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An evaluation of species distribution models to estimate tree diversity at genus level in a 26 

heterogeneous urban-rural landscape 27 

 28 

Abstract 29 

Trees provide ecosystem services that improve the environment and human health. The 30 

magnitude of these improvements may be related to tree diversity within green spaces, yet 31 

spatially explicit diversity data necessary to investigate such associations are often missing. 32 

Here, we evaluate two methods to model tree diversity at genus level based on environmental 33 

covariates and presence point data. We want to identify the drivers and suitable methods for 34 

urban and rural tree diversity models in the heterogeneous region of Flanders, Belgium.  35 

We stratified our research area into dominantly rural and dominantly urban areas and developed 36 

distribution models for 13 tree genera for both strata as well as for the area as a whole. 37 

Occurrence data were obtained from an open-access presence-only database of validated 38 

observations of vascular plants. These occurrence data are combined with environmental 39 

covariates in MaxEnt models. Tree diversity is modelled by adding up the individual species 40 

distribution models. 41 

Models in the dominantly rural areas are driven by soil characteristics (soil texture and drainage 42 

class). Models in the dominantly urban areas are driven by environmental covariates explaining 43 

urban heterogeneity. Nevertheless, the stratification into urban and rural did not contribute to 44 

a higher model quality. Generic tree diversity estimates were better when presences derived 45 

from distribution models were simply added up (binary stacking, True Positive Rate of 0.903). 46 

The application of macro-ecological constraints resulted in an underestimation of generic tree 47 

diversity (probability stacking, True Positive Rate of 0.533). We conclude that summing 48 

presences derived from species distribution models (binary stacking) is a suitable approach to 49 

increase knowledge on regional diversity. 50 



 51 

HIGHLIGHTS: 52 

 Rural species distribution models (SDMs) are driven by soil characteristics. 53 

 Urban SDMs are driven by environmental covariates explaining urban heterogeneity.  54 

 Summing presences derived from SDMs is suitable to assess diversity. 55 

 Summing habitat suitability derived from SDMs underestimates diversity. 56 

  57 



1. Introduction 58 

Trees in urban environments deliver important ecosystem services. Street trees help to cool 59 

cities (Konarska et al., 2016; Scholz et al., 2018), partially mitigating the urban heat island 60 

effect and human heat stress (Lee et al., 2016). Trees can also remove particulate matter from 61 

the atmosphere (Scholz et al., 2018; Selmi et al., 2016). Through climate regulation, air 62 

pollution mitigation and aesthetic and cultural values, trees contribute to better human well-63 

being (Salmond et al., 2016). Individual trees in the city also contribute to indirect nature 64 

experiences, which benefits human health (Cox et al., 2019). The ecosystem services delivered 65 

by trees are tree species specific (Donovan et al., 2005). Increasing biodiversity is expected to 66 

result in better ecosystem functioning and may yield more stable ecosystem services through 67 

time (Cardinale et al., 2012).  68 

Tree diversity has been studied at genus level before (Hoover et al., 2017; Hope et al., 2003) 69 

and might become more popular with increasing availability of observations from citizen 70 

science (Dobbs et al., 2018). Observations of trees through citizen science initiatives have been 71 

found to be more accurate at genus level than at species level (Roman et al., 2017). Plant genus-72 

level diversity is strongly linked to plant species-level diversity (O’Brien et al., 1998). 73 

Additionally, interactions with host plants often occur at genus level and therefore genus level 74 

diversity is also relevant for insect diversity (Kemp and Ellis, 2017), or ectomycorrhizal fungal 75 

diversity (Gao et al., 2013). Thomsen et al. (2016) emphasize that a healthy urban tree 76 

population requires a high generic diversity. Modelling tree diversity at genus level is thus of 77 

high value because it encompasses more reliable observation data and allows for diverse 78 

applications.  79 

Genus-level presence-only data can be used in species distribution models (SDMs). SDMs 80 

correlate species observations and environmental covariates to predict habitat suitability (Elith 81 

et al., 2006). Applications of SDMs are manifold: identifying species distributions, studying 82 



impact of climate and land use change scenarios (Dyderski et al., 2018) and identifying areas 83 

of interest for conservation (McCune, 2016). Applications of SDMs in urbanized areas are not 84 

common (Della Rocca et al., 2017), yet they have been successfully applied in urban green 85 

spaces (Milanovich et al., 2012) and human-dominated landscapes (McCune, 2016).  86 

