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Abstract

Background: Lake Tanganyika is considered a biodiversity hotspot with exceptional species richness and level of
endemism. Given the global importance of the lake in the field of evolutionary biology, the understudied status of

its parasite fauna is surprising with a single digenean species reported to date. Although the most famous group
within the lake’s fish fauna are cichlids, the pelagic zone is occupied mainly by endemic species of clupeids (Actinop-
terygii: Clupeidae) and lates perches (Actinopterygii: Latidae, Lates Cuvier), which are an important commercial source
for local fisheries. In this study, we focused on the lake's four lates perches and targeted their thus far unexplored
endoparasitic digenean fauna.

Methods: A total of 85 lates perches from four localities in Lake Tanganyika were examined. Cryptogonimid dige-
neans were studied by means of morphological and molecular characterisation. Partial sequences of the nuclear 285
rRNA gene and the mitochondrial cytochrome ¢ oxidase subunit 1 (cox1) gene were sequenced for a representa-
tive subset of the specimens recovered. Phylogenetic analyses were conducted at the family level under Bayesian
inference.

Results: Our integrative approach revealed the presence of six species within the family Cryptogonimidae Ward,

1917. Three out of the four species of Lates were found to be infected with at least one cryptogonimid species. Two
out of the three reported genera are new to science. Low interspecific but high intraspecific phenotypic and genetic
diversity was found among Neocladocystis spp. Phylogenetic inference based on partial 285 rDNA sequences revealed
a sister group relationship for two of the newly erected genera and their close relatedness to the widely distributed
genus Acanthostomum Looss, 1899.

Conclusions: The present study provides the first comprehensive characterisation of the digenean diversity in a fish
family from Lake Tanganyika which will serve as a baseline for future explorations of the lake’s digenean fauna. Our
study highlights the importance of employing an integrative approach for revealing the diversity in this unique host-
parasite system.
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Background

Lake Tanganyika, the oldest African rift lake (9—-12 myr
[1]), has attracted scientific exploration since the mid-
nineteenth century and is recognised as an evolutionary
reservoir and hotspot of diversification [2—4]. It is known
for its great diversity of both vertebrate and invertebrate
taxa. Compared to the other East African Great Lakes,
Lake Tanganyika is characterised by the highest num-
ber of endemic species flocks with the greatest number
of endemic non-cichlid fish species [5]. Together with
the tremendous diversity of fishes, also a stunning diver-
sity of parasites is known to have evolved in at least one
cichlid fish lineage in the lake [6]. However, the current
knowledge on the parasite diversity in Lake Tanganyika
is rather limited. Only a negligible portion of the fish
host species have been subjected to studies [7, 8] and so
far, parasitological surveys have been mainly focused on
cichlid fishes and their monogenean parasites [9-14].
Currently, a total of 59 helminth parasite species are
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described in the lake [7, 11-16]. One of the Lake Tang-
anyika’s smaller fish radiations are the four lates perches
of the genus Lates Cuvier (Actinopterygii: Latidae), i.e.
Lates mariae Steindachner, Lates microlepis Boulenger,
Lates angustifrons Boulenger and Lates stappersii (Bou-
lenger), important members of the pelagic and benthope-
lagic lake ecosystems [17, 18] and a commercial source
for local fisheries [19]. Lates perches have lakewide dis-
tributions, a pattern seen also in other pelagic fish spe-
cies in Lake Tanganyika such as clupeids and some
cichlids [20-23]. All four Lates spp. are top predators in
the lake’s open water; however, differentiation in habitat
preferences can be detected [17].

Almost nothing is known on the digenean fauna infect-
ing the endemic Lates spp. in Lake Tanganyika which is
in contrast to the fairly large amount of data on L. niloti-
cus (L.) and their Asian congener, L. calcarifer (Bloch)
(see overview on the known helminth fauna of the
latid family members in Table 1) [24—42]. The present

Table 1 List of digenean species described from members of the family Latidae

Host Digenean species

Lates niloticus (L.) Euclinostomum sp.
Acanthostomum knobus Issa, 1962

Acanthostomum niloticum Issa, 1962

Acanthostomum spiniceps (Looss, 1896) Looss, 1899

Tylodelphys sp. (metacercaria)
Echinostoma sp.

Lates calcarifer (Bloch)
Allocreadium fasciatusi Kakaji, 1969°
Cardicola sp.

Cruoricola lates Herbert, Shaharom-Harrison & Overstreet, 1994
Parasanguinicola vastispina Herbert & Shaharom, 1995

Stephanostomum cloacum (Srivastava, 1938) Manter & Van Cleave, 1951

Psammoperca waigiensis (Cuvier)

Prosorhynchus luzonicus Velasquez, 1959
Prosorhynchus sp.

Callodistomum minutus Zaidi & Khan, 1977
Pseudometadena celebesensis Yamaguti, 1952
Pseudometadena sp.

Proctoeces maculatus (Looss, 1901) Odhner, 1911°
Pseudohypertrema karachiense Bilgees, 1976
Erilepturus hamati (Yamaguti, 1934) Manter, 1947°¢
Lecithochirium sp.

Opecoelus piriformis Yamaguti, 1952

Psilostomum sp.

Sanguinicolidae gen. sp.

Prototransversotrema steeri Angel, 1969
Transversotrema patialense (Soparkar, 1924) Crusz & Sathananthan, 1960
Ningalooia psammopercae Bray & Cribb, 2007

Family Reference
Clinostomidae [24]
Cryptogonimidae [25,26]
[25, 26]
[27]
Diplostomidae [28]
Echinostomatidae [29]
Acanthocolpidae [30]
Allocreadiidae [31]
Aporocotylidae [32]
[32,33]
[32,33]
Bucephalidae [34]
[35]
Callodistomidae [36]
Cryptogonimidae [34]
(34]
Fellodistomidae [36]
(37]
Hemiuridae (38]
[34]
Opecoelidae [39]
Psilostomidae [34]
Sanguinicolidae [35]
Transversotrematidae [40]
[34,39]
Acanthocolpidae [42]

@ Reported as Psilostomum chilkai Chatterji, 1956

b Reported as Complexobursa magna Bilgees, 1979

€ Reported as Lecithochirium neopacificum Velasquez, 1962
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knowledge on the parasite fauna of Lates spp. in the lake
includes records for a single monogenean species infect-
ing three out of the four species [16], and an unidentified
larval nematode belonging to Dujardinascaris Baylis,
1947 from L. microlepis [15]. Currently, a single trema-
tode species is known from the lake, i.e. Neocladocystis
tanganyikae (Prudhoe, 1951) (Digenea: Cryptogonimi-
dae) originally described by Prudhoe [43] as Cladocystis
tanganyikae Prudhoe, 1951 found among a collection of
several cichlid species and Lamprichthys tanganicanus
(Boulenger). However, given the uncertainty of the host
species, this record has to be revalidated [7].

Members of the family Cryptogonimidae Ward, 1917 are
parasitic in the intestine and/or pyloric caeca of marine
and freshwater teleosts, reptiles and amphibians [44]. Of
the over 200 species of 64 genera reported worldwide [44]
only seven species of four genera, Acanthostomum Looss
1899, Brientrema Dollfus, 1950, Neocladocystis Manter
& Ritchard, 1696 and Siphodera Linton, 1910, are known
from African freshwater fishes [25, 26, 43, 45-49]. This
emphasises the lack of research and constrains further
parasitological studies on the ecology, evolution and con-
servation of economically important fish species.

The present study aims to increase the knowledge on
the parasite fauna of the economically important lates
perches, i.e. L. angustifrons, L. mariae, L. microlepis and
L. stappersii endemic to Lake Tanganyika, and particu-
larly on the digenean trematodes as an integral compo-
nent of the local food chain and the ecosystem [50]. Here,
we provide the first molecular data for trematode para-
sites from the lake accompanied by morphological char-
acterisation and descriptions. Additionally, phylogenetic
inference based on DNA sequence data is used to evalu-
ate the phylogenetic relationships of the newly described
species at family level.
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Methods

Collection and fixation of specimens

Specimens of four species of Lates, L. angustifrons, L.
mariae, L. microlepis and L. stappersii, were either pur-
chased from local fishermen or collected by hand nets
during field trips in 2016 and 2018, respectively (see
Table 2) [51]. A total of 85 specimens was sampled at four
sampling locations: (i) at the northern part of the lake
off Uvira, Democratic Republic of the Congo; and (ii) at
the southern part of the lake at Katukula, Mpulungu (fish
market) and Mutondwe Island (all three in Zambia; see
Fig. 1 for further details). Fish were examined fresh fol-
lowing the standard protocol of Ergens & Lom [52]. The
recovered digenean trematodes were rinsed and cleaned
in a Petri dish with saline solution; most of the saline
solution was gently removed by pipetting and the speci-
mens were killed by nearly boiling water. Subsequently,
the trematode specimens were preserved either in 4%
formalin and 70% ethanol, or in 96% ethanol for morpho-
logical and molecular studies, respectively.

