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PHARMACOMETRICS

Construction of an Optimal Destructive Sampling
Design for Noncompartmental AUC Estimation
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Based on toxicokinetic studies of a destructive sampling design, this work was aimed at selecting
the number of time points, their locations, and the number of replicates per time point in order to
obtain the most accurate and precise noncompartmental estimate of the area under the concen-
tration-time curve (AUC). From a prior population pharmacokinetic model, the design is selected
to minimize the scaled mean squared error of AUC. Designs are found for various sample sizes,
number of time points, and a distribution of animals across time points from being very unbalanced
to balanced. Their efficiencies are compared both theoretically and based on simulations. An
algorithm has been implemented for this purpose using the symbolic resolution and numerical
minimization capabilities of MathematicaTM and an example of its use is provided. This method
provides efficient tools for constructing, validating, and comparing optimal sampling designs for
destructive sampled toxicokinetic studies.

KEY WORDS: optimal design; nonparametric estimation; mean squared error; toxicokinetics;
nonlinear mixed model.

INTRODUCTION

In the course of the preclinical toxicology evaluation and according to
the ICH guideline (1), toxicokinetics studies are designed to assess the sys-
temic exposure of animals to a drug under investigation. After single and
multiple drug administrations, blood samples are collected at several times
postdose and the level of exposure achieved after dosing is quantified by the
area under the concentration-time curve (AUC).
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In small animals, only a limited volume of blood can be collected from
each subject without impairing its health and without interfering with the
toxicological evaluation. A classical approach to avoid this risk is to reduce
the sampling frequency of each animal and to collect blood from different
animals at each time point, as in a destructive setting. The quadrature (2)
method for destructive sampling designs is a nonparametric technique that
computes the estimate of the true mean AUC(t0, tk) as a linear combination
of the mean concentrations recorded at successive time points. Due to the
mutual independence between all concentrations induced by the destructive
sampling procedures, the variance of the estimated AUC(t0, tk) is also writ-
ten in terms of the variance of concentrations at sampling time points. The
variance of AUC(t0, tk) can therefore be minimized by selecting appropriate
time points and by distributing optimally the total number of samples
among these time points.

Among all first-order approximation techniques, the linear trapezoidal
rule (3–5), produces a piecewise linear approximation to the true nonlinear
pharmacokinetic (PK) profile of a compound. It may therefore produce
biased estimates. A method for reducing this bias is to space the time points
so that the sums of areas formed by linear segments below and above the
true profile tend to be equal.

The problem of sparse sampling in pharmacokinetic and toxicokinetic
studies has already been the topic of numerous research articles. Optimal
designs have been suggested for the parametric estimation of PK models
and the derivation of AUC(t0, tk) estimates from these models (6–10). Con-
cerning the noncompartmental linear interpolation methods, the location of
time points that minimize the mean squared error (MSE) (11) has been
discussed by Katz and D'Argenio (12) for the case of one sample per time
point. The optimal allocation of several animals to these time points has
been suggested by Piegorsch and Bailer (13). More recently, Wei (14) intro-
duced an iterative MSE minimization algorithm for the selection of time
locations and the allocation of animals for the trapezoidal method when
considering uncorrelated kinetic model parameters. Although theoretically
appealing, the efficiency of their minimization procedure is questionable,
because the problems of time location and animal allocation are addressed
sequentially and in view of the illustrated clasping of time points in their
example.

In previous articles (12–14) optimal designs were developed based upon
simple priors given as fixed-effect models with an additive covariance struc-
ture. Following the recent interest in fitting nonlinear mixed models to spar-
sely sampled toxicokinetic data (7), the optimal design theory is hereafter
extended to this class of prior models with a Gaussian but otherwise non-
restrictive covariance structure. A strategy is suggested for selecting optimal
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destructive designs for the estimation of AUC(t0,tk) by any linear inter-
polation method. The minimization is performed on the scaled MSE, using
a method due to Brent (15). The efficiency of optimal designs of various
sizes is then compared, both on a theoretical basis and by simulation.

