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Abstract

Background: In gene expression studies, RNA sample pooling is sometimes considered because of budget
constraints or lack of sufficient input material. Using microarray technology, RNA sample pooling strategies have been
reported to optimize both the cost of data generation as well as the statistical power for differential gene expression
(DGE) analysis. For RNA sequencing, with its different quantitative output in terms of counts and tunable dynamic
range, the adequacy and empirical validation of RNA sample pooling strategies have not yet been evaluated. In this
study, we comprehensively assessed the utility of pooling strategies in RNA-seq experiments using empirical and
simulated RNA-seq datasets.

Result: The data generating model in pooled experiments is defined mathematically to evaluate the mean and
variability of gene expression estimates. The model is further used to examine the trade-off between the statistical
power of testing for DGE and the data generating costs. Empirical assessment of pooling strategies is done through
analysis of RNA-seq datasets under various pooling and non-pooling experimental settings. Simulation study is also
used to rank experimental scenarios with respect to the rate of false and true discoveries in DGE analysis. The results
demonstrate that pooling strategies in RNA-seq studies can be both cost-effective and powerful when the number of
pools, pool size and sequencing depth are optimally defined.

Conclusion: For high within-group gene expression variability, small RNA sample pools are effective to reduce the
variability and compensate for the loss of the number of replicates. Unlike the typical cost-saving strategies, such as
reducing sequencing depth or number of RNA samples (replicates), an adequate pooling strategy is effective in
maintaining the power of testing DGE for genes with low to medium abundance levels, along with a substantial
reduction of the total cost of the experiment. In general, pooling RNA samples or pooling RNA samples in conjunction
with moderate reduction of the sequencing depth can be good options to optimize the cost and maintain the power.
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Background
Massively parallel sequencing of cDNA libraries (RNA-
seq), is the gold standard for comprehensive profiling of
RNA expression [1]. This type of data is used to answer
various biological and medical questions, including dis-
covering deferentially expressed (DE) genes between
experimental or biological conditions. The use of different
biological samples (also known as biological replicates)
allow for the estimation of within-group biological vari-
ability, which is necessary for making inferences about
the conditions under study to reach conclusions that can
be generalized [2, 3]. The number of biological repli-
cates in an RNA-seq experiment is typically small because
of financial or technical constraints. As a result, statis-
tical tools for testing differential gene expression (DGE)
were designed to make efficient use of that type of data.
For example, parameter estimations are based on empir-
ical Bayes procedures to share information across genes
so that the methods are applicable to small sample sizes
[2, 4, 5]. Nevertheless, it is highly recommended to
increase the number of biological replicates, especially
when there is high biological variability, such that DGE
tools deliver their promised performance [6, 7]. Similarly,
the sequencing depth (the total number of reads mapped
to the reference genome) is another crucial element in
the design of DGE studies [2, 3]. For a given budget,
it is critical to decide whether to increase the sequenc-
ing depth to have more accurate measurements of gene
expression levels (especially for low abundant genes) or
to increase the number of biological samples with lower
average sequencing depth [3, 8].
Situations like budget constraint, lack of sufficient RNA

input or large within-group biological variability are com-
mon limiting factors in RNA-seq experiments. Under
such circumstances, pooling of RNA samples may provide
a solution. Pooling of RNA samples takes place by mix-
ing RNAmolecules extracted from independent biological
samples from the same population (a specific experimen-
tal or biological condition), before library preparation.
Consequently, pooling results in a smaller number of
replicates, and hence lower cost for the subsequent steps.
For microarray studies, the adequacy and experimental
validation of pooling has been well studied [9–13]. The
majority of these studies demonstrate the potential of
pooling to tackle budget and technical constraints as well
as stabilizing the variability of gene expression measures.
For example, Kendziorski et al. [9] demonstrated that the
biggest advantage of pooling occurs when the biologi-
cal variability is large relative to the technical variability.
Peng et al. [11] and Shih et al. [10] have also discussed
that a properly designed RNA sample pooling scheme
can provide adequate statistical power for testing DGE in
microarray experiments, while being cost-effective. How-
ever, there are also potential limitations of pooling. In

addition to the loss of statistical power caused by a small
number of pools, it is no longer possible to account for
sample-level confounding factors in pooled experiments
[10]. For RNA-seq data, Rajkumar et al. [14] have empir-
ically evaluated pooling strategies and concluded that a
pooling strategy has limited utility for DGE analysis. How-
ever, there is no comprehensive study that thoroughly
assessed the adequacy and limitations of RNA sample
pooling in RNA-seq experiments, not from a theoreti-
cal perspective, nor based on empirical or simulated data
pooling.
In this study, we evaluate the utility of RNA sample

pooling strategies in RNA-seq experiments, using both
empirical and simulation methods (Fig. 1). Comparison
of systematically chosen varying experimental scenarios
enables the evaluation of pooling strategies relative to
the standard procedure or reference scenario of unpooled
analysis. The empirical assessment is done through anal-
ysis of real RNA-seq datasets under various pooling and
non-pooling experimental settings. The simulation study
is used to rank experimental scenarios with respect to
the rate of false and true discoveries in DGE analysis.
In addition, we have defined the data generating mech-
anism in sample pooling strategies from a mathematical
perspective for better interpretation of the empirical and
simulation results. We conclude that RNA sample pooling
can be a cost-effective strategy, provided that the num-
ber of pools, pool size and sequencing depth are optimally
defined.