Morphological examination

Specimens preserved in 4% formalin or 70% ethanol were
stained with iron acetocarmine, dehydrated through a
graded ethanol series, cleared in dimethyl phthalate and
examined as permanent mounts in Canada balsam. All
specimens for which sequence data were generated were
preserved in 96% ethanol and later photographed from
wet mounts in distilled water using the Leica Applica-
tion Suite v.4.3.0. analysis software on a Leica DMR light
microscope (Wetzlar, Germany) at magnifications of
100-1000x. Subsequently, a piece of the posterior part of
the specimen (the post-testicular region) was excised and
used for DNA isolation. The remaining anterior part of

Table 2 Distribution and infection parameters of cryptogonimid species recovered in this study

Host species Locality Coordinates Locality sub-basin® Date of collection No. of fish No. of fish
specimens specimens
examined infected®

L. angustifrons Mpulungu 8°46°S,31°07E Southern 12.iv.2018 7 2/0/1/2/1/1

L. mariae Uvira 3°22°S,29°09'E Northern 12.viii.2016 2 0/1/0/0/0/0

Mpulungu 8°46°S,31°07°E Southern 16.iv.2018 11 0/0/0/0/0/0

L. microlepis Mutondwe Island 8°42°S,31°07°E Southern 16.iv.2018 8 3/0/0/2/0/0

Katukula 8°43'S,30°57E Southern 14.iv.2018 5 3/0/0/3/0/0
Mpulungu 8°46'S,31°07E Southern 13.iv.2018 14 8/0/0/3/2/0
Uvira 3°22'S,29°09°E Northern 12.viii.2016 7 0/0/0/0/0/0
L. stappersii Mpulungu 8°46S,31°07°E Southern 6.iv.2018 3 0/0/0/0/0/0
Uvira 3°22'S,29°09°E Northern 12.viii.2016 28 0/0/0/0/0/0

@ After Danley etal.[51]

b Infection parameters are provided in the following order: Neocladocystis bemba n. sp./Neocladocystis biliaris n. sp./Neocladocystis sp./Tanganyikatrema fusiforma n.

sp./Tanganyikatrema sp. ‘elongata’/Grandifundilamena novemtestes n. sp
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Fig. 1 Map of Lake Tanganyika with the sampling locations of Lates
spp. The map was created using SimpleMappr software v7.0.0. (http://
www.simplemappr.net). Accessed 5 Mar 2019
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the specimen was kept as molecular voucher (i.e. holog-
enophores sensu Pleijel et al. [53]).

Specimens prepared as whole mounts were both pho-
tographed and drawn using a drawing tube at a high
magnification. Measurements were taken from photo-
micrographs using the Leica Application Suite v.4.3.0.
analysis software. In total, 33 different characters were
measured and the following abbreviations were used: BL,
body length; BW, body width; OSL, oral sucker length;
OSW, oral sucker width; VSL, ventral sucker length;
VSW, ventral sucker width; FBL, forebody length; HBL,
hindbody length; PPH, prepharynx length; PHL, pharynx
length; PHW, pharynx width; OL, oesophagus length;
IB-F, distance from anterior extremity to intestinal
bifurcation; IB-VS, distance from intestinal bifurcation
to ventral sucker; POSTCL, length of post-caecal field;
ATL, anterior testis length; ATW, anterior testis width;
PTL, posterior testis length; PTW, posterior testis width;
POSTL, length of post-testicular field; OVL, ovary length;
OVW, ovary width; ABE-OV, distance from anterior
body extremity to ovary; VS-OV, distance from ventral
sucker to ovary; OV-AT, distance from ovary to anterior
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testis; EL, egg length; EW, egg width; POSTUL, length
of post-uterine field; PREVIL, length of pre-vitelline
field; VITL, length of vitelline field; POSTVITL, length
of post-vitelline field; SRL, length of seminal recepta-
cle; SRW, width of seminal receptacle. Further, the fol-
lowing ratios were measured VSL/OSL, sucker length
ratio; VSW/OSW, sucker width ratio; OSL/BL (%), oral
sucker as a proportion of body length; VSL/BL (%), ven-
tral sucker length as a proportion of body length; FBL/
BL (%), forebody length as a proportion of body length;
HBL/BL (%), hindbody length as a proportion to body
length; PHL/BL (%), pharynx length as a proportion of
body length; IB-E/BL (%), length of pre-intestinal field as
a proportion of body length; POSTCL/BL (%), length of
post-caecal field as a proportion of body length; ATL/BL
(%), anterior testis length as a proportion of body length;
PTL/BL (%), posterior testis length as a proportion of
body length; POSTL/BL (%), post-testicular field length
as a proportion of body length; ABE-OVL/BL (%), ante-
rior body extremity to ovary distance as a proportion of
body length; VS-OV/BL (%), distance from ventral sucker
to ovary as a proportion of body length; OV-AT/BL (%),
distance from ovary to anterior testis as a proportion of
body length; OV/BL (%), ovary length as a proportion of
body length; POSTUL/BL (%), length of post-uterine field
as a proportion of body length; PREVITL/BL (%), length
of pre-vitelline field as a proportion of body length;
VITL/BL (%), length of vitelline field as a proportion of
body length; POSTVITL/BL (%), length of post-vitelline
field as a proportion of body length; SRL/BL (%), seminal
receptaculum length as a proportion of body length; BW/
BL (%), body width as a proportion of body length. The
terminology of the measured characters follows Miller &
Cribb [44]. The type- and voucher material is deposited
at the Helminthological Collection of the Natural History
Museum, London, UK (NHMUK) and in the collection of
the Research Group Zoology: Biodiversity and Toxicol-
ogy at Hasselt University in Diepenbeek, Belgium (HU).

To comply with the regulations set out in article 8.5
of the amended 2012 version of the International Code
of Zoological Nomenclature (ICZN [54]), details of the
species have been submitted to ZooBank. The Life Sci-
ence Identifier (LSID of the article is urn:lsid:zoobank.
org:pub:9C751425-E16A-4E21-82A6-EBO016FA3899).
For each new taxon, the LSID is reported in the taxo-
nomic summary.

Molecular data generation

The posterior portion in cases of larger specimens or
complete specimens in cases of very small specimens were
used for genomic DNA isolation. Total genomic DNA
(gDNA) isolation was performed with a 5% Chelex® sus-
pension and 0.2 mg/ml of proteinase K (see Dallarés et al.
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2013 for details [55]). Partial DNA sequences were gener-
ated for both 28S ribosomal RNA (rRNA) gene (domains
D1-D3) and the mitochondrial cytochrome ¢ oxidase
subunit 1 (cox1) gene. PCR amplification was carried out
using the primer combinations digl2 (forward: 5-AAG
CAT ATC ACT AAG CGG-3’) or LSUS5 (forward: 5-TAG
GTC GAC CCG CTG AAY TTA AGC A-3)" and 1500R
(reverse: 5-GCT ATC CTG AGG GAA ACT TCG-3)
(Tkach et al. [56]) in the case of 285 rDNA and JB3 (for-
ward: 5-TTT TTT GGG CAT CCT GAG GTT TAT-3%
Bowles et al. [57]) and CO1-R trema (reverse: 5-CAA
CAA AAT CAT GAT GCA AAA GG-3% Miura et al. [58])
in the case of coxl. Amplification reactions were per-
formed in a total volume of 20 pl using 2x MyFi = DNA
Polymerase Mix (Bioline Inc., Taunton, USA), and ¢.50
ng of gDNA. PCR reactions were performed under the
following thermocycling conditions: (i) 28S: initial dena-
turation at 95 °C for 5 min followed by 40 cycles of 95 °C
for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for
2 min, and a final extension step at 72 °C for 7 min; (ii)
cox1: initial denaturation at 95 °C for 3 min followed by 35
cycles of 95 °C for 50 s, annealing at 50 °C for 50 s, exten-
sion at 72 °C for 2 min and a final extension step at 72 °C
for 7 min. PCR products were purified using QIAquick
PCR purification kit (Qiagen Ltd., Hilden, Germany).
Both strands were cycle-sequenced using the ABI Big-
Dye™ 3.1 Chemistry (ABI Perkin-Elmer, London, UK) on
a 3730x] DNA Analyser (ABI Perkin-Elmer, London, UK)
at GATC Biotech (Konstanz, Germany). The PCR primers
and an additional internal primer 300F (forward: 5-CAA
GTA CCG TGA GGG AAA GTT G-3% Littlewood et al.
[59]) in the case of 285 rDNA were used for the sequenc-
ing reactions. Contiguous sequences were assembled
using Geneious v.8 (http://www.geneious.com/; Kearse
et al. [60]) and submitted to the GenBank database under
the accession numbers MN705808-MN705812 (28S
rDNA) and MN702809-MN702817 (cox1) (see Table 3 for
provenance data and GenBank accession numbers).
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Sequence alignments and phylogenetic analyses

Two main alignments for the partial 285 rDNA data,
including selected sequences downloaded from GenBank
(see Additional file 1: Table S1), were built to infer the
phylogenetic position of the African cryptogonimids: (i)
a set of 52 taxa of the Cryptogonimidae Ward, 1917 (843
bp); and (ii) a restricted dataset of 10 species of Acanthos-
tomum Looss, 1899 (489 bp). Sequences were aligned in
MAFFT v.7 [61] on the EMBL-EBL bioinformatics web
platform (http://www.ebi.ac.uk/Tools/msa/mafft/) under
the default settings with a gap opening penalty of 1.53 and
a gap extension penalty of 0.123 over 1000 cycles of itera-
tive refinement incorporating local pairwise alignment
information [61]. Highly variable parts of the alignments
were determined and excluded by Gblocks [62] as imple-
mented in SeaView v.4 [63] under less stringent param-
eters and refined by eye. Uncorrected pairwise distances
were calculated in MEGA v.7 [64]. jModelTest v.2 [65]
was used to select the best-fitting models of sequence evo-
lution under the Bayesian information criterion.

Phylogenetic relationships were inferred under Bayes-
ian inference (BI) in MrBayes v3.2.0 [66]. Two independ-
ent runs were performed for 10,000,000 generations and
sampled every 1000th generation. The ‘burn-in’ was set
for the first 25% of the sampled trees. Bayesian analyses
were executed online on the CIPRES Science Gateway
v. 3.3 [67]. Parameter convergence and run stationarity
were assessed in Tracer v1.6 [68]. The outgroup choices
were informed by broader phylogenies of the Digenea
[69]. The resulting trees were visualised in FigTree v.1.4.3
(http://tree.bio.ed.ac.uk/software/figtree/). All species
included in the phylogenetic analyses together with their
GenBank accession numbers are listed in Additional
file 1: Table S1.

The coxl sequence alignment comprised only newly
generated sequences for three of the cryptogonim-
ids recovered from Lake Tanganyika lates perches. The
examined matrix consisted of 795 bp of nine terminals.