This method is first presented for the trapezoidal (3) technique and
then extended to any nonparametric AUC(t0, tk) estimation method which
is linear in the concentrations (2,4,16). An example of this generalization is
provided for an integration using the Simpson's rule (17).

For other estimation methods which are not linear in the concen-
trations, i.e., the log-trapezoidal rule (4,16), an approximation to the
method is suggested by estimating the variance of AUC(t0, tk) using a first-
order Taylor series expansion of mean concentrations.

OPTIMAL DESIGNS FOR THE TRAPEZOIDAL RULE

Method

Applying the Bailer method (3), when a total of N animals are to be
sampled at (k+ 1) time points from to to tk, and at each of the time points
(tj), nj animals are sampled, so that 2l

k
=0nJ = N, the mean AUC(t0, tk) is

computed as a linear interpolation of average concentrations (Cj) across time
points (tj), for j = 0, . . . ,k,

where

As samples are independently collected from different animals, the vari-
ance of mean AUC(t0, tk) is written in terms of the variance of sampled
concentrations (a]) divided by the number of samples (nj) collected at that
time point

As seen in Piegorsch and Bailer (13), Eq. (2) can be minimized with
respect to the number of animals (nj) per sampling time, using the Lagrange
multipliers method. The relative number of animals to be assigned at each



From Eq. (3), it appears that balanced designs, which allocate the same
number of animals (N/k) to each time point, will be optimal when times
are selected so that intervals 5, are inversely proportional to the standard
deviation of concentrations CT,. The existence of such designs is not guaran-
teed, as it depends solely on the variability profile of concentrations. Designs
that are close to being balanced can however be created and their efficiencies
will be compared to those of unbalanced designs using simulations.

When Eq. (3) is used as weights in Eq. (2), the variance of AUC(t0, tk)
is rewritten as a function of the sample locations (tj) and the total number
of animals (N) only
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time point tj is proportional to the standard deviation of the average concen-
tration at time tj

The variance of AUC(t0, tk) is inversely proportional to N. When the num-
ber of animals doubles, the variance is divided by two. For a specified sam-
pling design, when prior information about the variability of concentrations
is available, the total number of animals N can be determined to attain a
desired level of precision, that is, a minimum width for the confidence inter-
val on mean AUC(t0, tk).

The squared bias of AUC(t0,tk), (11,12) is calculated as the squared
difference between the expected value of AUC(t0, tk) and of the true area
under the concentration profile AUCTrue(t0, tk)

It is a function of the number of time points k and their locations (t0,..., tk)
but not of the N nor of their assignment to time points (n0,... ,nk). As
stated before, an unbiased design will be selected by equaling the areas
formed by the true nonlinear profile above and below the linear segments
between time points.

After a first-order oral absorption, the pharmacokinetic profile is usu-
ally convex in the absorption phase and then concave through the elimin-
ation phase. When considering profiles with both a convex and a concave
part, it is possible to find unbiased designs by properly selecting time points
that produce equal areas in the convex and concave parts. A well-chosen
single intermediate time point is, in this case, sufficient to annul the bias of
AUC(t0, tk). Under such circumstances, there is no correlation between the



number of time points (k) and the bias. The bias is not necessarily changed
when the number of time points is increased. However, the number of
unbiased designs increases as the number of time points (k) increases.

On the other hand, some profiles can only be either concave like after
an iv bolus administration, or convex like after a continued infusion. In
these cases, the trapezoidal interpolation always produces positively or
negatively biased estimates whatever the sampling scheme is and the bias
will be negatively correlated to the number of time points. As the number
of time points increases, the bias decreases and tends asymptotically to zero.