Species richness can be modelled by stacking individual SDMs on top of one another to yield 87 

a total richness. Stacking of SDMs is most commonly done after thresholding the continuous 88 

probability output of the individual SDMs, a method known as binary stacking (Calabrese et 89 

al., 2014). Nevertheless, discretizing continuous probabilities using fixed thresholds (for 90 

example considering all cases with a modelled probability of p > 0.55 as being present) is 91 

generally discouraged (Merow et al., 2013). Instead, species-specific threshold rules can be 92 

applied (Cao et al., 2013). Still, the literature suggests that binary stacking tends to 93 

overestimate species richness because biotic limitations are not accounted for (Calabrese et al., 94 

2014; Gavish et al., 2017; Guisan and Rahbek, 2011). Nonetheless, combining binary SDMs 95 

is the most straightforward method to create species richness maps (Trotta-Moreu & Lobo, 96 

2010). Combining continuous probability data, which is called probability stacking, is an 97 

alternative stacking approach (Calabrese et al., 2014), although interpretations are less 98 

straightforward. Guisan & Rahbek (2011) have proposed a framework for spatially explicit 99 

species assemblage modelling (SESAM). In the SESAM framework, a macro-ecological model 100 

limits the number of species that can co-occur in one cell. One way of defining the macro-101 

ecological constraint is by stacking the probabilities of SDMs (probability stacking). D’Amen 102 

et al. (2015) reduced overestimation by applying probability stacking successfully in the Alps 103 

of western Switzerland at a fine spatial resolution. 104 

In this study, we test a stratified approach, in which we run separate SDMs for rural and urban 105 

areas in a mosaic landscape, to model tree diversity at genus level. We evaluate which 106 

environmental covariates drive the urban and rural models. First, we hypothesize that different 107 



environmental covariates drive the urban and rural models. We expect that soil nutrients and 108 

soil moisture determine vegetation in rural areas, because this vegetation resembles the 109 

potential natural vegetation more closely (Walthert and Meier, 2017). For urban areas we 110 

expect an anthropogenic influence on the vegetation composition (Bourne and Conway, 2014). 111 

Second, we hypothesize that the application of a macro-ecological constraint to take biotic 112 

interactions into account would improve models for rural areas, but not for urban areas. We 113 

expect that biotic interactions are more relevant in rural areas (D’Amen et al., 2015). Third, we 114 

hypothesize that binary stacking performs sufficiently well in urban areas. We expect that 115 

biotic interactions are less relevant in urban areas because of human intervention.  116 

 117 

2. Materials and methods 118 

2.1. Study area and stratification 119 

Flanders is the northernmost of the three administrative regions of Belgium with an area of 120 

13,522 km2 and a population density of 482 inhabitants per km2. The area has a north-south 121 

soil gradient of decreasing fraction of sand and increasing fraction of silt. The climate 122 

according to Köppen is a maritime temperate climate (Cfb) (Peel et al., 2007). The 123 

Organization for Economic Co-operation and Development (OECD) considers Flanders 124 

entirely as urbanized (Vervoort, 2016). Nevertheless, based on the Urban Audit of 2018 125 

published by Eurostat, core cities and functional urban areas (FUAs) are delineated for 126 

Flanders. The delineation is used to distinguish dominantly urban areas from more rural areas 127 

in Flanders (Fig. 1). FUAs define a metropolitan area outside the geographical city boundaries, 128 

taking into account demographic, economic and environmental factors (Khalili et al., 2018). In 129 

Flanders, the FUAs are located around the capitals of each province, except for Hasselt (Fig. 130 

1). Hasselt is a provincial capital located in the east of the region where forest cover is higher. 131 

As only 10.6% of the study area consists of forest (De Keersmaeker et al., 2015), other (urban) 132 



green spaces are of high importance for biodiversity (Aronson et al., 2017; Lepczyk et al., 133 

2017). Green space is most commonly defined as a vegetated area (Taylor and Hochuli, 2017). 134 

We will focus on vegetated areas containing woody vegetation. The Belgian and Luxemburg 135 

Institute for Floristics (IFBL) developed a regular grid of 4×4 km squares further divided into 136 

1×1 km squares covering Belgium and Luxemburg. This grid is used as a reference for mapping 137 

species distributions (Van Rompaey, 1943). In this study the 1×1 km IFBL grid is used to mask 138 

observation data and environmental covariates. 139 

 140 

Fig. 1: Stratification of the Region of Flanders into functional urban areas and rural areas 141 

according to the Urban Audit of Eurostat (2018). The provincial capital cities are labeled and the 142 

forest cover in the region is visualized. 143 

2.2. Species distribution modelling 144 

Species distribution models (SDMs) estimate the relationship between recorded occurrences at 145 

sites (samples) and the environmental and/or spatial characteristics of those sites 146 

(environmental covariates) (Elith et al., 2011). This relationship is then used to predict 147 

occurrences elsewhere. In the stratified approach, separate SDMs are run for the urban and 148 

rural strata. Subsequently, the urban and rural data are combined in an integrated approach to 149 



form a model that covers the whole region of Flanders. The models are validated with 150 

independent field data to evaluate their utility in the urban and rural strata. The workflow for 151 

the integrated approach, which is parallel for the stratified approach, is visualized in Fig. 2 and 152 

explained in the following sections. 153 

 