Table 3 GenBank accession numbers for sequences (285 rRNA gene and cox1 gene) for the digenean species generated in the

present study

Parasite species Host species Locality GenBank ID
28S rRNA cox1
Neocladocystis bemba n. sp. L. microlepis Katukula (8°43’S, 30°57E) MN705808 MN702809, MN702812,
MN702814, MN702815

Mpulungu (8°46°S, 31°07°E) MN702813

Mutondwe Island (8°42'S, 31°07E) MN702810, MN702811
Neocladocytis biliaris n. sp. L. mariae Uvira (4°20°S, 29°09'F) MN705809
Neocladocytis sp. L. microlepis Mutondwe Island (8°42°S, 31°07E) MN705810 MN702816
Tanganyikatrema fusiforma n. sp. L. microlepis Mpulungu (8°46°S, 31°07E) MN705811 MN702817
Tanganyikatrema sp. ‘elongata’ L. angustifrons Mpulungu (8°46S, 31°07°E) MN705812
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Results

Digenean diversity in Lake Tanganyika'’s lates perches
Examination of 85 individuals of lates perches from four
localities in Lake Tanganyika (all four endemic species
were included in our dataset, Table 2) revealed a total of
32 infections with cryptogonimid trematodes. Three out
of the four Lates species examined (i.e. L. angustifrons, L.
mariae and L. microlepis), were infected with at least one
species of cryptogonimid digenean. No digeneans were
recovered from L. stappersii in neither of the two locali-
ties where the species had been sampled. Distribution and
infection parameters are listed in Table 2. Adult crypto-
gonimids were detected in the fish intestine, pyloric caeca
and gall-bladder while immature specimens were recov-
ered only in the intestine. Sequence data were successfully
generated for representatives of five out of the six species
recovered. The newly recovered cryptogonimids exhibited
specific morphological and molecular features when com-
pared with other members of the family. The taxonomy
proposed here is based on a combined morphological and
molecular approach which resulted in the description of
six new species and the erection of two new genera.

Taxonomy

Superfamily Opisthorchioidea Looss, 1899
Family Cryptogonimidae Ward, 1917

Genus Neocladocystis Manter & Pritchard, 1969

Amended diagnosis

Based on Manter & Pritchard (1969 [48]). Body oval, wid-
est at level of ventral sucker, length:width ratio 1.5-3.0.
Oral sucker subterminal, spherical. Circumoral spines
lacking. Tegumental spines present or absent. Ventral
sucker unspecialised, small, pre-equatorial, not obviously
embedded in ventrogenital sac. Sucker-width ratio ¢.1.7.
Forebody 25-35% of body length. Prepharynx short, nar-
row. Oesophagus short or indistinguishable. Intestinal
bifurcation immediately anterior to ventral sucker. Caeca
blind, narrow, end at level of testes. Testes two, symmet-
rical to slightly oblique, at posterior extremity of body.
Seminal vesicle elongate-oval, naked. Gonotyl absent.
Ovary lobed, just anterior to testes. Uterus in hindbody,
between testes and ventral sucker, may extend to intes-
tinal bifurcation in mid-forebody. Vitellarium follicular;
vitelline follicles in two lateral fields, mainly in hind-
body, from level of testes to ventral sucker, may reach
level of intestinal bifurcation. Arms of excretory vesicle
may almost reach level of pharynx, sometimes do not
exceed intestinal bifurcation. In intestine and gall-blad-
der of freshwater fishes (Cichlidae, Characidae, Bagri-
dae, Latidae); Africa and South America. Type-species:
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Neocladocystis tanganyikae (Prudhoe, 1951) Manter &
Pritchard, 1969.

Differential diagnosis

Species of Neocladocystis morphologically and geneti-
cally resemble members of Acanthostomum Looss, 1899,
which are cosmopolitan parasites in fishes and reptiles.
Morphological similarities include a round oral sucker
opening subterminally and a short oesophagus. They dif-
fer in possessing blind caeca and the absence of circu-
moral spines. Brientrema Dollfus, 1950 with members
infecting freshwater fishes (Malapteruridae, Citharini-
dae) in Africa resembles Neocladocystis by the possession
of a nearly spherical oral sucker, a very short prepharynx
and oesophagus, blind caeca and two slightly oblique tes-
tes. However, the two genera differ in the presence versus
absence of circumoral spines and in vitelline fields reach-
ing about the level of the ventral sucker in Neocladocystis.

Neocladocystis bemba Georgieva, Kmentova & Bray
n. sp.

Type-host: Lates microlepis Boulenger (Actinopterygii:
Latidae).

Other host: Lates angustifrons Boulenger (Actinop-
terygii: Latidae).

Type-locality: Lake Tanganyika at Mpulungu (8°46°S,
31°07’E), Zambia.

Other localities: Lake Tanganyika at Mutondwe Island
(8°42'S, 31°07E) and Katukula (8°36°S, 31°11’E), Zambia.
Type-specimens: The holotype (NHMUK.2019.11.18.1)
and 8 paratypes (NHMUK.2019.11.18.2-9) were depos-
ited in the Helminthological Collection of the Natural
History Museum, London, UK, and 10 paratypes (HU
760-69) were deposited in the Collection of Hasselt Uni-
versity, Diepenbeek, Belgium.

Site in host: Immature specimens in intestine and egg-
bearing specimens in pyloric caeca.

Representative DNA sequences: GenBank: MN705808
(partial 28S rRNA gene, domains D1-D3); MN702809-
MN702815 (cox1).

ZooBank registration: The LSID for the new
name Neocladocystis bemba is urn:sid:zoobank.
org:act:30402449-A3C5-48FA-A700-25063221630B.
Etymology: The species is named after the language spo-
ken by a large part of the Zambian population.

Description

[Based on 21 specimens including 6 immature individu-
als; Fig. 2a, Table 4, Additional file 2: Figure S1.] Body
irregularly oval, flattened. Tegument spined; spines
reach close to posterior extremity, posterior to level of
caeca, largest at mid-body level. Oral sucker spherical,
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subterminal. Ventral sucker pre-equatorial, rounded, may
be completely obscured by eggs, distinctly smaller than
oral sucker. Prepharynx short or undistinguishable. Phar-
ynx oval, muscular, longer than wide. Oesophagus often
not detectable, occasionally short. Intestinal bifurcation
in about mid-forebody. Caeca relatively wide, reach into
post-testicular region.

Testes 2, entire or slightly lobed, oblique, contiguous or
slightly separated, in posterior half of hindbody. Seminal
vesicle elongate-oval, dextral, naked, between ovary and
ventral sucker. Gonotyl absent. Genital pore median, just
anterior to ventral sucker.

Ovary small, subspherical or irregular, entire or slightly
lobed, dextral, intercaecal, pre-testicular at distance
from posterior testis. Mehlis’ gland and Laurer’s canal
not observed. Seminal receptacle spherical or saccular,
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post-ovarian, immediately posterior to ovary or partially
overlapping it dorsally. Uterine coils extend from level of
testes to intestinal bifurcation, mostly intercaecal. Eggs
numerous, noticeably variable, tanned, operculate. Vitel-
larium follicular, in 2 lateral fields, extend anteriorly from
about level of ventral sucker to post-testicular field close
to posterior extremity of body, overlapping caeca dor-
sally and ventrally. Seminal receptacle saccular, dorsal,
post-ovarian.

Excretory vesicle Y-shaped, bifurcates just posterior to
ventral sucker (seen in immature specimens). Excretory
vesicle narrower posteriorly, widens and reaches at least
to uterus, may reach anteriorly to about level of pharynx.
Excretory pore terminal.

Fig. 2 Line drawings of paragenophores of Neocladocystis spp. a Neocladocystis bemba n. sp. from the pyloric caeca of Lates microlepis off
Mutondwe Island, Lake Tanganyika. b Neocladocystis biliaris n. sp. from the liver of L. mariae, Uvira fish market, Lake Tanganyika. Scale-bars: 500 um
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Table 4 Comparative morphometric data for the newly described species of Neocladocystis, Tanganyikatrema n. g. and Grandifundilamena
novemtestes n. g.