Assuming that the concentration profile of the investigated compound
can be fairly well characterized by a nonlinear mixed effect model of the
time (8), the determination of a], E[A UC(t0, tk)], and AUCTrue(to, tk), which
is required for evaluating both the bias and variance of AUC(t0, tk), will be
made based on some prior experiences with the compound.

In this framework, the drug concentration at each time point tj, j =
0, . . . , k, in the ith animal sampled at that time, i = 1,...,n j, is often charac-
terized by a nonlinear function of time, with animal-specific parameters bi,
and residual error eij.

In the present context of pharmacokinetics (7), parameters bi are usu-
ally selected to characterize the individual rates and extents of absorption,
distribution, and elimination of the compound. These parameters are ani-
mal-specific and assumed to be multivariate normally distributed with popu-
lation mean b and block-diagonal covariance matrix Z. The residual error
is also assumed to be normally distributed and independent of the animal
effects. Finally, the nonlinear function should be differentiable with respect
to its variance components (bi, eij) around their expected values. The model
is written as
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The constraints of differentiability of f() and normality of (bi, eij) are
essentially required in order to derive the variance [Eq. (4)] and bias [Eq. (5)]
of AUC(t0, tk) using a first-order Taylor series expansion of the concen-
tration model [Eq. (6)] around its mean parameters (b,0). This yields the
following approximation

From this approximation, the expected mean concentration becomes the
function of mean parameters: E[f(tj, bi, eij)] = f(tj, b, 0) and the expected
mean AUC(t0,tk) is the linear combination of that function across design
points tj: j = 0, . . . , k, as in Eq. (1).



As shown in Wei (14), the variance of concentrations can be approxi-
mated using the covariance structure of the model specified in Eq. (6), using
the Delta method, provided that the model has nonzero differentials with
respect to bi, and eij at their expected value (b, 0). The variance of concen-
trations at time tj is thus approximated by

where df/dx\a is the derivative of f with respect to x at x = a.
Substituting aj defined in Eq. (8) into Eq. (4), the approximated vari-

ance of AUC(t0, tk) becomes a function of the prior model specified in Eq.
(6), including the response function of its mean (b) and covariance structure
(£), the total number of animals (N), and the number (k) and locations of
time points (tj) only. The optimal distribution of animals across time points
(nj) is not explicitly part of that function, but can be retrieved from it, if the
location of time points is known from Eq. (3).

A similar model expansion as in Eq. (7) can be applied to approximate
the AUCTrue(to, tk) as the integral over the time interval (t0, tk) of Eq. (6) of
mean parameters

With these simplifications, the bias of AUC(t0, tk) in Eq. (5) depends only
on the response function, mean parameters (b), and on the number (k) and
locations of time points (tj). The bias remains independent of the distri-
bution of animals across time points (nj).

With priors on the shape and variability of the concentration profile
expressed in the form of a nonlinear mixed-effect model, as in Eq. (6), opti-
mal designs of various sizes (k, N) can be selected by combining the variance
and squared bias of AUC(t0,tk) into a single criterion, for minimization.
Following ideas from Katz and D'Argenio (12), the aggregated function is
chosen to be the scaled mean squared error (MSE). It is defined as the
square root of the mean squared error divided by the mean AUC(t0, tk).
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A scaled criterion has been preferred to the pure MSE, as consistently sug-
gested in previous papers (11–14) to avoid generating designs that produce
negatively biased and less precise AUC(t0, tk). The linear interpolation tech-
nique is not unbiased and as the variability is often proportional to concen-
trations, designs that minimize the pure MSE would be chosen at time
points of low expected concentrations, producing a systematic negative bias
in the estimation of AUC(t0, tk) Although, the MSE of these estimates is
optimized, the precision of the estimated AUC(t0, tk) in terms of coefficient
of variation usually remains poor. The scaling of the MSE is
recommended in our criterion to tackle this issue.

