to the
contributions of the point-defect itself.

In contrast to solid state modeling, where the phonon spectra are
generally only considered for small wunit cell systems
[19,20,12,21,16,22-24], several approaches have been developed to
deal with large systems within the context of (bio-) molecular structure
investigations [25]. Examples are the selective calculation of specific
normal modes [26,18], the partial optimization of the molecular geo-
metry [27], and the reduction of the Hessian by assuming rigid sub-
systems [28-30]. Others have presented a fragment approach, in which
a large system is decomposed into fragments for which high quality
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properties are calculated. The resulting fragment properties are then
recombined as approximation of the original system [31]. Yamamoto
et al. [32,33] showed this method reproduces spectra of large molecules
faithfully as long as “suitable” fragments were selected. They also note
that the force field transfer accounted for nearly half of the observed
error [32]. Hanson-Heine et al. [34] presented a local mode approach
which can be used within the context of 2DIR spectroscopy of large
systems, where it provides a platform for the parameterization of site
frequencies and coupling maps with regard to the geometry of different
functional groups. Another proposed fragment strategy is centered on
the construction of the Hessian matrix considering only the atoms in the
region of interest [35]. This approach efficiently succeeds in reprodu-
cing the spectra of interest, requiring only a small number of atoms to
be considered. In this method, the selection of the atoms belonging to
the fragment is rather ad hoc. Furthermore, delocalized modes can not
be treated with this approach. More specifically, within this approach
the remainder of the system is kept frozen which may in some cases
lead to unphysical behaviour if a normal mode is not tightly localized. A
similar partial Hessian approach is the so-called Mobile Block Hessian
approximation [29,30]. In this approach, the remainder of the system is
also considered, but to reduce the computational cost, the atoms out-
side the fragment of interest are grouped in rigid blocks, which have no
internal degrees of freedom, only 6 external degrees of freedom. In
contrast to these fragment approaches, Teodoro et al. [18] consider the
full system using a computationally cheap approximate method to ob-
tain the initial full spectrum, after which only the normal-modes of
experimental interest are selected and re-evaluated with a more accu-
rate method. Within the context of solids, some authors have presented
approaches in which the real space force constants matrix of a defect
super cell is embedded in a much larger force constant matrix of the
host material [11,9]. Such approaches have been used to investigate
disorder and dopant incorporation [20,13].

In this work, we approach the problem of creating a defect-spectrum
from a different angle (cf., Fig. 1). Starting from a comparison to the
vibrational spectrum of the host material, we present a method to
identify the atoms contributing to the vibrational spectrum of a defect.
The overlap of the atom-projected spectrum with the reference host
spectrum is presented as a suitable quantitative measure. A small defect
cell is shown to suffice to clearly identify the defect atoms, which are
limited in number. In addition, the defect spectrum obtained through
the combination of the atom-projected spectrum of the defect atoms is
well-converged even using a small defect system cell. The resulting
defect spectrum is continuous in nature, due to the incorporation of
defect-host interactions. Four diamond-based test cases are considered,
for which the individual spectra of the point-defects are determined.

Within the context of the fragment approximations mentioned ear-
lier, this method could resolve the ad hoc nature of atom selection.
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Fig. 1. Flowchart of the method used to create defect spectra.
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Furthermore, within the context of the partial Hessian approximations,
having a quantitative measure for the defect nature of an atom, would
allow for more targeted selection of Hessian sub-blocks. In both cases,
small supercells can be used to identify specific defect-atoms, and
partial Hessian calculations on large supercells to obtain the spectrum
of interest, reducing the computational cost of obtaining an accurate
quantum mechanical vibrational spectrum in a periodic solid.