Neocladocystis ~ Neocladocystis ~ Neocladocystis ~ Tanganyikatrema  Tanganyikatrema  Tanganyikatrema  Grandifundilamena
bemba n. sp. bemba n. sp. biliaris n. sp. fusiforma n. sp. fusiforma n. sp. sp. ‘elongata’ novemtestes n. sp.
(immature) (immature)
BL 1067-1823 255-1028 (597 1940-3074 632-1574 (990  335-525 (456)"  437-679 (558)" 3458-4585 (3948)™
(1329) (2286)
BW 475-745 (609)° 114401 (273) 944-1201 146-387 (249) 103-171(133)™  95-96 (95.5)" 303-414 (362)™
(1000)
OoSL 114-176 (141)°  81-160 (99) 198-272 (2259 119-206 (157) 100-115(108)™ 107110 (108.5)"  355-482 (415)™
OswW 128-189 (154)°  68-168 (108)  206-269 (231)9  70-152 (115) 65-77 (73)™ 69-92 (80)™ 425-612 (510)"
VSL 71-114 (92) 47-84 (57) 93-121 (109)™  62-134 (105)' 84 (64)™ 54-58 (56)" 165-206 (187)™
VSW 75-124 (98)% 51-81 (57) 106-136 (121)™  54-127 (107)' 54-91 (68)™ 53-54 (53.5)" 168-216 (189)™
FBL 349-514 (422)  83-369 (207)¢ 679-698 (689)"  220-494 (306)! 128-237 (189)™  262-419 (304.5)"  787-1063 (927)™
HBL 719-1210 (874)¢ 125-575(333)9  1140-1408 320-765 (510)¢ 156-253 (205)™  202-209 (205.5)"  2506-3316 (2883)™
(1274)"
PPH 10-38 (18) not detectable  15-20 (18)" 20-122 (53)' not detectable 80-120 (100)" 80-264 (170)"
PHL 61-96 (70)° 38-73 (54)9 93-107 (98)' 64-122 (87)° 35° 39-50 (45)" 223-278 (247)"
PHW 47-94 (60)¢ 34-56 (46) 79-89 (86)' 35-76 (52)° 39°¢ 25-29 (27)" 160-224 (189)™
oL 5-38(18)) not detectable  15-20 (18)' 43-100 (74)™ not detectable 60° absent
IB-F 159-271(223)*  70-132(103) 313-364 (341)  146-412 (270)° 148-222 (185)" 270° 632-820 (734)™
IB-VS 201-249 (223)9  50-95 (68)° 313-346(330)"  0-82(45)9 0-13 (6.5)" 0° 1-265 (189)™
POSTCL 89-250 (158)° 26-72 (55)9 116-303 (248)9  18-59 (36)° 12-60 (36)" - 53-101 (77)™
ATL -326(237)"  100-206 (139)¢  287-430 (379)  82-183 (129) 38-66 (52)" 53° 81-160 (121)™
ATW 135-255 (183)°  78-113 (98)° 278-359 (304Y  75-214(143)¢ 56-66 (61) " 47° 99-176 (141)™
PTL 167-394 (254)" 97 (138)¢ 348-450 (416) 71 (136) 37-65(51)" 50 120-160 (146)™
PTW 135-306 (226)¢  67-128 (90)9 248-416 (309) -187 (127)¢ 56-71 (63.5)" 58° 95-157 (130)™
POSTL 132-401 (205) 62 (110)9 80-323 (201)9 4-126 (85)° 16-22 (19)" 29° 55-209 (128)™
OovL 140-296 (176)°  70-113(92)¢ 213-284 (242)™  47-120 (83)' 28-66 (46)™ - 166-196 (181)™
OovwW 144-247 (185)"  65-109 (81)9 186-319 (241)  53-102 (73) 41-47 (43)" - 102-177 (140)™
ABE-OV 510-720 (608)°  243-296 (261)  1073-1868 487-1124 (695)°  209° - 1978-3355 (2676)™
(1344)™
VS-OV 73-200 (145) 8-78(28)9 295° 120-496 (257)' 30-41 (35.5)" - 1026-2077 (1560)™
OV-AT 65-220 (123) 30-80 (58)9 113-173(141)" 0 0" - 100-355 (220)™
EL 34-40 (37)¢ not detectable  33-38 (35,3)¢ 27-39 (31)¢ not detectable 29° 26-28 27)™
EW 12-19 (16)¢ not detectable  13-18(15,9)¢ 13-20 (16)° not detectable 15° 10-11 (10.5)™
POSTUL 176-478 (353)°  120-300 (203)9 457683 (587)  171-397 (281)° 79-140 (1153)™ - 636-828 (732)™
PREVIL 228-455(318)  not detectable  139-578 (447)  320-583 (396)¢ 280° - 1879-2208 (2043)™
VITL 714-1206 (944)¢ not detectable  1356-1648 226-483 (3594 120° - 2100-2200 (2160)™
(1518)
POSTVITL 59-150 (96) not detectable  80-213 (134)¢  198-603 (355)° 125° - 166-310 (229)™
SRL 79-220 (139) not detectable  205-323 (264)  52-156 (86)' 40-41 (40.5)" - 129-214 (172)™
SRW 82-184 (136)¢ not detectable  119-251(173)  42-98 (59) 18-33 (25.5)" - 156-224 (190)™
VSL/OSL 1.2-2.1 (1.6)° 15-1.9(1.7) 1.7-18(1.7)" 1.2-1.9(1.5)' 14-22(1.8)" 1.7-20(1.9)" 2.15-23 2™
VSW/OSW 15-18(1.7)¢ 13-2.1(1.9) 1.5-1.9 (1.7)" 0.8-14(1.1) 08-1.3(1.1)" 1.5-1.7 (1.6)" 25-2927)"
OSL/BL (%) 81-127(10.8)* 12.7-325(185) 88-11.0(9.7)% 102-222(172) 197-328(248)" 15.8-229(19.3)" 10.2-10.5(104)"
VSL/BL (%) 5.4-8.0 (6.6) 69-184(107) 46-62(53)" 6.0-19.1 (12.6) 114-16.0 (142)™ 7.9-13.3(10.6)" 12.3-133(12.8)"
FBL/BL (%) 26.0-354 (30.7)° 28.7-38.5 31.2-350 23.0-40.0(31.3) 38.2-467 (410" 59.9-617(60.8)" 22.8-242(23.2)"
(34.6)° (33.1)"
HBL/BL (%) 57.6-67.2 (62.7)° 49.0-644 58.8-62.9 506-655(57.7)°  40.8-482(45.1)™ 29.7-47.8(388)"  71.7-72.3 (72.1)™
(54.4)° (60.8)"
PHL/BL (%) 40-6.6 (5.3)° 52-118(85)9  4.2-50(46) 5.7-16.3 (9.5) 104° 5.7° 6.1-64(6.2)"
IB-F/BL (%) 12.1-210 22.1-25.1 142-182(159)" 113-428(27.8)  43.7-442 (439" - 17.9-183(184)™
(16.22)! (23.6)M
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Table 4 (continued)
Neocladocystis ~ Neocladocystis ~ Neocladocystis ~ Tanganyikatrema — Tanganyikatrema  Tanganyikatrema  Grandifundilamena
bemban. sp. bemban. sp. biliaris n. sp. fusiforma n. sp. fusiforma n. sp. sp. ‘elongata’ novemtestes n. sp.
(immature) (immature)
POSTCL/BL (%) 83-156(11.9% 50-14.2(10.8)° 6-12.7 (10.5)° 2.2-79(4.2)° 36-114(7.5)" - 1.5-22 (19"
ATL/BL (%) 152-23.2(185)" 182-229 149-213 9.6-14.1 (11.5) 11.3-13.0(12.2" 7.8° 23-353.0"
(20.9)9 (18.8)9
PTL/BL (%) 150-280 (195 192-244 17.5-223 99-146(125°  140-167(153)" 85° 30-46(3.7)"
(20.7)° (20.2)¢
POSTL/BL (%) 12.6-22.0(16.2)* 12.8-204 4.0-144(9.2)° 109-174(13.5° 11.0-128(11.9" 74° 1.6-46(3.2)"
(16.7)°
ABE-OV/BL (%)  39.0-54.9 (47.0)° 403-495 (459)' 485-60.8 57.1-714(669)° 624° - 57.2-73.2 (68.2)"
(54.9)™
VS-OV/BL (%) 63-14.5(109) 1.6-76(3.59 15.2° 19.0-31.5(25.1)"  81-9.0(8.5)" - 29.7-45.3 (40.0)™
OV-AT/BL (%) 53-19.2 (9.6) 9.1-162(11.6™ 50-79(6.5) 0° om - 29-77 (52"
OVL/BL (%) 10.7-25.9 11.0-16.2 9.2-11.9(102)™ 9.9-14.6 (12.5)° 140-16.7 (153)"  85° 43-48(4.6)"
(14.0° (14.1)°
POSTUL/BL (%) 20.6-36.7 (28.2)* 243-31.0 22.2-310 235-346(282)¢  236-267 (25.1)" - 18.1-184 (18.5™
(27.6)" (26.3)°
PREVITL/BL (%) 16.8-28.8 (219) not detectable  16.0-26.7 31.2-464(380)¢  533° - 47.6-482 (51.1)"
(22.3)¢
VITL/BL (%) 65.1-77.1 (703)% not detectable ~ 65.8-749 (704)" 299-553 (34.9)  22.9° - 484-53.2 (54.0)"
POSTVITL/BL 5.5-10.0 (7.3)! not detectable  3.2-11.0 (6.5) 236-39.8 (354)¢  23.8° - 48-6.8 (5.9)"
(%)
SRL/BL (%) 74-155(109)9 notdetectable 10.2-14.7 9.9-12.1 (11.0)" not detectable - 2.8-54(43)"
(12.8)9
BWY/BL (%) 1.7-2.7 (2.2 1.9-26(2.2) 21-26(23)° 31-4034)™ 46-7.1(5.0)" 104-116(11.1)"

3.2-5.7 (4.0)

Notes:® (n=11);2(n=15;<(n=8);¢(n=7;(n=14; (n=12;%(=5;"(n=13); (=9 T (n=6)X(n=10);' (n=4;"(n=3;"(h=2);°(n=1)

Remarks

Currently, only two species of Neocladocystis are known
from Africa, i.e. N. tanganyikae (Prudhoe, 1951) Manter
& Pritchard, 1969 and N. congoensis Manter & Pritchard,
1969. Neocladocystis tanganyikae was described from
“residus de fixations des poissons” from Lake Tanganyika.
These fishes were caught in a small bay south of Cape
Tembwe on the Congolese side of Lake Tanganyika and
apparently included Lamprichthys tanganicanus and sev-
eral species of cichlids. Unfortunately, it is not possible
to state which of the fishes collected is the type-host of
N. tanganyikae [43]. Neocladocystis congoensis has been
reported from Parauchenoglanis monkei (Keilhack, 1910)
from Ebogo near the River Nyong in Cameroon [48] and
from “an unidentified siluroid fish near Kisangani (“Stan-
leyville”)” in the Democratic Republic of Congo [70].
Unlike in N. bemba n. sp. and the other newly described
species N. biliaris n. sp. (description follows bellow), in
neither species does the vitellarium enter the forebody. A
third congeneric species, N. intestinalis (Vaz, 1932) Man-
ter & Pritchard, 1969, was reported from the South
American characiform Salminus brasiliensis (Cuvier)
in the Parand River, Argentina, with several fish species
as second intermediate hosts [71, 72]. Neocladocystis
bemba n. sp. is distinguished from N. congoensis and N.

tanganyikae by a combination of characters including the
relative position of ovary and seminal receptacle, size of
eggs and relative size of the oral sucker, together with the
presence of entire ovary and testes and the distribution of
the vitelline fields which may extend from about the level
of the ventral sucker to the post-testicular region almost
to the posterior body extremity.

Neocladocystis biliaris Georgieva, Kmentova & Bray
n. sp.

Type-host: Lates mariae Steindachner (Actinopterygii:
Latidae).

Type-locality: Lake Tanganyika at Uvira (4°20°S, 29°09°E),
Democratic Republic of the Congo.

Type-specimens: The holotype (HU 756) and 3 paratypes
(HU 757-59) were deposited in the Collection of Hasselt
University, Diepenbeek, Belgium.

Site in host: Gall-bladder.