With the availability of symbolic mathematical packages, the scaled
MSE can easily be expressed as a function of the total number of animals
(N) and the number of times (k) and their locations t j : j = 1 , . . . , k – 1 . When
N and k are held fixed, Eq. (10) becomes a response surface of the times: tj.
Optimal time points are selected in the (t0, tk) interval to minimize that
function. The minimization is made using the Powell's quadratically conver-
gent method (15). An algorithm (presented in the Appendix) has been devel-
oped to implement this complete methodology in Mathematica™ and an
example of its use is detailed in the following section.

Illustration

We illustrate the optimal design selection method with a pharmaco-
kinetic profile from our current experimental practice within the Lilly
Research Laboratories. The profile of interest can be estimated by a one-
compartment first-order absorption model defined in Eq. (11) with normally
distributed absorption rate constant (ka = 0.5), bioavailability (F= 0.4), and
elimination rate constant (ke = 0.04). A quite large coefficient of variation
of 50% is observed in all parameters which are well correlated (see Table I)
An error of 10% is injected into our model to mimic the precision of the
bioassay.

Table I. Mean, Standard Deviation, and Correlation of Pharmacokinetic Parameters

Pharmacokinetic parameters

ka
ke

F/V

X

0.5
0.04
0.4

SD

0.25
0.02
0.2

Correlation matrix

ka

1
–0.8
–0.9

F/V

–0.8
1
0.9

ke

–0.9
0.9
1
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Fig. 1. Mean ± 1 standard deviation of the concentration
function. Gridlines locate the expected Tmax (5.49 hr) and

Cmax (0.321 mg/L).

where

Following a single administration (Dose = 1 mg), as shown in Fig. 1, the
expected profile reaches a maximum concentration (Cmax = 0.321 mg/L),
5.49hr postdose. The AUC(0, 24hr) is equal to 5.838 mg hr/L.

Optimal designs are found to estimate the AUC(0,24hr) by linear
interpolation. To do so, the extreme points 0 and 24 hr are fixed in the
design and intermediate points are found to minimize the scaled MSE
[Eq. (10)] of AUC(0,24hr). The distribution of animals among time points
is derived by Eq. (3), with the additional constraint that, after a single
administration, the predose concentration is fixed to 0 and no sample is
needed at that time point.

For the two samples postdose problem (k = 2), Fig. 2 illustrates the
bias, variance, and scaled MSE of AUC(0, 24 hr) as a function of only one
intermediate selected time point (t1) moving between 0 and 24 hr, when the
total number of animals (N) is fixed at 12. The bias is minimized at 4.64 hr
and the variance profile is roughly proportional to concentrations. The
scaled MSE (12.1%) is minimized at 4.3hr postdose, which provides an
optimal design {0,4.3,24hr}.

Table II displays optimal 12-animal designs of up to five time points
postdose. The number of animals to be sampled at each time point is pre-
sented; the scaled MSE (%), bias (%), and standard error of the mean (SEM
in %) are also reported. The scaled MSE decreases up to four time points
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Fig. 2. Squared bias, variance, and scaled mean squared error
(MSE) of AUC(0, 24 hr) versus time for a 12-animal design
including one sampling time between 0 and 24 hr. The design
which minimizes the scaled MSE (0, 4.3, 24 hr) is highlighted
by vertical lines in all three graphs.
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Table II. Optimal 12-Animal Designs Including Two to Five Samples Postdose

No. of points
(k)
2

3

4

5

ti ... tj... tkDesigns: { }
(n1 . . . nj, . . . nk

4.3
9.1
1.9
1.0
1.2
0.4
1.2
0.4

24
2.9
4.9
8.3
2.6
0.9
2.7
1.0

24
2.7
4.7
8.0
4.8
7.5

24
2.7

22.6 24
2.9 0.2

Scaled
MSE (%)

12.1

9.8

9.6

9.6

Bias (%)

7.0

2.4

1.9

2.0

SEM (%)

9.4

9.5

9.4

9.4

and then stabilizes around 9.6%. There is no gain in adding a fifth sampling
time to the design. The optimal distribution of animals across time points
is very unbalanced, with very few animals at early samples and more ani-
mals at 4.7 and 24 hr, in order to cover the variability generated over the
large time interval. As seen in Fig. 3, no sample is selected between 4.7 and
24 hr because the expected profile is fairly linear in the elimination phase.