2. Computational methods

First-principles calculations are performed within the Density
Functional Theory (DFT) framework using the VASP package [36]. The
kinetic energy cutoff of the plane wave basis set is set to 600eV to
obtain well converged forces, while the exchange correlation functional
as proposed by Perdew, Burke and Ernzerhof (PBE) is used to describe
the valence electron interactions [37]. The point-defects are imbedded
in a 64-atom conventional supercell, with the first Brillouin zone
sampled by a5 X 5 X 5 Monkorst-Pack grid. The negatively charged NV
center is explicitly modeled using a charged cell. Note that for practical
algorithmic stability, the VASP package counters this charge with an
opposing uniformly charged field. Although Coulomb interactions re-
quire the use of very large cells to obtain converged defect energies, we
will see that for our purposes, the 64 atom cell already provides a clear
qualitative picture. Further details on the computational settings used
are presented elsewhere [38,15].

3. Harmonic phonon spectrum of solids

In the following, we use the compact notation for the dynamical
matrix of Born and Huang [39], adding superscripts to distinguish be-
tween different practical situations. Vectors are indicated in bold, and
full matrices are indicated with a bar.

3.1. Construction of the atom-projected phonon DOS

Most modern quantum mechanical and quantum chemistry
packages provide access to the vibrational spectrum of a system at the
center of the first Brillouin zone, as a means to assess the quality of the
obtained atomic structure [40]. This vibrational spectrum at the
I'-point, can be obtained by the diagonalisation of the mass-weighted
Hessian matrix, also called dynamical matrix:

el (k, L r] = ;%,ﬁ(k, l]
mm (@D)]
with
ok :(L)
EXGEROIN @

In these matrix elements, E represents the total energy of the system, k
and [ are indices for the atoms of the system with m; and m; their re-
spective atomic mass. The cartesian directions are indicated by
a, B = x, y, z. In practical calculations, the individual matrix elements
@, g(k, I) can be determined either as the second derivative of the total
energy with regard to the displacements x, (k) and xz(1) of atom k and [,
respectively, or as the derivative of the forces acting on atom k by the
displacement of atom [: [41]

cba,ﬁ(k, l] = OE = —aEX(k)-
0, (k) 0x5 (1) dx (1) 3

For molecular systems, or clusters, a dynamical matrix as presented in
Eq. (1) would provide a complete picture. However, in the case of a
periodic solid there are two complications that need to be dealt with:
(1) the infinite nature of a theoretical crystal and (2) the finite size of
the first Brillouin zone.
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For a periodic crystal, all relevant physics is contained in a single
unit cell, reducing the number of atoms to consider from infinity to a
(small) finite number. On the other hand, to obtain the phonon density
of states of a periodic solid, one needs to integrate the spectrum over
the full Brillouin zone (similar as for the calculation of the electronic
density of states). As such, one infinity is replaced by another, albeit a
more manageable one, since the practical integration over the Brillouin
zone (BZ) is performed over a discretized grid of q-points. The vibra-
tional spectrum at each q-point is determined through the diag-
onalisation of the dynamical matrix: [39]

1
sz k, I, = ——&, 5| k, | |expiq| ri — 11,
"*( q) N "3( )pq(“ ] @

with ri and r; the real space position vectors of atoms k and [, re-
spectively.

Furthermore, because interatomic interactions are infinitely ranged,
the dynamical matrix needs to incorporate interactions with other unit
cells as well. Indexing the unit cells, with R = 1 being the reference unit
cell (UC), the general form of the dynamical matrix can be written as:

0

AN ﬁ%(k, Dexpiq(rics — T1x), -
with k, [ € [1, n] and n the number of atoms in the unit cell. For
practical purposes, R can be truncated to a finite number of unit cells,
Ruax, as the contributions to the dynamical matrix of unit cells farther
away becomes vanishingly small [39,42]. The convergence of the vi-
brational band structure and density of states (DOS), as function of
Rynax, is shown in Fig. 2. Note that diamond has a rather small primitive
unit cell. For large unit cell systems, such as for example metal-organic
frameworks [43], a converged spectrum may be obtained already at the
unit cell level (i.e., Ryuo = 1).

Furthermore, for supercell calculations [44], which are generally
used to obtain vibrational spectra from quantum-mechanical calcula-
tions [45], the supercell dynamical matrix, Eq. (4), and the unit cell
dynamical matrix, Eq. (5), are related through symmetry. Both give rise
to the same phonon DOS. However, as matrix diagonalization scales
approximately as O(n®), Eq. (5) is much more efficient for larger su-
percells. This is of interest when using a dense sampling of the BZ.