Representative DNA sequences: GenBank accession
number: MN705809 (partial 285 rRNA gene, domains
D1-D3).

ZooBank registration: The LSID for the new
name Neocladocystis  biliaris is urn:lsid:zoobank.
org:act:59CA866A-727C-4EC5-B1FE-6FBC539D90EA.
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Etymology: The specific name biliaris is derived from the
Latin vesica biliaris, meaning gall-bladder, referring to
the infection site of this species in the gall-bladder.

Description

[Based on 6 specimens; Fig. 1b, Table 4, Additional
file 3: Figure S2.] Body irregular oval, flattened. Tegu-
ment smooth. Oral sucker spherical, subterminal. Ven-
tral sucker pre-equatorial, spherical, may be completely
obscured by eggs, distinctly smaller than oral sucker.
Prepharynx very short, not visible in some specimens.
Pharynx oval, longer than wide. Oesophagus often not
detectable, occasionally short. Intestinal bifurcation just
posterior to pharynx. Caeca blind, narrow, reach to level
of posterior margin of posterior testis.

Testes 2, slightly lobed, oblique, contiguous or slightly sep-
arated, in posterior half of hindbody. Seminal vesicle elon-
gate-oval, naked, entire, dextral, at level of ventral sucker,
posterior end obscured by eggs. Gonotyl absent. Genital
pore median, immediately anterior to ventral sucker.

Ovary entire, pre-testicular, at distance from anterior tes-
tis. Uterus fills much of body from anterior extremity to
mid-testicular region, mostly intercaecal. Eggs numerous,
noticeably variable, tanned, operculate. Vitellarium fol-
licular, in 2 lateral fields, reaches from just anterior to ven-
tral sucker to close to posterior extremity, overlapping caeca
dorsally and ventrally. Seminal receptacle saccular, dorsal,
post-ovarian.

Excretory vesicle Y-shaped, arms extending to fore-
body, widening anteriorly, narrowing posteriorly, mostly
obscured by eggs. Excretory pore terminal.

Remarks

Neocladocystis biliaris n. sp. differs from its congeners by a
combination of characters including the larger body length,
entire seminal vesicle and the hitherto unique microhabi-
tat exploited in the fish host, i.e. the gall-bladder. As men-
tioned above, unlike in N. biliaris n. sp. and the other newly
described species N. bemba n. sp., in neither of other species
of Neocladocystis does the vitellarium enter the forebody.
Neocladocystis biliaris n. sp. differs from N. bembae n. sp.
in the larger body length, in the relative length of the post-
testicular region (9.2. vs 16.2%) and in the site in the host.

Neocladocystis sp.

Host: Lates angustifrons Boulenger (Actinopterygii:
Latidae).

Locality: Lake Tanganyika at Mpulungu (8°46°S, 31°07 E),
Zambia.

Site in host: Intestine.
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Representative DNA sequences: GenBank accession
number: MN705810 (partial 285 rRNA gene, domains
D1-D3); MN702816 (cox1).

Remarks

As only a single immature specimen of Neocladocystis
sp. lacking species-specific characters was obtained, full
morphological description was not possible (Additional
file 4: Figure S3). Comparative sequence analysis of 285
rDNA confirmed the distinct status of this specimen as
another species of Neocladocystis (the electronic voucher
of the specimen used for molecular characterisation is
provided in Additional file 4: Figure S3).

Tanganyikatrema Kmentova, Georgieva & Bray n. g.

Diagnosis

Body elongate, fusiform, widest at level of ventral sucker
or mid-body, length:widthratio c¢.1.7-2.7. Tegument
armed with minute spines extending to level to posterior
margin of posterior testis. Eye-spots lacking. Oral sucker
infundibuliform, muscular, lacking circumoral spines,
opens terminally. Ventral sucker subspherical, unspe-
cialised. Sucker-width ratio ¢.1-1.7. Forebody occupies
32-62% of body length. Prepharynx of variable length.
Pharynx elongate, muscular. Oesophagus indistinguish-
able. Caeca reach posterior testis. Testes two, tandem,
oval, contiguous or slightly overlapping, entire, in pos-
terior hindbody, close to posterior extremity. Cirrus and
cirrus-sac absent; seminal vesicle tubulo-saccular, dorso-
sinistral to ventral sucker. Genital pore sinistral, in pos-
terior forebody. Gonotyl absent. Ovary pre-testicular,
dextral, entire, close to anterior testis. Uterus restricted
to hindbody, anterior to mid-level of anterior testis. Sem-
inal receptacle saccular, relatively large, at level of ante-
rior testis and ovary. Eggs numerous, small, elliptical,
tanned, operculate. Vitellarium follicular, follicles in two
lateral groups between ventral sucker and level of ovary
or anterior testis; excretory pore terminal. Type-species:
Tanganyikatrema fusiforma n. sp.

Zoobank registration: The LSID for the new
genus Tanganyikatrema is urn:lsid:zoobank.
org:act:E93C03BE-98D4-490E-BADD-57435C17C242.
Etymology: The genus name is proposed in reference to
Lake Tanganyika to honour this biodiversity hotspot and
appended to the commonly used ending -trema. It is to
be treated as feminine.

Differential diagnosis
The only digenean genus parasitic in fish hitherto
reported from Lake Tanganyika, Neocladocystis,
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differs from Tanganyikatrema n. g. in the presence of
a rounded oral sucker (vs infundibuliform), short pre-
pharynx and oesophagus (vs variable in length prephar-
ynx and long oesophagus), and slightly oblique testes
(vs tandem). Neocladocystis includes species parasitic in
cichlid and bagrid fishes in Africa and characid fishes in
South America. Tanganyikatrema n. g. morphologically
resembles Claribula Overstreet, 1969, a monotypic
genus proposed for species parasitic in marine fishes
of the families Albulidae and Sphyraenidae off Florida,
USA, by the possession of a fusiform body and a cup-
shaped oral sucker, but differs in the presence of spined
tegument, prepharynx, oesophagus (in mature individu-
als), intestinal bifurcation anterior to ventral sucker and
testes located in the posterior third of the hindbody.
Isocoelium Ozaki, 1927 is a genus whose representatives
parasitise marine uranoscopid fishes. It resembles the
new genus in the presence of tegumental spines, oblique
to slightly tandem testes and the uterus reaching no
further posteriorly than the testicular zone but differs
by having a deeply lobed ovary at mid-hindbody and a
shorter forebody in relation to body length.

Tanganyikatrema fusiforma Kmentova, Georgieva &
Bray n. sp.

Type-host: Lates microlepis Boulenger (Actinopterygii:
Latidae).

Other host: Lates angustifrons Boulenger (Actinop-
terygii: Latidae).

Type-locality: Lake Tanganyika at Katukula (8°36°S,
31°11°E), Zambia.

Other localities: Lake Tanganyika at Mutondwe Island
(8°42'S, 31°07E) and Mpulungu (8°46'S, 31°07°E),
Zambia.

Type-specimens: The holotype (NHMUK.2019.11.18.12)
and one paratype (NHMUK.2019.11.18.13) were depos-
ited in the Helminthological Collection of the Natural
History Museum, London, UK, and 5 paratypes (HU 770-
74) were deposited in the Collection of Hasselt Univer-
sity, Diepenbeek, Belgium.

Site in host: Intestine.

Representative DNA sequences: GenBank accession
numbers: MN705811 (partial 28S rRNA gene, domains
D1-D3); MN702817 (cox1).

ZooBank registration: The LSID for the new name
Tanganyikatrema  fusiforma is  urn:sid:zoobank.
org:act:BEA5A2AB-7AF3-4075-8292-4EE688155CAE.
Etymology: The specific name is derived from the Latin
fusiformis meaning fusiform and referring to the body
shape: wide in the middle and tapered at the forebody.

Page 11 of 24

Description

[Based on 12 specimens including 3 immature individu-
als; Fig. 3a, Table 4, Additional file 5: Figure S4.] Body
elongate, fusiform, narrow, longer than wide. Tegument
spined, spines reach to posterior margin of posterior tes-
tis. Eye-spot pigment absent. Oral sucker infundibuli-
form (distorted in larger worms) or cup-shaped, massive,
relatively large, longer than wide, squared-off posteriorly,
aperture terminal. Circumoral spines absent. Ventral
sucker pre-equatorial, rounded, unspecialised, embed-
ded in ventrogenital sac. Prepharynx long. Pharynx oval,
muscular. Oesophagus shorter than prepharynx. Intesti-
nal bifurcation in posterior forebody just anterior to ven-
tral sucker. Caeca end blindly, reach into post-testicular
region close to posterior body extremity.

Testes 2, entire, tandem, contiguous or overlapping, in
posterior third of hindbody; anterior testis oval, posterior
testis subtriangular. Post-testicular region short. Cirrus
and cirrus-sac absent. Seminal vesicle tubule-saccular,
naked, long, bipartite, convoluted, sinistral to ventral
sucker, posterior extent obscured by eggs. No prostatic
cells evident. Common genital pore median, immediately
antero-sinistral to ventral sucker. Gonotyl absent.

Ovary regularly oval, pre-testicular, anterior or over-
lapping to anterior testis. Uterus fills much of hind-
body from anterior testis anteriorly, passes dorsally to
ventral sucker, mostly intercaecal. Mehlis’ gland and
Laurer’s canal not observed. Seminal receptacle saccu-
lar, contiguous with anterior testis and dorsal to ovary.
Eggs numerous, elliptical, malformed in larger worms,
operculated, tanned. Vitellarium follicular, in 2 lat-
eral fields, extends from about level anterior to ovary
to ventral sucker; laterally overlapping caeca dorsally
and ventrally. Seminal receptacle saccular, dorsal,
post-ovarian.

Excretory system not clearly visible, pore terminal, ves-
icle not clearly detected.

Tanganyikatrema sp. ‘elongata’

Host: Lates angustifrons Boulenger (Actinopterygii:
Latidae).

Locality: Lake Tanganyika at Mpulungu (8°46°S, 31°07E),
Zambia.

Voucher specimens: 3 voucher specimens (HU 775-77)
were deposited in the Collection of Hasselt University,
Diepenbeek, Belgium.