2.2.1. Occurrence data 

The occurrence data of thirteen tree genera were included in the study: Aesculus (horse 154 

chestnut), Alnus (alder), Betula (birch), Carpinus (hornbeam), Corylus (hazel), Fagus (beech), 155 

Fraxinus (ash), Juglans (walnut), Platanus (plane), Populus (poplar), Quercus (oak), Salix 156 

(willow) and Tilia (linden). Presence-records of these genera were extracted from Florabank1 157 

(Van Landuyt & Brosens, 2017) available on GBIF.org. The Florabank is an open-access 158 

presence-only database of validated observations of vascular plants, from checklists, literature 159 

and herbarium specimen information. The observations are georeferenced and attributed to the 160 

centers of 14317 1km×1km IFBL grid cells (Van Landuyt et al., 2012).  161 

 162 

  163 



 

Fig. 2: Mapping tree diversity at the genus level from presence-only and environmental data. Presence-only data 

from Florabank (a) and environmental data from various sources (b) are combined in a Species Distribution 

Model (SDM) using MaxEnt. The continuous output of MaxEnt, probability models (c), can be converted to 

presence-absence models (binary SDMs) by applying genus specific thresholds (d). Stacking the probability 

models and applying the probability ranking rule results in a probability stacked SDM (e). Aggregating the 

thresholded SDMs results in a binary stacked SDM (f).  



2.2.2. Environmental covariates 164 

Soil texture class, soil drainage class, mean lowest and highest groundwater table depth, land 165 

cover type and habitat type were the environmental covariates used. In Belgium, natural plant 166 

communities are primarily determined by variation in soil nutrient content and soil moisture 167 

(Cornelis et al., 2009). Thus, soil texture and drainage class were extracted as categorical soil 168 

variables from the Belgian soil map (Dondeyne et al., 2014). This vector geodataset was first 169 

resampled to a raster, using the IFBL grid as the mask layer and the cell assignment type 170 

‘maximum combined area’. The ‘maximum combined area’ rule selects the attribute value from 171 

the polygon with the largest total area overlapping with the grid cell (ESRI, 2017). Mean 172 

highest and lowest groundwater tables data were obtained from a soil hydrology raster 173 

(ECOPLAN, 2014) and resampled to the IFBL grid.  174 

Land cover data were obtained from one of the base layers in the ECOPLAN ecosystem 175 

services information system (ECOPLAN, 2014). The geodataset contains a basic land cover 176 

classification (the list of classes is available in Appendix 1). The grid with a spatial resolution 177 

of 5m was resampled to the IFBL grid, retaining the land cover with the largest area in the grid 178 

cell.  179 

Habitat data were obtained from the Biological Valuation Map (BVM), a geodataset of habitat 180 

types with attribute information on the ecological context and value of the delineated areas 181 

(Vriens et al., 2011). The BVM contains information about heterogeneity of urban areas, such 182 

as the density and context of built-up areas, industrial areas and recreational areas. The classes 183 

of the BVM are listed in Appendix 1. The BVM is a vector geodataset and was resampled to 184 

the IFBL grid using ‘maximum combined area’ as the cell assignment type. Resampling and 185 

masking of the environmental geodatasets were performed in ArcGIS 10.5.1-software (ESRI, 186 

Redlands, CA, 2017). 187 

2.2.3. Probability models 188 



Probability models of the spatial distribution of each of the 13 genera were developed using 189 

MaxEnt version 3.3.3k. MaxEnt is a machine‐learning algorithm highly suitable to develop 190 

models from presence-only data (Elith et al., 2006; Phillips et al., 2006). The algorithm is based 191 

on the principles of maximum entropy and finds an optimal probability distribution using a 192 

combination of occurrence data and environmental data (Elith et al., 2011). MaxEnt is known 193 

to perform well even when environmental covariates are linearly correlated (De Marco and 194 

Nóbrega, 2018). The logistic output of MaxEnt is an attempt at expressing the raw output as a 195 

probability of presence (Elith et al., 2011). A 10-fold cross validation was applied. Model 196 

performance was assessed with the area under the receiver operating characteristic curve 197 

(AUC) statistic, ranging between 0 and 1. When AUC values are higher than 0.5, the model 198 

performs better than a random distribution. For every genus, three models were developed: one 199 

using the entire dataset (integrated approach), then one for the rural and one for the urban areas 200 

(stratified approach). To evaluate the driving factors in these models, we determined the 201 

environmental covariate with the highest percentage of contribution to the model.  202 