The dynamical matrix is diagonalised by solving the following ei-
genvalue problem:

DBZUC(q)-v(q, j) = w?(q, j)v(q, j), 6)

with w?(q, j) the j™ eigenvalue at wave vector q and v(q, j) the cor-
responding eigenvector. This eigenvector v(q, j) represents the mass-
weighted displacement vectors associated with phonon-mode j. From
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Fig. 2. The vibrational band structure and resulting vibrational density of states
(DOS) as obtained with Eq. (5) for pristine bulk diamond. Different color curves
are used to show the convergence of the vibrational band structure and DOS
with regard to the supercell size. The supercells are constructed starting from
the primitive 2-atom unit cell. The supercells contain 2 (1 x 1), 16 (2 x 2), 54
(3 x 3), 128 (4 x 4) and, 250 (5 x 5) atoms.
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this it is possible to construct a weighing for each atom:
2
Z Va,k(q, ,] )

Iv(g, NI

welq,j|=

)

allowing for a partitioning of the phonon DOS. The weighing factors
normalize to one as ), wi(q, j) = 1 [46]. The atom-projected phonon
spectrum for atom k at a frequency v is then calculated as:

3N
1
o)=Y — [ w|q.jlw|a.j|d|v.o|q.j||dg.
= Vez S ®

with V3, the volume of the first Brillouin zone and & the Dirac delta
function. Note that we sum over 3N and not 3N — 3 states. The 3
translation modes, which are zeros at the I'-point, turn into the 3 non-
zero acoustic modes in the remainder of the BZ.

3.2. Differences of spectra

When trying to extract the part of the vibrational spectrum due to a
(point-) defect, one may be tempted to take the difference of the full
defect system spectrum and a reference spectrum (c.q., the spectrum of
the host material). The result will contain clear defect features—such as
new peaks outside the host spectrum, and new intense features within
the range of the host spectrum. This can provide a reasonable qualita-
tive picture, even though significant noise as well as negative intensities
are to be expected. The latter being undesirable during further pro-
cessing of the spectrum; for example to calculate vibrationally-derived
thermal materials properties [47,48].

Correct normalisation with regard to the host spectrum is compli-
cated by the possible difference in number of atoms (e.g, due to an
interstitial or vacancy), but also by the question of which atoms belong
to the defect (e.g, only the substitutional dopant, or also nearest
neighbours?).

To move beyond the qualitative identification of defect-related vi-
brational states and properties it is necessary to obtain a well-normal-
ised spectrum (i.e., the integrated DOS corresponds to the actual
number of states involved in the defect spectrum) as well as an asso-
ciated listing of defect-contributing atoms. The resulting defect-host
partitioning should be independent of the defect system, and provide a
quantitative measure for identifying atoms belonging to the defect.

3.3. Isolating the phonon spectrum of a defect

To address the problem of isolating the phonon spectrum of a defect,
we start from the inverse problem: Which atoms contribute to the defect
spectrum? Although the approach can be extended easily to host ma-
terials with multiple inequivalent atomic sites and multiple atomic
species, we present the methodology from the perspective of a host
material containing only a single atomic species and a single in-
equivalent atomic position: diamond. In such a system, all atoms are
perfectly equivalent, making their contribution to the phonon spectrum
identical (i.e., % times the total phonon spectrum of a cell containing n
atoms). Therefore, the impact of a defect can be identified clearly as the
deviation from this reference spectrum.

A straightforward method to quantify this difference is by means of
the Root-Mean-Square-Deviation (RMSD) of the two (normalized)
spectra:

RMSD () Jﬁf;'g“ @) — &))*dv ,
\v‘ Vmax (C)]

with Ve the highest frequency of the spectra @ and @j, the normalised
host and atom spectrum, respectively. In this case, a host atom has



D.E.P. Vanpoucke

theoretically an RMSD of zero. A defect atom, on the other hand, has a
positive non-zero RMSD. However, as this is an unbound function of
which the value strongly depends on the shape of the spectra @ and @y,
the information gained is too limited for our purpose.