Site in host: Intestine.

Representative DNA sequences: GenBank accession num-
bers: MN705812 (partial 285 rRNA gene, domains D1-D3).
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Fig. 3 Line drawings of paragenophores of Tanganyikatrema spp. a Tanganyikatrema fusiforma n. sp. from the intestine of Lates microlepis in
Katukula Bay, Lake Tanganyika. b Tanganyikatrema sp. ‘elongata’ from the intestine of L. angustifrons off Mpulungu. Scale-bars: 500 um

Etymology: We distinguish Tanganyikatrema sp.
‘elongata’ from Tanganyikatrema fusiforma n. sp. with
the epithet ‘elongata’ derived from the Latin elongatus
referring to the elongated forebody of the species. This
does not intend to be a nomenclatural act and the name
should not be interpreted as a species name.

Description

[Based on 3 specimens including 2 immature individu-
als; Fig. 3b, Table 4, Additional file 6: Figure S5.] Body
elongate, narrow. Tegument spined, spines scale-like at
anterior body extremity diminishing in size posteriorly,
extending close to posterior body extremity. Oral sucker
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infundibuliform, shallow, muscular, aperture terminal,
lacking circumoral spines. Ventral sucker pre-equatorial,
oval, muscular. Prepharynx long. Pharynx oval, small
Oesophagus, intestinal bifurcation and ending of caeca
not clearly visible.

Primordial testes entire, small, tandem, overlapped, in
posterior third of hindbody, both testes squared. Seminal
vesicle not observed.

Ovary not observed. Uterus and vitelline fields
restricted to hindbody. Mehlis’ gland, Laurer’s canal not
observed; seminal receptacle not visible.

Remarks

The two species of Tanganyikatrema n. g. are distin-
guished from each other by the length:width ratio of the
oral sucker (greater in Tanganyikatrema fusiforma n. sp.)
as well as the forebody:hindbody ratio with the forebody
being elongated up to 65% of the body length in Tang-
anyikatrema sp. ‘elongata’ compared to 41% in immature
and 32% in egg-bearing individuals of Tanganyikatrema
fusiforma n. sp.

Grandifundilamena Bray, Kmentova & Georgievan. g.

Diagnosis

Body elongate, relatively narrow, widest at level of oral
sucker, length:width ratio 10.4—11.6. Tegument unarmed.
Eye-spots absent. Oral sucker broadly infundibuliform,
lacking circumoral spines, opens terminally. Ventral sucker
subspherical, in anterior quarter of body, distinctly smaller
than oral sucker. Sucker width ratio 2.5-2.9. Forebody
occupies 23-24% of body length. Prepharynx relatively
short. Pharynx oval, relatively large. Oesophagus short or
indistinguishable; intestinal bifurcation in posterior fore-
body. Caeca reach posterior margin of posterior testis.
Testes nine, in tandem series in posterior third of body,
reaching close to posterior extremity. Cirrus and cirrus-
sac absent. Seminal vesicle long, narrow, tubular, mainly
in hindbody. Genital pore immediately anterior to ventral
sucker. Gonotyl absent. Vitellarium follicular, in two lateral
fields from posterior level of seminal vesicle to level of pos-
terior testis. Ovary lobed, in posterior third of hindbody.
Seminal receptacle saccular, in ovarian region. Uterus
mainly in hindbody, pretesticular. Excretory pore termi-
nal, vesicle not detected. Type-species: Grandifundilamena
novemtestes n. sp.

Zoobank registration: The LSID for the new
genus  Grandifundilamena is  urn:sid:zoobank.
org:act:7DCCF6E3-3115-45F0-A3BF-D6DC04325342.

Etymology: The genus name is derived from the Latin
grandis meaning grand and combination of infundibuli
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and vitulamena referring to the funnel shape of oral
sucker. It is to be treated as feminine.

Differential diagnosis

Grandifundilamena n. g. is distinguished from the
other cryptogonimid genera by the combination of an
infundibuliform oral sucker, the pharynx being larger
than the ventral sucker, the vitelline fields extending
from about mid-hindbody to nearly the posterior body
extremity, the entire ovary, the seminal vesicle ante-
rior to the ovary and the possession of nine tandem
testes. Several cryptogonimids are reported to possess
multiple testes, e.g. representatives of Polyorchitrema
Srivastava, 1939 (infecting members of the Sparidae),
Iheringtrema Travassos, 1947 (infecting members of
the Pimelodidae), Siphodera (infecting members of
many families, primarily the Lutjanidae), Siphomuta-
bilis Miller & Cribb, 2013 (infecting members of the
Lutjanidae), Novemtestis Yamaguti, 1942 (metacer-
cariae in members of the Mullidae, host of adults
unknown), Acanthosiphodera Madhavi, 1976 (infecting
members of the Lutjanidae). The common difference
between Grandifundilamena n. g. and species of Poly-
orchitrema, Iheringtrema, Siphodera, Siphomutabilis
as well as Acanthosiphodera lies in the presence of an
infundibuliform oral sucker (vs round and a larger body
length:width ratio). Additionally, the position of vitel-
line fields restricted to the hindbody and the absence of
oral spines distinguish Grandifundilamena n. g. from
species of Novemtestis. Grandifundilamena n. g. resem-
bles Mitotrema anthostomatum Manter, 1963, a spe-
cies infecting serranid fishes in the Pacific Ocean, in the
presence of an infundibuliform sucker combined with
elongated body but differs in the relative length of the
forebody (23-24 vs 10%) and the number of testes (9 vs
2). Based on molecular evidence, Miller & Cribb [73]
have shown that closely related species may have two or
multiple testes. Thus, the type-species of Siphomutabi-
lis, Siphomutabilus gurukun (Machida, 1986) Miller &
Cribb, 2013, possesses nine testes arranged in a longi-
tudinal row, as observed in Grandifundilamena n. g.;
Siphomutabilus aegyptensis (Hassanine & Gibson, 2005)
Miller & Cribb, 2013 [74] has been reported with nine
testes distributed as in a ring, and both S. raritas Miller
& Cribb, 2013 and S. bitesticulatus Miller & Cribb, 2013
have been reported having two testes [73-75].

Grandifundilamena novemtestes Bray, Kmentova &
Georgieva n. sp.

Type-host: Lates angustifrons Boulenger (Actinopterygii:
Latidae).
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Type-locality: Lake Tanganyika at Mpulungu (8°46S,
31°07'E), Zambia.

Type-specimens: The holotype (NHMUK.2019.11.18.10)
and one paratype (NHMUK.2019.11.18.11) were depos-
ited in the Helminthological Collection of the Natural
History Museum, London, UK, and one paratype (HU
778) was deposited in the Collection of Hasselt Univer-
sity, Diepenbeek, Belgium.

Site in host: Intestine.

ZooBank registration: The LSID for the new name
Grandifundilamena novemtestes is urn:sid:zoobank.
org:act:65F6172F-BA12-4888-A2EA-6B7D30C6A3E3.
Etymology: The specific name is derived from the Latin
as a combination of novem and testes, referring to the nine
testes present in Grandifundilamena novemtestes n. sp.

Description
[Based on 3 specimens; Fig. 4, Table 4, Additional file 7:
Figure S6.] Body long, relatively narrow, widest at oral
sucker, body widest in anterior forebody (for width meas-
urements), tapering gradually, tends to take up curved
position on slides and is difficult to mount fully dorso-
ventrally. Tegumental spines not detected. Oral sucker
massive, broadly infundibuliform may extend as triangle
posteriorly, aperture wide, terminal. Ventral sucker pre-
equatorial, rounded, much smaller than oral sucker. Pre-
pharynx short, narrow. Pharynx broadly oval, larger than
ventral sucker. Oesophagus absent. Intestinal bifurcation
in posterior forebody. Caeca wide, end blindly, reach into
post-testicular region close to posterior body extremity.

Testes 9, transversely-oval, entire, small, in tandem
row, reaching from just posterior to seminal receptacle to
close to posterior body extremity; contiguous, in poste-
rior third of hindbody. Seminal vesicle naked, long, con-
voluted, extended posteriorly, obscured by eggs. Genital
pore median, immediately anterior to ventral sucker.

Ovary irregularly subtriangular, pretesticular, at some
distance from anterior testis. Seminal receptacle saccular,
anterior to ovary. Uterus narrow, between ventral sucker
and anterior testis, passes dorsally to ventral sucker,
mostly intercaecal. Eggs small, tanned, operculate. Vitel-
larium follicular, fields reach from level of posterior mar-
gin of seminal vesicle to about level of posterior testis,
post-vitelline field short.

Excretory pore terminal, vesicle not traced beyond pos-
terior testis.

Detailed morphological comparative data of the newly
described genera and already described morphologically
similar cryptogonimid genera are provided in Table 5.

Molecular characterisation and phylogeny
The newly obtained sequences of the 28S rDNA region
(1240 bp) represented five distinct genotypes, which
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Fig. 4 Line drawing of Grandifundilamena novemtestes n. sp.
Specimen recovered in the intestine of Lates angustifrons, Mpulungu
fish market, Lake Tanganyika. Scale-bar: 500 um

correspond to morphologically distinct species recov-
ered in this study, confirming the presence of five spe-
cies. Interspecific sequence divergence ranged between
1-25 bp (0.1-2.1%) (see Table 6 for further details). Rep-
licate specimens of the two most abundant genotypes
of N. bemba n. sp. (5 specimens ex L. microlepis and 2
specimens ex L. angustifrons) and T. fusiforma n. sp. (3
specimens ex L. microlepis and 2 specimens ex L. angus-
tifrons) shared identical 285 rDNA sequences. A single
sequence of N. biliaris n. sp. recovered from L. mariae at
Uvira differed by a single nucleotide from N. bemba n. sp.
An individual of Tanganyikatrema sp. ‘elongata’ that was
genetically characterised differed from T. fusiforma n. sp.
by four nucleotides in the 28S rDNA gene portion. Rep-
resentative single genotypes per species were used in the
phylogenetic analyses. Two of the genotypes were shared
between parasites of L. microlepis and L. angustifrons (i.e.
represented by 7 and 5 isolates, respectively) while the
remaining three genotypes represented unique sequences
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Table 6 Total pairwise differences among partial 285 rDNA sequences for the cryptogonimid species reported in this study

Species 1 2 3 4 5
1 Neocladocystis bemba n. sp. - 0.1 0.5 19 1.9
2 Neocladocystis biliaris n. sp. 1 - 06 20 20
3 Neocladocystis sp. 6 7 - 1.6 1.8
4 Tanganyikatrema fusiforma n. sp. 24 25 20 - 03
5 Tanganyikatrema sp. ‘elongata’ 24 25 22 4 -

Note: Uncorrected pairwise differences (below the diagonal) and mean divergence (uncorrected p-distance in % above the diagonal) among the newly discovered

cryptogonimid species from Lates spp. in Lake Tanganyika

from specimens recovered from three of the host species,
i.e. L. mariae, L. microlepis and L. angustifrons.