In Table III, optimal 4-point designs with the number of animals N
varying from 4 up to 120 are displayed. As the number of animals increases,
the overall precision of AUC is improved. Not surprisingly, the variance of
AUC is inversely proportional to the number of animals. As the MSE is a
sum of both squared bias and variance, when the variance is reduced, the
contribution of the bias term becomes predominant in the criterion. There-
fore, designs optimized for more animals tend to be less biased. As the
number of animals increases (N= 120), the best design will be chosen to
optimize the bias essentially. To do so, time points are placed in regions of
higher variability of concentrations (Fig. 4).

Optimal designs can also be found near to a prespecified distribution
of animals across time points. Table IV presents such designs with a distri-
bution from very unbalanced to balanced.

The theoretical precision of mean AUC(0, 24 hr), as calculated using
the Delta method (18), has been validated with a simulation study. The
median and interquartiles are reported from 10,000 simulated profiles.

When balancing animals across time points, optima] designs are found
to be more equally spaced (Fig. 5). The bias of each design is similar (around
2%), except for the balanced design (3.6%), and the precision is improved
when choosing unbalanced designs. With an unrestricted weighing scheme,
time points are more flexibly chosen to produce a better fit to the nonlinear
pharmacokinetic profile and therefore the bias of such designs will be
decreased. With balanced designs, the variance function dictates the location
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Table III. Optimal Designs with Four Samples Postdose with Varying Numbers of Animals

No. of
animals

4

9

12

15

120

Design
t1 t2 t3 t4

n1/N n2/N n 3 /N n4/N

1.1
3%
1.2
3%
1.2
3%
1.2
3%
1.4
4%

2.3
6%
2.5
7%
2.6
8%
2.7
8%
3.1
10%

4.0
66%
4.6

67%
4.7
67%
4.9

67%
5.9

66%

24
25%
24

23%
24

22%
24

22%
24

20%

Scaled
MSE (%)

16.1

11.0

9.6

8.6

3.1

Bias (%)

3.8

2.3

1.9

1.6

0.4

SEM (%)

15.6

10.7

9.4

8.4

3.1

of time points and the compared optimality of selected designs is affected
in terms of both bias and variance.

Results from the simulation are consistent with theoretical predictions
and the stability of SEM(%), measured by the width of the interquartile
range, is not affected by the unbalanced distribution of animals. The small
discrepancies between predictions and simulations, as observed in this par-
ticular case, could however be much larger for other models. The Taylor
series expansion, as used in Eq. (8) might be the principal cause of discrep-
ancies when parameters (ka, ke) involved in the nonlinearity parts of the
model defined in Eq. (6) have large variances. In that case, the linear
approximation remains locally correct around means, but tends to be less
accurate as the allowed variability from the means becomes important.
Another cause of the discrepancies could be related to the simulation mech-
anism, when normality assumptions are made on strictly positive
parameters.

EXTENSION TO OTHER AUC ESTIMATORS

Linear Methods

Many other AUC(t0, tk) estimation techniques than the trapezoidal rule
are based on the interpolation of observed concentrations (4,5). Among
these methods, some, as the trapezoidal rule or the Simpson's rule (17), are
built upon a Taylor series expansion of the integrated AUC and they remain
linear in the concentration. Other methods, as the log-trapezoidal rule (16),
are created from other mechanisms and are not linear in the concentrations.
The optimal design theory will first be generalized from the trapezoidal to
any linear method and then to nonlinear techniques.