 203 

2.2.4. Binary stacking 204 

We applied the ‘10 percentile training presence’ rule on the MaxEnt-output (Ficetola et al., 205 

2009; Pearson et al., 2006; Skowronek et al., 2017), for every genus and model approach 206 

separately, resulting in a threshold value above which 90% of the training samples are correctly 207 

classified. Thus, a unique threshold value is used for every genus to create a binary output (0 208 

= absence, 1 = presence). Binary stacking is the process of adding up the individual binary 209 

models, resulting in a generic tree diversity varying from 0 to 13 genera.  210 

 211 

2.2.5. Probability stacking 212 



As a cell-specific macro-ecological constraint we summed the MaxEnt-probabilities per grid 213 

cell (D’Amen et al., 2015), resulting in a possible generic tree diversity range between 1.96 214 

and 8.76. To determine which genera occur in the constrained cells we used the ‘probability 215 

ranking’ rule. The genera are assigned to the cell according to decreasing order of probability 216 

of presence determined from the SDMs (2.2.3), until the cell-specific macro-ecological 217 

constraint is reached. Probability ranking as described in the SESAM framework is 218 

incorporated in the package ‘ecospat’ available for R (Di Cola et al., 2017) and was executed 219 

with R software 3.4.3 (R Core Team, 2017). 220 

 221 

2.3. Validation 222 

The probability models (2.2.3) were cross-validated before they were stacked. In addition, the 223 

stacked models were validated with independent field data. The independent field data 224 

consisted of recordings of the genus’s occurrence around 208 randomly selected point 225 

locations, with a search effort per point of ten minutes with two observers. The sampling 226 

protocol is derived from the timed-meander sampling protocol (Goff et al., 1982), which is 227 

applied in various fields of ecology (Threlfall et al., 2017) and is favored because of its cost-228 

effectiveness (Hamm, 2013). The 208 point locations are distributed over 130 IFBL cells. 229 

There are 87 rural cells and 43 urban cells. A genus is present in a cell if it is observed in at 230 

least one of the random point locations within the cell. The field data are assumed to provide 231 

the true condition that is compared to the predicted condition provided by the SDMs at genus 232 

level. True condition data and predicted condition data were compared in a confusion matrix, 233 

describing true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 234 

outcomes. Based on the values in the confusion matrix, we evaluated the model performance 235 

by calculating the true positive rate (TPR). TPR is the number of true positives divided by the 236 

total of positive cases, the sum of true and false positives. The TPR informs simultaneously 237 



about the presences that are correctly predicted and about those that were incorrectly identified 238 

as positives. A TPR of 80% would indicate that 80% of the presences are true positives while 239 

20% are false positives. However, in the present study, the false positives are not necessarily 240 

false as the species could have been missed during the validation field work. Therefore we 241 

focus on the true positives when interpreting the TPR. Additionally, the percentage of false 242 

negatives is included in the evaluation, because this percentage provides information on the 243 

underestimation of the stacking method. The higher the percentage of false negatives, the more 244 

the tree diversity at genus level is underestimated.  245 

 246 

2.4 Compare model outcomes 247 

To compare model outcomes we calculated average modelled tree diversity at genus level and 248 

95% confidence intervals for binary stacked vs. probability stacked models and for integrated 249 

vs. stratified approaches and for urban vs. rural areas. We used the paired sample t-test (with a 250 

statistical cutoff value of 0.05) to test whether overall average modelled tree diversity at genus 251 

level differed between binary stacked and probability stacked models. We then used the paired 252 

sample t-test to test whether modelled generic tree diversity differed between integrated and 253 

stratified approaches within the binary stacked models, both for the entire dataset and for a 254 

dataset stratified in urban vs. rural areas. 255 

  256 



3. Results 257 

3.1 Probability models 258 

The species distribution models outperformed the random spatial distribution (all AUC > 0.5; 259 

Table 1), for the stratified approach as well as the integrated approach. On average the AUC is 260 

0.60 with a standard deviation of 0.007. The strength of the strongest predictor ranges from 261 

32.7-85.7 percent of contribution (Table 1). For 11 out of 13 urban models, the strongest 262 

predictor is the Biological Valuation Map (BVM), containing information on urban 263 

heterogeneity. For the rural model as well as the integrated model, we found that for some 264 

genera the strongest predictors were the soil variables texture class and drainage class. 265 



Table 1: Summary of the species distribution models for each genus. Reporting the number of grid cells occupied by an observation (presences), the average area 

under the curve (AUC) as a measure to evaluate the models, the standard deviation of the AUC (SD), the strongest predictor (SP) and the percent of contribution 

(PC) of this strongest predictor to the MaxEnt model. (BVM = Biological Valuation Map) 