Results
Data generating model in pooled RNA-seq experiments
A typical RNA-seq experiment consists of three major
steps: RNA sample preparation, library preparation, and
sequencing. When there is no pooling of RNA samples in
the first step (the standard procedure), a library represents
a single biological sample. In pooled RNA-seq experi-
ments, a number (q) of randomly selected RNA samples
are mixed before library preparation and sequencing. As a
result, in pooled experiments, a library represents a pool
of q biological samples. In the subsequent sections, we
formalize the RNA sample pooling procedure for better
understanding of the data generating process.
Suppose there is no pooling. Let Ugj denote the read

count of gene g = 1, 2, . . . ,G in biological sample j =
1, 2, . . . , n. To simplify the notations, we focus on a sin-
gle gene, and hence we drop the subscript g. Let the mean
and variance of Uj are denoted by μj = E

{
Uj

}
and σ 2

j =
Var

{
Uj

}
, respectively. The objective is to group n bio-

logical samples from a particular population (condition)
into m non-overlapping pools (m < n), each contain-
ing q > 1 unique biological samples. First, we assume
the pool size q is the same for all pools, and then later
we relax this assumption and generalize the theory for
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Fig. 1 Summary of the workflow. Assessment of RNA sample pooling in RNA-seq experiment involves comparison of standard (design A) and
pooled (design B) experimental designs using empirical data, simulated data and total cost assessment. The experimental scenarios are ranked
using an overall performance score that summarizes all the comparison metrics

pooled experiments with varying pool sizes. To formal-
ize the pooling procedure, we introduce a dummy variable
Ajk , which is defined as 1 if biological sample j is in pool
k = 1, . . . ,m, and 0 otherwise. At

j = (
Aj1, . . . ,Ajm

)
is

them-dimensional vector of indicators for biological sam-
ple j. We assume Aj ∼ Multinomial (1, (1/m, . . . , 1/m)).
Thus, each biological sample j can only be assigned to
one pool

(∑m
k=1 Ajk = 1

)
, and the assignment has prob-

ability 1/m for all pools. Similarly, we also impose the
constraint

∑n
j=1 Ajk = q so that each pool contains exactly

q biological samples. We further assume that the Ajk are
independent of the Uj. This assumption makes sense if
one randomly assigns the n biological samples tom pools.
If one aims at a sequencing depth of L per pooled library

(determined in advance), then pooling of, for example,
q=2 biological samples A and B with depths LA and LB,
takes place by mixing wALA and wBLB amount of RNA
molecules (0 ≤ wA ≤ 1 and wB = 1 − wA) from sam-
ple A and B, respectively. That is, we mix wA and wB
fractions of the RNA molecules from biological sample
A and B, respectively. We consider the mixing weights as
random variables and account for their contribution to
the variability of the pooled outcome. To formalize this,
let the random variable Wjk denote the mixing weight
for biological sample j in pool k. For a given pool k, we
have a q-dimensional vector of these fractions, Wt

k =(
Wk1,Wk2, . . . ,Wkq

)
such that

∑
j Wjk = 1. Therefore, if

one mixes a proportional amount of RNA samples from
each biological sample, then it is reasonable to assume a
q-component symmetric Dirichlet distribution for mixing
weights, i.e.Wk ∼ Dirichlet(J), where J is a q-dimensional
vector of 1s. Consequently, the expected proportion of
RNAmolecules to be pooled becomes E

{
Wjk

} = 1/q. For
the previous example of pooling two biological samples
A and B, the expected mixing weight is 50% from each
sample.
In pooled experiments, Uj are unobservable random

variables, and hence we sometime refer to them as vir-
tual counts. Therefore, the data generating model for the
observable gene expression measurement Yk from pool
k = 1, . . . ,m with pool size q > 1 can be written as

Yk =
n∑

j=1
AjkWjkUj + εk , (1)

where εk is an error term which represents the extra
technical variability introduced by the pooling of RNA
samples.We assume that εk is independent ofAjk ,Wjk and
Uj, with εk ∼ Normal

(
0, σ 2).

Model (1) indicates that Yk is the weighted sum of the
virtual counts Uj from the q biological samples in pool
k. Under the assumption that Uj, Ajk and Wjk are inde-
pendent random variables, the expectation of the gene
expression measures in pooled sample k becomes
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E {Yk|Jk} = 1
q

q∑

j∈Jk
μj, (2)

where Jk is the set the indices j for biological samples
included in pool k

(
i.e. Jk = {

j : Ajk = 1
})
. This indicates

that the expected gene expression measurements in a
particular pool is equal to the average of the expected
expression levels from the q biological samples included
in that pool. The variability of the gene expression lev-
els in pool k, accounting for the sampling variability

(
Aj

)
,

becomes

VarYk = 2
n(q + 1)

n∑

j=1
(μ2

j + σ 2
j ) − 1

n2
n∑

j=1
μ2
j + σ 2.