202



Optimal Destructive Samplng Design 203



Vandenhende et al.

Table IV. Optimal 12-Animal Designs with Fixed Distribution of Animals

Design
t1 t2 t3 t4

[n1 n2 n3 n4

1.7
1
1.7
1
2.5
2

3.0
3

3.6
1
4.5
2
6.3
3

9.7
3

4.8
7
5.1
6

11.8
5

12.2
3

24
3

24
3

24
2

24
3

Theoretical

Scaled MSE (%)

9.7

10.0

10.3

11.1

Bias (%)

2.0

1.8

1.7

3.6

SEM (%)

9.4

9.5

10.0

9.9

Simulated SEM (%)

Q1

7.6

8.0

8.6

8.5

Median

9.7

10.3

10.9

10.9

Q3

12.9

13.6

14.4

14.6

When considering linear interpolation methods, the estimated mean
AUC(t0, tk) can again be calculated as a linear combination of mean concen-
trations (q) across time points tj: j = 0 , . . . , k , with weights (wj) defined as
a function of time points, according to the assumed relationship between
the times and concentrations (linear, quadratic, hyperbolic...)

204

For instance, the generalized Simpson's rule (17) is an estimation method
in which the concentration profile is approximated by a piecewise quadratic
function. For three successive time points: ( t j – 1 , t j , t j + 1 ) , the AUC(t j – 1 ,
tj+1) is estimated over two time intervals 0j and 6j+1 as

where Q} = (tj – 0 –1 ). For any even number of time points (k+1), the com-
plete AUC(t0, tk) is then calculated as the sum of partial AUC( t j – 1 , t j+1).
In that summation, the weights (wj) are a linear combination of the time
intervals 0j, and 0 j + 1 .

When the number of time points (k +1) is odd, the AUC(t0,tk) cannot
be fully calculated based on the piecewise quadratic curves. Additional trap-
ezoidal estimations are required, for an odd number of time intervals (0j).
The AUC(t0, tk) is then estimated by a mixture of piecewise quadratic and
linear segments. As this estimator depends on the allocation of sets of time
intervals to quadratic or linear interpolation methods, optimal designs can
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Table V. Optimal Simpson Designs with Four Samples Postdose with Varying Numbers of
Animals

No. of
animals

4

9

12

15

120

Designs:
t1 t2 t3 t4

n1/N n2/N n3/N n4/N

1.6
8.5%

1.7
9.6%

1.7
9.9%

1.7
10.2%

2.17
15.37%

4.0
46.2%

4.6
48.4%

4.9
49.0%

5.0
49.5%
6.33

49.33%

19.0
45.4%

19.2
42.1%

19.2
41.0%

19.3
40.2%

19.58
35.29%

24
0.01%

24
0.004%

24
0.008%

24
< 0.000%

24
0.004%

Scaled
MSE (%)

16.0

10.8

9.4

8.5

3.0

Bias (%)

3.2

2.0

1.7

1.5

0.1

SEM (%)

15.6

10.6

9.3

8.3

3.0

only be selected if the assignment has been initially defined for all intervals.
This case of an odd number of time points (k + 1) is not addressed here.

As the Simpson's Eq. (13) is still linear in mean concentrations, the
optimization method presented above remains valid provided that the dj are
replaced by the newly defined weights (wj) in Eqs. (2), (3), and (4).

Illustration of the Simpson's Method

Back to the initial example, optimal sampling designs with (k = 3) are
constructed, based on the Simpson's interpolation method for a varying
number of animals N, from 4 up to 120 (Table V). Similarly to optimal
designs for the trapezoidal rule, when the number of animals increases, time
points are moved to produce less biased AUC(0,24 hr). The scaled MSE of
optimal designs for the trapezoidal and Simpson's rules of an equal size
(k, N) is similar (refer to Tables III and V). This suggests that, for the same
cost, both estimation methods lead to similar accuracy and precision of
AUC.