Partial cox1 sequences were obtained for 9 isolates
from 3 of the 6 cryptogonimid trematode species, i.e. 7
Neocladocystis bemba n. sp. ex L. microlepis and a single
sequence each for Neocladocystis sp. and T. fusiforma
n. sp., both recovered from L. microlepis. Compara-
tive sequence analysis revealed high levels of intra- and
interspecific genetic divergence. The intraspecific genetic
divergence for the isolates of N. bemba n. sp. ranged
between 1.3—4.2% (10-33 bp difference). All isolates of N.
bemba n. sp. represented unique haplotypes. Sequence
divergence between N. bemba n. sp. and Neocladocys-
tis sp. ranged between 15.5-16.2% (123-129 bp) diver-
gence and 17.1-18.5% (136-147 bp) difference between
N. bemba n. sp. and T fusiforma n. sp. Further, the
sequences of Neocladocystis sp. and T. fusiforma n. sp.
differed considerably, i.e. by 19.4% (154 bp) difference.

Phylogenetic relationships among representatives of
the Cryptogonimidae were assessed based on a dataset
including 52 taxa (Fig. 5a). Overall, they clustered into
two major clades, i.e. (i) one formed by the freshwa-
ter representatives of Acanthostomum; and (ii) a second
major clade including the remaining currently available
sequences for cryptogonimids, all reported from marine
fishes except for Caecincola parvulus Marchal & Gil-
bert, 1905 which was recovered from the freshwater cen-
trarchid Micropterus salmoides (Lacépéde) in the USA.
Mitotrema anthostomatum Manter, 1963 diverged ear-
lier among the marine cryptogonimids. Despite the large
number of sequences available for marine cryptogonim-
ids, BI analysis did not lend much statistical support for
the major nodes and indicated a lack of phylogenetic
resolution. The newly obtained sequences from Lake
Tanganyika clustered with species of Acanthostomum
reported from Asia in a strongly supported clade.

Relationships among the newly sequenced isolates
from Lake Tanganyika were further assessed based on a
restricted dataset including only the currently available
isolates of Acanthostomum (Fig. 5b). The novel isolates
from Tanganyika formed a strongly supported clade sis-
ter to a clade comprising sequences for Acanthostomum

burminis (Bhalerao, 1926) Bhalerao, 1936 from India and
Thailand and an unidentified digenean labelled as Acan-
thostomum sp. VVT-2013 ex the gastropod Mieniplo-
tia scabra (Miller). The African isolates from Lates spp.
formed two strongly supported sister clades: (i) a clade
comprised by species of Tanganyikatrema n. g.; and (ii) a
clade consisting of Neocladocystis spp. The remaining two
isolates for Acanthostomum cf. americanum (Vigueras,
1957) Herber, 1961 and A. loossi (Vigueras, 1957) Gro-
schaft & Barus, 1970 clustered as basal to the clade of A.
burminis plus the novel isolates from Lake Tanganyika.

Discussion

The present study provides the first estimates of the
trematode diversity in lates perches in Lake Tanganyika.
Employing morphological characterisation and phyloge-
netic inference based on sequence data for the 285 rRNA
gene, the presence of six cryptogonimid species parasitic
in three of the four Lates spp. endemic to Lake Tanganyika
was revealed. All of the recovered cryptogonimid trema-
todes represent species new to science. The presence of
Neocladocystis in the lake, first reported by Prudhoe [43],
was confirmed, with three new species being recovered.
The unique morphological characters of three further spe-
cies described in the present study and their phylogenetic
distinctiveness required the erection of two new genera.

Cryptogonimid trematodes in Africa

All specimens in the present study possessed morpholog-
ical characters typical for cryptogonimid digeneans: tes-
tes at distance from posterior extremity, extensive uterus,
gonotyl absent, common genital pore opening just ante-
rior to ventral sucker, a Y-shaped excretory vesicle,
tanned eggs and a lack of cirrus and cirrus-sac. In total,
six cryptogonimid species of three genera are described
from three latid hosts, including the erection of two new
genera. Although Lake Tanganyika has been studied for
several decades, the present study is the first to provide
molecular data for digenean trematodes in this biodi-
versity hotspot. Furthermore, only three species of the
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1 HQ874609 Centrocestus formosanus
1 AY222228 Cryptocotyle lingua
AY11 6876 Amphlmerus ova/ls

AY222231 Caecincola parvulus
AY222229 Mitotrema anthostomatum
MG383502 Ac loossi TI1 Cichlidae Mexico
MG383499 Acanthostomum cf. americanum AMA-2017 Cichlidae Mexico
KM226898 Acanthostomum burminis ex snail India
003 KC489792 Acanthostomum sp. VVT-2013 ex Thiara Sri Lanka

asp.
Tanganylkatrema fusiforma n. sp.
leocladocystis bemba n. sp. Latidae
Neocladocystis biliaris n. sp. Africa

Neocladocystis sp. . "
KC489792 Acanthostomum sp. VVT-2013 Gastropoda: Thiarinae Sri Lanka Kcago7on A', . burminis ex € Thailand
! KC489791 Acanthostomum burminis Colubridae Thailand 1 Tanganyikatrema fusiforma n. sp.
AY222229 Mitotrema anthostomatum Serranidae Australia Tanganyikatrema sp. 'elongata’ Latidae
‘ 1 FJ788496 Adlardia novaecaledoniae Nemlptendae New Caledonia Neocladocystis bemba n. sp. Africa
1 —KF417632 Sipho bilus raritas C GBR

Neocladocystis biliaris n. sp.
Neocladocystis sp.

1 KF417631 Siphomutabilus gurukun Caesionidae GBR
FJ154902 Lobosorchis polygongylus Nemipteridae New Caledonia
—[ 154901 Lobosorchis tibaldiae Lutjanidae Maldives
HMO056036 Euryakaina sp. ‘ex Maldives’ Lutjanidae Maldives
HMO056035 Euryakaina manilensis Lutjanidae GBR
HMO056037 Euryakaina marina Lutjanidae GBR
KF417630 Metadena lutiani Lutjanidae GBR
0.99— EF116605 Retrovarium brooksi Lutjanidae GBR
EF116604 Retrovarium manteri Lutjanidae GBR
EF116606 Retrovarium gardneri Lutjanidae GBR
EF116607 Retrovarium mariae Haemulidae ~ GBR
EF116608 Retrovarium sablae Lutjanidae GBR
EF116614 Retrovarium planum Lutjanidae GBR
EF116609 Retrovarium amplorificium Lutjanidae GBR
EF116610 Retrovarium snyderi Lutjanidae GBR
EF116613 Retrovarium valdeparvum Lutjanidae GBR
EF116612 Retrovarium exiguiformosum Lutjanidae GBR
EF116611 Retrovarium formosum Lutjanidae GBR
FJ907333 Gynichthys diakidnus Haemulidae GBR
AY222230 Siphodera vinaledwardsii Sciaenidae USA
AY222231 Caecincola parvulus Centrarchidae ~ USA
MK359083 Cryptogonimidae gen. sp. SG-2019 Papa 17-03 Paralichthyidae SWA
EF566866 Chelediadema marjoriae Haemulidae GBR
EF116616 Neometadena ovata Lutjanidae GBR
—|__MH048926 Neometadena paucispina Lutjanidae Australia
1 EF566868 Beluesca longicolla Haemulidae GBR
1 EF566867 Beluesca littlewoodi Haemulidae GBR
] HM187778 Varialvus charadrus Lutjanidae GBR
1 HM187777 Varialvus lacertus Lutjanidae GBR
HM187776 Varialvus jenae Lutjanidae GBR
EF428144 Caulanus thomasi Lutjanidae GBR
EF428145 Latuterus tkachi Lutjanidae GBR
EF428146 Latuterus maldivensis Lutjanidae GBR
EU571267 Siphoderina poulini Lutjanidae GBR
EU571266 Siphoderina subuterus Lutjanidae GBR
EU571264 Siphoderina infirma Lutjanidae GBR
EU571263 Siphoderina jactus Lutjanidae GBR
EU571265 Siphoderina quasispina Lutjanidae GBR
EU571261 Siphoderina grunnitus Haemulidae GBR
EU571260 Siphoderina hirastricta Lutjanidae GBR Australia Maldives
EU571262 Siphoderina virga Lutjanidae GBR
EF116615 Siphoderina territans "Lutjanidae GBR

Fig. 5 Bayesian inference phylogram based on partial 285 rDNA sequences (domains D1-D3) for the Cryptogonimidae (a) and Acanthostomum spp.
and the newly sequenced cryptogonimid representatives from Lake Tanganyika (b). Both phylograms were inferred under the GTR+I" model of
nucleotide substitution. Only posterior probability values >0.95 are shown. The new cryptogonimid species described here are highlighted in bold.
Freshwater and marine origin of the species is indicated by a green and a blue drop, respectively. Host family specification and place of origin of
the ingroup taxa are indicated. The scale-bar represents the number of nucleotide substitutions per site. Abbreviations: GBR, Great Barrier Reef; SWA,

003 1

South-West Asia

Latidae, i.e. L. niloticus, L. calcarifer and Psammoperca
waigiensis (Cuvier) have been previously screened for
endohelminth parasites (see Table 1 and references
therein). Therefore, our study significantly increases the
knowledge on the parasite fauna in lates perches, an eco-
nomically important group for fisheries worldwide.
Currently, only seven cryptogonimid species of four
genera, Acanthostomum, Brientrema, Neocladocystis and
Siphodera, have been reported from African freshwater
fishes [43, 46—48]. Of these, two species [Acanthostomum
absconditum (Looss, 1901) Gohar, 1934 and A. spiniceps
(Looss, 1896) Looss, 1899] were recorded from a bagrid
fish host, two were recorded from claroteids (Neocla-
docystis congoensis and Siphodera ghanensis Fischthal &
Thomas, 1968) and a single species each were recorded

from a gymnorchiid [A. gymnarchi (Dollfus, 1950) Yama-
guti, 1958], a malapterurid (Brientrema malapteruri
Dollfus, 1950) and unidentified fish hosts (Neocladocystis
tanganyikae), respectively [25, 26, 43, 45-49].