 Rural stratum Urban stratum Integrated model 

Genus presences AUC SD SP PC AUC SD SP PC AUC SD SP PC 

Aesculus 
1162 0.63 0.03 BVM 54.3 0.62 0.04 BVM 61.2 0.64 0.03 BVM 55.1 

Alnus 
6918 0.55 0.01 BVM 38.0 0.54 0.02 BVM 40.7 0.54 0.01 BVM 39.9 

Betula 
8888 0.60 0.01 BVM 40.9 0.58 0.02 BVM 45.6 0.58 0.01 BVM 47.7 

Carpinus 
3029 0.64 0.02 texture class 42 0.63 0.02 BVM 29.2 0.63 0.02 texture class 41.3 

Corylus 
5490 0.60 0.02 texture class 45.8 0.59 0.02 BVM 34.5 0.59 0.01 texture class 47.1 

Fagus 
2710 0.64 0.02 drainage class 38.1 0.64 0.02 BVM 32.7 0.64 0.02 drainage class 37.2 

Fraxinus 
6635 0.58 0.01 texture class 67.6 0.55 0.02 texture class 42.6 0.57 0.01 texture class 71.2 

Juglans 
1833 0.61 0.03 texture class 44.9 0.59 0.03 BVM 40.3 0.61 0.02 texture class 46.5 

Platanus 
50 0.63 0.34 BVM 47.5 0.90 0.06 BVM 81.7 0.81 0.10 BVM 85.9 

Populus 
5380 0.57 0.02 drainage class 55.9 0.56 0.02 BVM 41.8 0.56 0.01 drainage class 47.1 

Quercus 
8182 0.57 0.01 BVM 36.2 0.55 0.02 texture class 38.4 0.55 0.01 BVM 38.7 

Salix 
8349 0.53 0.01 drainage class 65.0 0.52 0.02 BVM 39.9 0.52 0.01 drainage class 46.4 

Tilia 
1171 0.61 0.04 BVM 42.6 0.63 0.04 BVM 54.3 0.64 0.03 BVM 43.8 



3.2 Stacked species distribution models 

For the integrated as well as the stratified approach binary stacking resulted in a generic tree 

diversity varying between 0 and 13. Probability stacking resulted in a lower generic tree 

diversity between 2 and 9 (Fig. 3). Spatial differences in generic tree diversity between the 

integrated and the stratified approach are not strongly pronounced.  

 

Fig. 3: Tree diversity at genus level determined by binary (upper) and probability (lower) stacking of the 

MaxEnt models developed in an integrated (left) and stratified (right) modelling approach. The cell size is 

1km×1km. 

  



3.3 Validation 

The binary stacking method, with an overall TPR of 0.90, performed better than the probability 

stacking method, with a considerably lower overall TPR of 0.52-0.53 (Table 2). Overall, the 

integrated and the stratified approach performed equally well. The binary stacking method had 

a lower percentage of false negatives (6.0 - 6.1 %) than the probability stacking method (29.3 

– 29.9 %) (Table 3).  

Table 2: Validation results: true positive rate (TPR) derived from the confusion matrix. 

  TPR 

Model Approach Overall Urban Rural 

Binary stacked Integrated 0.90 0.94 0.89 

 Stratified 0.90 0.95 0.88 

Probability stacked Integrated 0.53 0.54 0.53 

 Stratified 0.52 0.53 0.53 

 

Table 3: Validation results: percentage of false negatives (%) derived from the confusion matrix. 

  FN (%) 

Model Approach Overall Urban Rural 

Binary stacked Integrated 6.1 4.3 7.0 

 Stratified 6.0 3.3 7.3 

Probability stacked Integrated 29.3 30.8 28.6 

 Stratified 29.9 31.5 29.2 

 

  



3.4 Comparison of model outcomes  

3.4.1 Binary stacking vs. probability stacking 

The overall average tree diversity at genus level was higher for binary stacked models (9.8-9.9) 

than for probability stacked models (5.6) (Table 4). The diversity based on the validation data 

was 8.1, in line with results from the binary stacking approach. There was a significant mean 

difference of 4.3 (95% CI 4.2-4.3) between binary stacked and probability stacked models for 

the integrated approach (paired t-test t = 200.1, df = 13458, p < 0.001). There was a significant 

mean difference of 4.2 (95% CI 4.1-4.3) between binary and probability stacked models for the 

stratified approach (paired t-test t = 153.7, df = 13458, p < 0.001). 

Table 4: Average modelled tree diversity at genus level based on binary and probability stacked models, for 

integrated and stratified approaches and for urban and rural areas.  