Since the trapezoidal rule is a first-order approximation to the
Simpson's rule, the location of time points can be compared between both
methods, in view of the shape of the expected profile. In both cases, the first
sampling points are placed to absorb the initial nonlinearity of the curve,
up to Tmax. In this absorption phase, more tune points are required for the
trapezoidal than for the Simpson's rule. Then, the descending phase is rather
linear from Tmax up to 24 hr, so that, in theory (9) only two time points
located at the extremes are required for both methods. In light of this, the
last time point selected using the Simpson's method (> 19hr) is probably

206



Optimal Destructive Samplng Design

useless, because it is located very close to 24 hr and the weight of the 24 hr
point is very low.

Nonlinear Methods

For completeness, we conclude by presenting a theoretical extension of
the above methodology, for the case when the AUC(t0, tk) estimator is not
linear in the mean concentrations. When AUC(t0,tk) is estimated by the
log-trapezoidal rule (16), then

and

The approximation of AUC(t0,tk) is again expressed as a linear combi-
nation of mean concentrations, from which the variance of AUC(t0, tk) can
be written in terms of the variance of mean concentrations, as

207

If cj = 0 or c j+1 = 0 or cj = c j + 1 , a linear trapezoidal step is taken instead, by
replacing summandj of Eq. (14) with summandj of Eq. (1).

Due to the nonlinearity, the variability of AUC(t0, tk) is no longer com-
puted in terms of the variability of concentrations. It could however be
underestimated using another first-order Taylor series expansion of
AUC(t0 ,tk) around expected concentrations E(cj)

where



Substituting this variance term into the MSE formula should yield approxi-
mated optimal designs for the log-trapezoidal method.

DISCUSSION

The selection of the number and location of sampling times and the
number of animals per time point is a critical operation when designing a
destructive toxicokinetic study. This paper presents a practical strategy to
select study designs that optimize the scaled mean squared error of
AUC(t0, tk), estimated by linear quadratures. A scaled function was chosen
to avoid systematic selection of negatively biased designs and to optimize
the precision of AUC(t0, tk) estimates. The performance of the method is
detailed in an example and illustrated with a simulation study.

The algorithm uses the symbolic resolution capability available in any
modern mathematical packages to provide an analytical form of the vari-
ance and squared bias functions. Advantages of having such a form for each
function are that optimal solutions are exact, computations are very fast,
and the algorithm remains flexible and adaptable to any type of prior model.

A vast panel of population pharmacokinetic models can be envisaged
in the optimization algorithm. As the variance of concentrations is calcu-
lated by applying the Delta method to this nonlinear model, the unique
restriction for constructing optimal designs is to start with models having a
normal error structure. When no prior variability estimates are available for
the model parameters, design can still be constructed, provided the total
variability is a priori given as a function of concentrations.

The variance of AUC(t0, tk) is inversely proportional to the total num-
ber of animals; therefore, the sample size can be calculated based on power
considerations to control the precision of estimates. By allowing a flexible
redistribution of animals to time points, designs tend to be more efficient
but still as stable as balanced designs.

Further refinements of the method could be envisaged in order to con-
trol the robustness of designs to variations in prior model assumptions. In
a Bayesian framework (7–10), a solution should be optimizing the expected
squared bias of AUC(t0,tk) over the prior parameters' distributions.
Although theoretically appealing, an analytical form of this function
remains difficult to manage.

The scope of the method could also be extended to designs with repli-
cated sampling per animal. With these new conditions, the variances of
AUC(to,tk) in Eq. (2) might be changed to include covariance terms for
dependent samplings. An analytical form of the updated variance formula
is given by Yeh (7) and comparison of the efficiency of given designs is
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possible. However, the algorithm for selecting optimal designs in this frame-
work has not yet been implemented.