Alternately, the overlap of the (normalized) phonon spectrum ob-
tained for the host system and atom k of the defect system presents a
bound function with an upper value of 1 (or 100%):

X = (/; min(a(”), @r (V))dv/] x 100%.

In this case, a host atom shows 100% overlap while a defect atom shows
a lower value [49]. A value of 0% could in theory be obtained for a
defect atom which gives rise only to vibrational contributions outside
the host spectrum. The substitutional Eu atom in diamond, which we
will discuss later, approaches this theoretical limit with y;, = 10%.

We noted earlier that the vibrational spectrum and DOS for systems
with a small unit cell (such as prospective host systems) may require
rather large supercells to present a converged picture (cf., Fig. 2). De-
fects, in contrast, are modelled using large supercells to approximate
the experimentally relevant “low” defect concentrations. As a result,
longer ranged vibrational interactions are by default incorporated for
such systems, leading to a more converged phonon spectrum than is the
case for a small host system unit cell (c¢f., black curve in Fig. 2). It is
therefore essential to obtain a sufficiently converged host reference
spectrum, @ (v), (cf., the 5 X 5 X 5 spectrum in Fig. 2)) to avoid artificial
overlap mismatch when calculating y;.

Fortunately, this mismatch can be quantified by calculating the
convergence of y; of the host spectrum itself. In the case of diamond,
this is shown in Fig. 3. E.g., the y; of a 2-atom diamond system gives a
mismatch of about 20%. As such, a “host atom” in a defective system,
when using the 2-atom reference data, would have a y;, of about 80%,
instead of the theoretical maximum of 100%. This is seen in Fig. 4,
showing X ;. Of the host C atoms in the defect systems to be in the
range of 79-84% for the 1 X 1 x 1 reference spectrum. As the compu-
tational cost—even at the quantum-mechanical level—of obtaining well
converged reference host spectra is not extreme when taking advantage
of (translational) symmetry, we consider this not to be a limitation in
the practical application of the presented method. We therefore assume
in the following that the reference spectra are sufficiently converged.

For the “host atoms” in defect systems, long ranged interactions
impact their expected y; as well. As can be seen in Fig. 4, this leads to a
leveling of the host atom y; as function of the reference spectra used.

For the point-defects modeled with a 64 atom conventional super-
cell (which is relatively small for a defect cell), the y, of the host atoms
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Fig. 3. Convergence of the diamond vibrational spectrum as function of the
supercell size, using y, as quality measure. The vibrational DOS of the 5 X 5 x 5
supercell is used as reference.
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ranges between 89 and 92%, which is consistent with the convergence
of the host atom overlap in the primitive 2 X 2 X 2 cell (cf., Fig. 3). For
larger defect cells, the overlap of the host atoms increases, as can be
seen for the example of the C; point-defect (cf., Fig. 4). Placing the
point-defect in a conventional 3 x 3 x 3 supercell, x; of the host atoms
increases to about 95%. This, in turn, is consistent with the convergence
of the reference host atom in the primitive 3 x 3 x 3 cell (cf., Fig. 3).
More interestingly, this increase is not due to a gradual increase in y;
for atoms ever farther away from the point-defect, but rather due to a
general upward shift of the overlap of the non-defect atoms, as can be
seen in Fig. 5.