  Tree diversity (95% CI) 

Model Approach Overall Urban Rural 

Binary stacked Integrated 9.9 (9.8-9.9) 10.1 (10.0-10.1) 9.8 (9.7-9.8) 

 Stratified 9.8 (9.7-9.8) 9.5 (9.4-9.6) 10.0 (9.9-10.0) 

Probability stacked Integrated 5.6 (5.6-5.6) 5.7 (5.7-5.8) 5.6 (5.5-5.6) 

 Stratified 5.6 (5.6-5.6) 5.5 (5.5-5.6) 5.6 (5.6-5.6) 

Validation data  8.1 (7.6-8.7) 8.6 (7.8-9.5) 7.9 (7.3-8.6) 

 

3.4.2 Binary stacking: rural vs. urban areas 

For binary stacked models, the integrated approach yielded a statistically significant higher 

overall estimated tree diversity at genus level [mean difference integrated vs. stratified 0.09 

(95% CI 0.06-0.11), t = 6.72, df = 13458, p<0.001]. However, subtracting the stratified result 

from the integrated result revealed a spatial differentiation (Fig. 4). The stratified approach 

resulted in a significantly higher diversity in the rural areas, thus a negative mean difference of 

–0.18 (95% CI -0.21 – -0.15) (t = -12.5, df = 8359, p<0.001). The integrated approach, however, 

resulted in a significantly higher diversity in the urban areas, thus a positive mean difference of 

0.52 (95% CI 0.48-0.57) (t = 22.3, df = 5098, p<0.001).  



Green pixels (Fig. 4) represent a higher diversity obtained with the integrated approach. These 

green pixels are often clustered within the FUAs (black outline, Fig. 4). Conversely, red pixels 

represent a higher diversity obtained with the stratified approach. These red pixels are observed 

in clusters outside the FUAs, especially in extremely rural areas such as: ‘De Westhoek’ in the 

west and ‘Haspengouw’ in the south-east of Flanders (Fig. 4).  

 

 
Fig. 4: The difference in the binary stacking results from the integrated and stratified approach. Cell size is 

1km×1km. 

  



4. Discussion and conclusions 

4.1 Environmental covariates 

Rural and urban models were driven by different environmental covariates, which confirms the 

first hypothesis. As expected, soil variables, such as texture class and drainage class, were of 

high importance to explain the distribution of native trees in rural areas. Texture class was an 

important covariate for Corylus, for example, because this genus requires richer loamy soils 

(Özenç, 2001). Salix and Populus can tolerate wet soils (Zalesny and Bauer, 2007) and as a 

result drainage class was an important environmental covariate in their SDMs. Earlier studies 

demonstrated that including soil factors in plant SDMs results in improved predictions (Buri et 

al., 2017). For urban areas we expected that the vegetation would be determined by 

anthropogenic influences. The urban heterogeneity, which is better described in the Biological 

Valuation Map (BVM), was the most important covariate in the urban SDMs (Table 1). In the 

BVM seven urban/built up types are included (ua, ud, un, ur, uv, uc and ui), while the the other 

land cover map (ECOPLAN) contains only three urban land cover types (9101, 9201, 9202) 

(see Appendix 1). It has been emphasized in the past that including environmental covariates 

that account for the diverse functions of urban areas is important to understand urban plant 

species patterns (Godefroid and Koedam, 2007). Future developments of species distribution 

models in urban areas need to include covariates that address the variety of anthropogenic 

influence.  

 

4.2 Stacking methods 

At a fine spatial resolution, as in the work of D’Amen et al. (2015), binary stacking 

overestimates species diversity in a natural environment, because dispersal limitations and 

biotic interactions are not taken into account. In this study, however, we worked at a spatial 

resolution of 1km×1km and biotic interactions are less important at this relatively coarse 

resolution (Thuiller et al., 2015). The probability stacking method should prevent from 

overestimating tree diversity at genus level. Nevertheless, the low true positive rate (Table 2) 



and the high percentage of false negatives (Table 3) showed that the probability stacking 

method underestimated tree diversity in Flanders. Additionally, in urbanized areas, human 

decision-making and management most likely override natural species selection and biotic 

interactions are therefore less likely to drive species composition. Therefore, binary stacking is 

the preferred method for biodiversity modelling at 1km×1km resolution in both urban areas and 

rural areas. Nevertheless, the scale-dependent applicability of a macro-ecological constraint 

needs further research as there is, to our knowledge, no literature on this topic. 

 

4.3 Comparison of model outcomes 

Binary stacking resulted in a significantly higher diversity at genus level compared to 

probability stacking (Table 4). This difference is not an overestimation of binary stacking, but 

due to an underestimation of probability stacking. Using the binary stacking method and the 

stratified approach, higher diversity was clustered in the rural areas (Table 4 and Fig. 4). Rural 

areas are thus more prone to overestimation and would probably benefit more from applying 

macro-ecological constraints, compared to urban areas. Nevertheless, applications of macro-

ecological constraints seem to be of higher relevance in more natural areas (D’Amen et al., 

2015), far less urbanized than the rural areas in Flanders. 