To date, only three species of Neocladocystis are known
worldwide, of which two, N. congoensis and N. tanganyi-
kae, were described from African freshwater fishes [43,
48]. Interspecific variability is seen mainly in the mutual
position of the bifurcation of the oesophagus and the
ventral sucker and in the extent of the vitelline follicles
and the sucker ratios [43, 48, 72]. Combined morphologi-
cal and molecular characterisation of the cryptogonimids
recovered in Lake Tanganyika allowed us to assign three
of them to Neocladocystis. Interestingly, intraspecific
phenotypic variability of N. bemba n. sp. was combined
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with a high morphological homogeneity across the three
new species of Neocladocystis, indicating the presence
of a species complex and recent speciation events. In
the present case, host species and geographical origin as
well as localisation in the host could be the driving force
for the divergence between N. bemba n. sp. and N. bil-
iaris n. sp. This is comparable to the evolution of other
cryptogonimids, Retrovarium formosum Miller & Cribb,
2007 and Retrovarium exiguiformosum Miller & Cribb,
2007, which both infect the chinamanfish, Symphorus
nematophorus (Bleeker) (Lutjanidae: Perciformes), and
were reported from distant geographical areas in the
Great Barrier Reef [76]. A similar evidence for high lev-
els of morphological homogeneity was previously docu-
mented for the species of Euryakaina Miller, Adlard,
Bray, Justine & Cribb, 2010 (Cryptogonimidae) [77],
though these species are distinguished by notably larger
distances in the 285 rDNA as compared to the difference
detected between N. bemba n. sp. and N. biliaris n. sp.
Unfortunately, as only a single immature individual of the
third putative new species of Neocladocystis, i.e. Neocla-
docystis sp., collected from L. angustifrons was available,
this did not allow us to provide a full species description.
However, its distinct species status was confirmed by a
difference of six and seven bp in the 285 rDNA sequences
compared with N. bemba n. sp. and N. biliaris n. sp.,
respectively.

Although the cryptogonimids typically have a three-
host life-cycle with adults that are localised in the intes-
tine or pyloric caeca [44], adult specimens of N. biliaris n.
sp. were localised in the gall-bladder of L. mariae. There-
fore, a potential localisation outside the digestive tract,
more specifically in the gall-bladder, was added to the
generic diagnosis.

A difference of four bp in the 285 rRNA gene was
found between the two species of Tanganyikatrema n. g.
Morphologically, the two species mainly differed in the
relative position of the ventral sucker. Unlike in the case
of N. bemba n. sp. and N. biliaris n. sp., the two species of
Tanganyikatrema n. g. were collected from the same host
species and locality.

Grandifundilamena novemtestes n. g., n. sp. possessed
unique morphological characters not only among the
cryptogonimids discovered in the present study but also
among all currently known cryptogonimid trematodes.
The presence of multiple testes, a character rarely seen
not only among the cryptogonimids [44] but also among
the digenetic trematodes in general, and the possession
of a wide, strongly muscular and infundibular oral sucker
support the erection of the new genus. Unfortunately,
the limited number of specimens collected prevented us
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from conducting molecular characterisation and phylo-
genetic placement of G. novemtestes n. sp.

There are more endohelminth species yet to be discov-
ered in the largely unexplored fish fauna in Lake Tang-
anyika. Collecting novel material from distinct localities
along the lake would reveal the real magnitude of the
trematode species diversity in the lates perches. Addi-
tional material is needed to reveal their actual geographi-
cal distribution in the lake. Further, clarification of host
species of N. tanganyikae along with generating sequence
data for this species is needed to improve the generic
diagnosis.

Biodiversity in Lake Tanganyika'’s pelagic zone

The biodiversity in Lake Tanganyika is concentrated
mainly in the littoral zone, which offers unique oppor-
tunities for within-lake diversification currently docu-
mented for a number of vertebrate and invertebrate
species such as cichlid fishes [78], crustaceans [79], por-
iferans [80] and gastropods [3, 81]. Cryptogonimid dige-
neans are known to parasitise gastropod invertebrates as
first intermediate hosts and fishes as second and defini-
tive hosts. The metacercarial stage is trophically trans-
mitted to the definitive host. Considering that trematode
parasites are largely dependent on the local food web and
the species interactions involved, the species reported
here could therefore provide a link between the highly
biodiverse littoral lake zone and the wide pelagic habitat.
Unfortunately, so far, there have been no studies on the
larval trematode diversity in the lake. The lake’s pelagic
zone is inhabited by less diverse fish assemblages includ-
ing lates perches, clupeids and representatives of some
cichlid tribes [16, 20, 21, 23, 82]. In general, parasites
recovered from meso- and/or bathypelagic freshwater
and marine hosts tend to show low host specificity and
limited diversity [11, 16, 83—85]. However, as the over-
all endohelminth biodiversity in the lake’s littoral habitat
is unknown, it remains unclear how it compares to the
digenean diversity in the pelagic zone.

Despite the relatively large number of examined fish
individuals, neither digenean nor monogenean, cestode
or acanthocephalan parasites [16] were recovered from
L. stappersii so far. This might be related to the different
life history and diet preferences compared to its conge-
ners. Whereas as juveniles of L. mariae and L. microlepis
are found in the shallow littoral zone, as adults, they are
exclusively pelagic top predators. They differ in their
preferred depth of occurrence, with L. mariae typically
found at greater depths [17, 86]. Lates angustifrons is
characterised by its preference for specific inshore rocky
habitat and a predominantly solitary and more seden-
tary lifestyle compared to the above-mentioned species.
Unlike other congeners in the lake, L. stappersii exhibits a
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truly pelagic lifestyle forming large groups that prey upon
clupeids [17, 87]. Consequently, for L. stappersii closer
contact and/or habitat sharing with gastropods as inter-
mediate hosts for the trematode parasites is rather lim-
ited [82].

Phylogenetic relationships

The phylogeny of the Cryptogonimidae has been the sub-
ject of a number of studies with more extensive surveys
conducted in the Indo-Pacific region at the Great Bar-
rier Reef (see [76, 88, 89] and reference therein). Despite
the limited sequence data available for freshwater cryp-
togonimid species, our study demonstrates that fresh-
water parasitism within the family occurs in at least two
independent lineages (see Fig. 5a). Apart from the above
mentioned earlier diverging clade of Acanthostomum
spp. including the novel lineage from Lake Tanganyika,
Caecincola parvulus Marshall & Gilbert, 1905 reported
from the freshwater centrarchid Micropterus salmoides
in the USA, is the only other freshwater cryptogonimid,
but clustered within the major marine clade. Further, the
monophyly of species parasitic in caesionid, haemulid,
lutjanid and nemipterid fish hosts was rejected, possi-
bly indicating multiple switching events between major
definitive host groups through their evolution.

The analysis based on the 28S rDNA sequences con-
firmed the distinct status of both genera for which
sequence data were obtained. In this respect, the recog-
nition of Neocladocystis as a distinct genus and the erec-
tion of Tanganyikatrema n. g. are justified based on both
morphological and molecular evidence. Contrasting pat-
terns of diversification have been revealed in the three
new genera described here. The diversification events
were associated with morphological divergence indicat-
ing that similar environmental/microhabitat contexts
do not always imply similar outcomes of diversification
[90]. Similarly, despite the striking morphological differ-
ences among the genera found in Lake Tanganyika’s lates
perches, the phylogenetic analyses showed that two of
them form a strongly supported clade sister to Acanthos-
tomum (Fig. 5a). This further highlights the importance
of taxon-dependent factors for the processes involved in
their diversification. Three representatives of Acanthosto-
mum are known to infect a wide range of fish species as
definitive hosts. These include members of distinct fami-
lies such as the Bagridae, Gymnarchidae and Latidae in
Africa, with L. niloticus reported as a host of two species
of Acanthostomum in Egypt [25, 56]. Recent diversifica-
tion processes within this digenean lineage, indicated by
subtle differentiation between the reported congeners
both at morphological and DNA sequence level, corre-
spond with the assumed recent invasion and subsequent
diversification of the lates perches in Lake Tanganyika
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([16] and own unpublished data). However, the lack of
parasitological data, especially for endohelminths, in the
lake prevents any further conclusions regarding the host
specificity of this digenean lineage.

Conclusions

Six cryptogonimid trematode species belonging to three
genera were reported from the lates perch hosts endemic
to Lake Tanganyika. Substantial intraspecific phenotypic
variability combined with interspecific morphological
similarity and contrasting with clear genetic differen-
tiation has been recognised in the recovered species of
Neocladocystis. Therefore, recent speciation driven by
host species preference and/or geographically depend-
ent diversification is hypothesised. Future investigations
based on additional material and more and/or faster
evolving molecular markers is needed to assess the real
levels of intraspecific variation in the cryptogonimid
trematodes from Lake Tanganyika. The novel molecular
data gathered here indicate the existence of an exclu-
sively freshwater clade within the cryptogonimid genera.
The present results highlight the importance of con-
certed efforts and application of an integrative approach
to the assessment of the real biodiversity in this unique
ecosystem.
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