APPENDIX

Sample of Mathematica TM Code

Prior Model and Design

P: Vector of mean parameters
V: One block of the covariance matrix for P
D: Vector of design points (t0, . . . , tk)
t: Time
Y[t, P]: Model for concentrations
M: Interpolation method (Trapeze or Simpson)
W: Vector of a given allocation of animals to time

points

AUC Integral

r  r m a x Y i
TrueAUC[min_, max_, P_] := Evaluate Y[t, P]dt

min

Trapezoidal Rule

Trapeze[D_] := Flatten[{1/2 »(D[[2]] –First[D]),
Table [l/2(D[[i + l]]–D[[i–1]]),

(i, 2, Length[D] –1}],
1/2 (Last[D] –D[ [Length[D] –1] ] ) }]

Simpson's Rule

Deltaimoins1[D_, i_]
:= ( – D [ [ i + 1 ] ] / 6 — D [ [ i – l ] ] / 2

+ 4 / 6 * D [ [ i ] ] )

Deltai[D_, i_] := 2/3 (D[ [i + 1] ] – D [ [ i – 1 ] ] )

Deltaiplus1[D_, i_]
:= ( D [ [ i + 1 ] ] / 2 + D [ [ i – 1 ] ] /6

– 4 / 6 * D [ [ i ] ] )

Simpson[D_
:= Flatten[ {Deltaimoins1 [D, 2] , Deltai [D, 2] ,

Table[{{Deltaiplus1[D, i]+Deltaimoins1[D, i+2]},
{Deltai[D, i + 2] }}, {i, 2, Length[D] –2, 2}] ,
Deltaiplus1[D, Length[D] – 1] } ]
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Bias

VectY [D_, P_] :=Table[Y [D[ [i] ] , P] , {i, 1, Length[D] }]

AUC[D_, P_, M_] :=M[D] . VectY [D, P]

Bias[D_, P_, M_] := (AUC[D, P, M]
–TrueAUC[First[D],
Last[D], P] )2

Variance (Optimal Allocation of Animals to Time Points)

VectDY [t_, P_] := Evaluate [ ( (d#1Y [t, P]&)/@{1, eps}) ]

VarY [t_, P_, V_] :=VectDY [t, P] . V . VectDY [t, P]

VectWAUC[D_, P_, V_, M_]
:= Table [VarY [D [ [i]], P, V] 0.5,

{i,1, Length [D] }] * Abs[M[D] ]

SumWAUC[D_, P_, V_, M_]
:=VectWAUC[D, P, V, M] . Table[{1}, {i, 1,

Length[D]}]

W[N_, D_, P_, V_, M]
:= (N*VectWAUC[D, P, V, M]/SumWAUC [D, P, V, M]
[[1]]) –1/. ComplexInfinity–»0

VectVarY [D_, P_, V_]
:= Table[VarY[D[[i]], P, V],

{i, 1, Length[D]}]

VarAUC[N_, D_, P_, V_, M_]
:= (VectVarY [D, P, V]*W[N, D, P, V, M] ) . M[D]2

MSE (Optimal Allocation of Animals to Times)

CV[N_, D_, P_, V_, M_]
:= (VarAUC[N, D, P, V, M]
+Bias[D, P, M]) 0.5/AUC[D, P, M]

MSE [N_, D_, P_, V_, M]
:=VarAUC[N, D, P, V, M]
+Bias[D, P, M]

Variance and MSE (Given Allocation of Animals to Times)

VectWVarY [D_, W_, P_, V_]
:= Table[VarY [D [ [i]], P, V], {i, 1, Length[D]}]/W
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/.{ComplexInfinity-»0, Indeterminate->0}

DiscreteVarAUC[D_, W_, P_, V_, M_]
:= (VectWVarY [D, W, P, V]) .M[D]2

CVAUCDiscrete[D_, W_, P_, V_, M_]
:= (DiscreteVarAUC[D, W, P, V, M]
+Bias[D, P, M]) 0.5/AUC[D, P, M]
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