 

To conclude, we find that binary stacking is most suitable for both urban and rural areas in 

Flanders. Stratification of the study area did not improve model quality considerably, but 

confirmed that different environmental covariates contributed to the models of urban and rural 

areas. Probability stacking is to be considered in natural areas, but does not perform well in 

urbanized areas, especially at the moderate spatial resolution of 1km×1km.  

 

4.4 Limitations 

All Species Distribution Models (SDMs) had relatively low Area Under the Curve values 

(average AUC: 0.60± 0.01), but all performed better than random distributions (Table 1). By 



stacking SDMs, errors in individual species models accumulate and degrade predictions of 

species diversity (D’Amen et al., 2015; Pottier et al., 2013). The importance of the BVM as an 

environmental covariate emphasizes the relevance of including urban heterogeneity in SDMs. 

Unfortunately, at a moderate resolution of 1×1km relevant intra-urban variation of the tree 

canopy (Weinberger et al., 2016) cannot be observed.  

 

4.5 Applications 

The model resulting from this study can be expanded by stacking more binary SDMs, by 

producing species-level models or by producing models of other plant groups. Spatially-explicit 

biodiversity data are vital for emerging environmental health studies (McInnes et al., 2017), for 

example to study relationships between residential and dynamic exposure and human health 

outcomes (Cox et al., 2017; Shanahan et al., 2016). Hjort et al. (2016) present a concept to 

calculate individual long-term or life time exposure to pollen with geographic information 

systems. Landscape and urban planners could also use tree diversity maps to identify areas with 

low diversity and optimize the delivery of ecosystem services or decrease potential social 

inequalities in access to biodiverse green space by increasing biodiversity in focus areas (Wolch 

et al., 2014). Finally, when subsets of models for allergenic species are used, diversity maps 

could be interpreted as allergy risk maps and inform pollen allergy patients about pollen allergy 

risks (McInnes et al., 2017). 
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Appendix 1:  

Table 1: Ecoplan land cover classification (in Dutch). Retrieved from: 

https://www.uantwerpen.be/nl/onderzoeksgroep/ecoplan/ecoplan-tools/ecoplan-geoloket/ 

Complex Code Dutch name 

water 10101 Stilstaand water 

10201 Getijde mesohaline 

10202 Getijde Oligohalien 

10203 Getijde zoet 

10204 Zoet 

10301 Zee 

Bush land 

 

1101 Ruigten en pioniersvegetatie 

1201 Struweel 

1301 Struiken boomgaard 

1302 Laagstam 

1303 Hoogstam 

1401 Ander hooggroen 

1402 Ander laaggroen 

Forest complexes 2101 Berk 

2102 Beuk 

2103 Beuk – naaldhout 

2104 Eik 

2105 Eik – naaldhout 

2106 Populier 

2107 Populier – naaldhout 

2108 Ander loofhout 

2109 Ander loofhout – naaldhout 

2201 lork 

2202 Lork – loofhout 

2203 Fijnspar 

2204 Fijnspar – loofhout 

2205 Zwarte den  

2206 Zwarte den – loofhout 

2207 Grove den 

2208 Grove den – loofhout 

2209 Ander naaldhout 

2210 Ander naaldhout – loofhout 

Grasslands 3101 Voedselarm grassland 

3102 Voedselrijk grassland 

3201 Voedselrijk grasland 

Heath lands 4101 Droge heide 

4201 Vochtige heide 

Bare soils 5101 Kale bodem 

5201 Duinen 

5301 Strand 

5401 Niet verharde wegen 

Agricultural land 6101 Aardappel 

6102 Mais 

6103 Graan 

6104 Zaden 

6105 Peulvruchten 

6106 Suikerbiet 

https://www.uantwerpen.be/nl/onderzoeksgroep/ecoplan/ecoplan-tools/ecoplan-geoloket/


6107 Groenten 

6108 Kruiden 

6109 Fruit 

6110 Vlas en hennep 

6111 Voedergewassen 

6112 Andere akker 

6201 Eénjarige sierplanten 

6202 Meerjarige sierplanten 

6203 Kerstbomen 

Wet vegetation types 7101 Moeras 

7201 Rietland 

7301 Alluvial bos 

8101 Slikken 

8201 Schorren 

Built up area 9101 Gebouwen 

9201 Verhard 

9202 Verhard andere 

 

Table 2: Biological valuation map classification of habitat types (in Dutch). Retreived from: 

https://www.geopunt.be/catalogus/datasetfolder/bf31d5c7-e97d-4f71-a453-5584371e7559 