In contrast, )y; remains the same for the defect atoms, indicating y;
of defect atoms to rapidly converge with regard to system size. As such,
X is shown to be a useful measure to effectively determine the atoms
belonging to the defect, and even to which degree. This allows for the
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Fig. 5. The overlap y, for each atom k of the diamond point-defect systems
modeled using a small 2 X 2 X 2 conventional cell (64 atoms). The atoms
forming the defect centers are indicated, as well as their nearest neighbours
(NN). The horizontal dashed lines show the average y, value found for atoms in
a range of 3-5 A from the defect center for the 2 x 2 x 2 defect cells. The red
crosses show the result for a C; point-defect using a 3 X 3 X 3 conventional cell
(216 atoms), for comparison.
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efficient calculation of the fragment spectra of a defect in a larger su-
percell system. Furthermore, the y, values also allow for the systematic
improvement of such fragment spectra (cf. below and Fig. 7) without
the need for ad hoc selection [35]. Instead of defining a purely spatial
threshold function, the threshold for inclusion can now be directly re-
lated to the atom’s contribution to the defect spectrum. Alternately, it is
also possible to directly construct a defect spectrum from the atom
projected spectra, using y; for selection purposes. The resulting spec-
trum will contain all (defect) features missing in the host spectrum.
More importantly, this defect spectrum also contains contributions due
to the interaction of the defect with the host lattice. These are in-
corporated through the (defect-) atom projection of (delocalized) host
system modes. Furthermore, the partitioning of the system into a host
and defect fraction could be used as a platform to calculate derived
thermodynamic contributions due to the defect (which goes beyond the
scope of the current work). Also, due to the small size of the fragment to
consider, one could more easily move beyond the standard harmonic
approximation [17,50,51].

4. Diamond based defects

To evaluate our method, four different point-defects in diamond are
considered.

e The substitutional Eu dopant in diamond (Euy,): This heavy lan-
thanide dopant gives rise to low lying atomic phonon bands with a
clearly distinguishable peak in the phonon spectrum [15].

The (001) split interstitial (C;): This intrinsic point-defect places two

C atoms at a single site. It provides a local breaking of the symmetry

with limited change in the chemical environment. As a result, two

very distinct optical phonon peaks are created well above the bulk
spectrum.

o The neutral C vacancy (Cy): This intrinsic point-defect is obtained by
removing a single C atom, and as a result, it resembles pristine
diamond most closely [38].

e The negatively charged nitrogen-vacancy centre (NV~): One of the
most discussed and studied point-defects in diamond. This defect
presents a combination of a substitutional dopant and a carbon
vacancy. Due to a mass comparable to that of C, the N atom gives
rise to a spectrum comparable to that of C itself, making it chal-
lenging to extract while being of great interest for applications.

Our choice to consider point-defects in this section, is rooted in their
intrinsic simplicity for practical purposes. E.g, it straightforward to
define a distance measure with regard to a point-defect. However, we
expect our method to be equally well suited to deal with more complex
defects such as defect-clusters. One could even image its use for ex-
tended defects such as defect lines, or interfaces such as grain bound-
aries or surfaces. Of course in the later cases, one will require larger
cells to deal with the larger sizes of the defects. The application of this
method to surfaces poses some challenges as well as promising cap-
abilities. One of the challenges lies in the comparison of a 2D surface
Brillouin zone to that of a 3D bulk Brillouin zone. Notable exceptions
being the true 2D materials such as graphene and 2D-dichalcogenides
[52-55]. A promising capability would be the fingerprinting surface
defects. But this method could also be used to fingerprint surface re-
constructions such as dimer-row reconstructions or the formation of
nanowire arrays, providing a new tool for corroborative modeling of
experimental systems [56,57].

These examples, although very interesting in their own right, go
beyond the scope of the current work.

4.1. Defect phonon spectra

The overlap y; is calculated for each atom in the defect systems. In
Fig. 5, x, is shown as function of the distance of atom k to the center of
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Fig. 6. The phonon spectra of the four diamond point-defects (red curves) and
the partial phonon spectrum due to the point-defect (blue curve) with a
threshold of y;, < 85%. The bulk diamond spectrum (black curve) is given as
reference.
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Fig. 7. The phonon spectrum of the C; point-defect as obtained using a 65
(2x2x2)and a 217 (3 X 3 x 3) atom supercell, with y, < 85%. Fragment
spectra obtained using only atoms with y, < 34, 77,81, and 89% in the
3 X 3 X 3 system, are shown in comparison. Dotted lines indicate the position of
specific defect spectrum features.

Table 1

CPU time (days) required to generate the Hessian matrix of the C;
point-defect in diamond, using first-principles quantum-mechan-
ical calculations.