Complex Code(s) Dutch name 

Stagnant water ad Bezinkingsbekken 

ae, aer, aev Eutroof  

ap, apo, app Diep of zeer diep water 

ao, aoo, aom Oligotroof tot mesotroof water 

ah Brak of zilt water 

Swamps ms Zuur laagveen 

mm Galigaanvegetatie 

mk  Alkalisch laagveen 

mc Grote zeggenvegetatie 

mz Brak tot zilt moeras 

mr Rietland en andere Phragmition vegetaties 

md Drijfzoom en/of drijftil 

Grasslands ha Struisgrasvegetatie 

hc Dotterbloemgrasland 

hk Kalkgrasland 

hm, hmm, hme Vochtig schraalgrasland 

hmo Vochtig heischraalgrasland 

hn Droog heischraalgrasland 

hu Mesofiel hooiland 

hj Vochtig grasland gedomineerd door russen 

hp×, hpr× Soortenrijk premanent cultuurgrasland 

hpr(×)+da, hp(×)+da, 

h+da  

Soortenrijk premanent cultuurgraslandmet zilte 

elementen 

hp Soortenarm permanent cultuurgrasland 

hx Zeer soortenarm, vaak tijdelijk grasland 

hf, hfc, hft Moerasspirearuigte 

hr verruigd grasland 

hz grasland op zware metalen vergiftiged bodems 

hpr weidelandcomplex met veel sloten of microreliëf 

https://www.geopunt.be/catalogus/datasetfolder/bf31d5c7-e97d-4f71-a453-5584371e7559


High fenn t hoogveen 

Heath lands cg Droge struikheivegetatie 

cv Droge heide met bosbes 

ce, ces Vochtige tot natte dopheivegetatie 

cm Gedegradeerde heide met dominantie van 

pijpenstrootje 

cp Gedegradeerde heide met dominantie van 

adelaarsvaren 

cd  Gedegradeerde heide met dominantie van 

bochtige smele 

Dunes and tidal flats ds Slikken 

da Schorre 

dd Stuifduinen aan de kust 

dl Strand 

dz Zandbank 

Bush land sd(b) Duinstruweel 

sp Doornstruweel 

sk Struweel op kalkrijke bodem 

sg, sgu, sgb Brem- en gaspeldoornstruweel 

sz Opslag van allerlei aard 

sf Vochtig wilgenstruweel op voedselrijke bodem 

so Vochtig wilgenstruweel op venige of zure grond  

sm Gagelstruweel 

se Kapvlakte 

Beech forests fe Beukenbos met wilde hyacint 

fa Beukenbos met voorjaarsflora, zonder wilde 

hyacint 

fm Beukenbos met parelgras en lievevrouwebedstro 

fk Beukenbos op mergel 

fl Beukenbos met witte veldbies 

fs Zuur beukenbos 

Oak forests qe Eiken-haagbeukenbos met wilde hyacint 

qa Eiken-haagbeukenbos  

qk Eiken-haagbeukenbos op mergel 

ql Eikenbos met witte veldbies 

qs Zuur eikenbos 

qb Eikenberkenbos 

Wet forests vc Bronbos 

va Alluviaal elzen-essenbos 

vf Elzen-eikenbos 

vn  Nitrofiel alluviaal elzenbos 

vm  Elzenbroek 

vo Oligotroof elzenbroek met veenmossen 

vt Berkenbroek 

Ruderal forests ru, rud ruderaal olmenbos 

Coniferous forests pi, ppi, pa, ppa Naaldhoudsbestand zonder ondergroei 

pmh, pms, pmb, ppmh, 

ppms, ppmb 

Naaldhoutbestand met ondergroei 

Poplar forests lhi, lhb, lsi, lsb, lsh Populiersbestand 



Other deciduous 

forests 

n Loofhout aanplant (exclusief populier) 

Agricultural fields bk, bl, bs, bu Akker 

Urban and built up 

areas 

ua, ud, un, ur Bebouwing 

uv, uc Recreatiegebied 

ui Industrie 

Small landscape 

elements 

kj Hoogstamboomgaard 

kb Bomenrij 

kh  Houtkant 

khw Houtwal 

k lijnvormige begroeiing van perceelsranden, 

sloten en bermen 

kk Doline, ingang ondergrondse mergelgroeve 

km Muurvegetatie 

kn Veedrinkpoel 

kt Talud 

kw Holle weg 

Other mapped 

elements 

ko Stort 

kr Groeve 

kf  Voormalig militair fort 

kg Terril 

kz  Opgehoogd terrein 

ki  Vliegveld 

kg Kwekerij of Serre 

ka Eendenkooi 

kr Rots 

kd Dijk 

ks  Verlaten spoorweg 

kl Laagstamboomgaard 

kp Park 

kpa Arboretum 

kpk Kasteelpark 

 

 

 