System CPU time (days)
3 X 3 x 3 full spectrum 3322

2 % 2 x 2 full spectrum 137

Fragment 34% 32

Fragment 77% 83

Fragment 81% 138

Fragment 89% 251

the point-defect. The atoms at the center of the point-defect are in-
dicated, as well as the nearest neighbour (NN) atoms. In Fig. 6, the
phonon spectrum of the different point-defects is presented in com-
parison to the phonon spectrum of pristine diamond. Both the Euy,;, and
the C; point-defect give rise to clearly distinguishable phonon peaks,
which show little to no overlap with the host phonon spectrum. This
results in very low y; values for Eu and the interstitial C atoms, as is
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seen in Fig. 5. The shells of NN and next-NN atoms already show rather
large y, values of 70-80%, indicating that their atom-projected spectra
are harder to distinguish from that of a host atom, but still clearly
different. In contrast, the Cy point-defect shows a phonon spectrum
quite similar to that of the host system, making it hard to indicate the
differences and their sources. However, looking at Fig. 5, four atoms
stand out clearly with a y, ~ 70%: the four atoms surrounding the
vacancy. Next-NN C atoms present a converged host character, showing
this point-defect to be strongly localized on the vacancy and its four
surrounding atoms. Considering the projected phonon DOS associated
with these atoms (blue curve in the bottom left panel of Fig. 6), it be-
comes clear that the defect spectrum consists of a peak at the high end
of the spectrum, and two peaks around 14.5 and 17 THz. Turning our
attention to the NV~ point-defect, we notice in Fig. 5 that for the N
atom, as well as for the three C atoms surrounding the vacancy,
X ~ 70%, similar as for the C, point-defect. The NN C atoms sur-
rounding the N atom, on the other hand, present a high ), associated
with host atoms. The defect spectrum is also quite similar to that of the
Cy point-defect, with additional peaks in the range of 14-17 THz.
However, in contrast to the C point-defect, the peak at the high end of
the spectrum is much less pronounced.

4.2. Comparison to the fragment spectrum: the (001) split interstitial

In Fig. 7 the defect spectrum of the C; point-defect is shown, ob-
tained in both a smaller 2 X 2 X 2 (brown curve) and larger 3 X 3 X 3
(black) diamond supercell. This shows that the 2 x 2 X 2 supercell is
sufficient to construct a well-converged defect spectrum. The two op-
tical peaks at about 45 THz and 55 THz are found to be within 0.5 THz
of the results obtained with the 3 X 3 X 3 supercell, while the feature at
13 THz shows no visible deviation. Furthermore, the broad band, due to
defect-host system interactions, is well converged. It is important to
note that the computational cost for generating the first-principles
Hessian matrix within a periodic plane waves approach (shown in
Table 1), for the 2 x 2 X 2 supercell is 24x lower than for the larger
supercell, making this a cost-efficient approach.

The defect spectrum is also compared to different fragment spectra
obtained using the 3 X 3 X 3 supercell. The atoms belonging to the
fragment are determined using their ), value: y, <34% (2 atoms), 77%
(6 atoms), 81% (10 atoms), and 89% (18 atoms). The resulting defect
spectra obtained using the fragment approach are shown in Fig. 7. All
fragments (except the smallest 2-atom fragment) give rise to the two
optical modes, and it is only the largest fragment which positions them
with an accuracy comparable to the 2 x 2 X 2 defect spectrum (at al-
most twice the computational cost). More interestingly, the feature at
13 THz is not retrieved in the fragment spectra, neither is the broad
interaction band.

5. Conclusions

In this work, a method is presented for determining the phonon-
spectrum of a defect using relatively small periodic first-principles cal-
culations. Our method provides a quantitative measure for assigning
atoms to a defect. This allows it to be used in tandem with a fragment
approach to efficiently obtain incrementally more accurate fragments in
much larger supercells. Alternately, combining the atom projected vi-
brational spectra of the defect atoms gives rise to a quickly converging
defect spectrum which combines the defect specific features of the
spectrum with the contributions due to defect-host interactions. The
resulting partitioning of the system spectrum into a host and defect
component opens up the possibility for similar partitioning of proper-
ties derived from the phonon spectrum, which is the subject of ongoing
research. The presented methods have been implemented in the HIVE
package [58].
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