(3)

The proof is available in Section 1.1 of the Supplementary
file, with empirical confirmation by Monte-Carlo simu-
lations (see Supplementary Fig. S1). Eq. 3 indicates that
Var{Yk} is inversely proportional to the pool size q, sug-
gesting that pooling reduces the variability of the gene
expression measurements, given σ 2 is sufficiently small.
However, the amount of variability reduction depends on
the level of variability among the Uj (Fig. 2). In particular,
for large σ 2

j , a small pool size, such as q = 2, is suffi-
cient to reduce the variability. Note that this variability
is the within-group variability as pooling independently
takes place within each group.

The mean expression of a gene Ȳ from a pooled
experiment is an unbiased estimator of the true mean
expression similar to that of the standard experiment(
i.e. E

{
Ȳ

} = E
{∑m

k=1 Yk/m
} = E

{
Ū

} = 1
n

∑n
j=1 μj

)
.

Furthermore, we examine the effect of pooling on the
estimation of the relative abundance ρ of a gene and the
log-fold-change (LFC) between two independent groups.
The LFC is a quantity that is commonly used to calibrate
the biological effect of interest. The LFC is defined as
θ = log2

ρ2
ρ1
, where ρ1 and ρ2 are the relative abundances

in groups 1 and 2, respectively. Although pooling results
in expression levels with a lower variance, the variance of
the estimates of the relative abundance (ρ̂) and the LFC
between two independent groups

(
θ̂
)
, have a variance

that is at least 2q/(q + 1) times higher than that of the
estimates from standard experiments (see Section 1.2
of the Supplementary file for details). This is the direct
consequence of the reduction of the number of replicates
in pooled experiments. Consequently, the statistical
power of testing the null hypothesis H0 : θ = 0 (no DGE)
against the alternativeHA : θ �= 0 at α level of significance
can be lower in pooled experiments than in standard
experiments (the full budget experiment). Based on the
negative binomial assumption for the virtual counts Uj,
we can determine the statistical power of testing the
above hypothesis for a particular gene [15]. That is, given
the number of RNA samples in groups 1 and 2 (n1 and n2,
respectively), pool size q, the LFC to be detected θ , and the

Fig. 2 Variance at different pool sizes. The variance of the gene expression levels from pooled and non-pooled experiments. In particular, the virtual
counts Uj were generated from a negative binomial distribution with mean μj and over-dispersion parameter φ. μj = ρL0j , where ρ is the relative

abundance (ρ = 10−6), and L0j is the virtual library size in biological sample j, and L0j are uniformly sampled between 15 − 25 × 106. Yk is the
outcome from a pooled design with a pool of size q according to the model in (1)
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over-dispersion φ, the power of the two-sided likelihood-
ratio test at significance level α can be calculated as,

power ≤ �

{√
n1(q + 1)|θ | − Zα/2

√
2qV0√

2qVA

}

, (4)

where�(.) is the standard normal cumulative distribution
function, Zα/2 is the (1 − α/2)100% quantile of the stan-
dard normal distribution, and V0 and VA are the variances
of the LFC estimate

(
θ̂
)
under H0 and HA, respectively.

The details of the power calculation can be found in
Section 1.3 of the Supplementary file.
In Fig. 3 and Supplementary Figs. S2–S4, we presented

the relationship between the power and the total cost of
the data generation for different experimental designs,
including RNA sample pooling. In particular, we com-
pare three cost-saving strategies (sample pooling, shallow
sequencing depth, and reducing sample size) with respect
to the power and the relative cost compared to a reference
scenario (full budget experiment). Further details are in
Section 1.3 of the Supplementary file. Moderate reduction
of the sequencing depth without reducing the number

of replicates seems better in maintaining the power (the
power that would be achieved using the reference design)
with lower sequencing cost. However, this strategy is less
effective for low-abundance genes (Fig. 3, Supplemen-
tary Fig. S2). This result is in line with a previous study
[8] that demonstrated that the number of replicates is
more important than the sequencing depth to maintain
the power, particularly for moderate to highly expressed
genes. It is also essential to note that the power calculation
(4) does not take into account the library size variability,
which may compromise the power of the test [6]. Of note,
pooling seems to be an effective strategy to maintain the
power and reduce the cost, especially for low and moder-
ately expressed genes (Fig. 3, Supplementary Figs. S2 and
S3). For pooling strategies, a small pool size is more effec-
tive in preserving the power when there is large variability
(high over-dispersion). The third strategy, reducing the
number of replicates, is generally worse in terms of power,
yet it reduces the total cost significantly. In summary, an
RNA sample pooling strategy can be a good choice to opti-
mize the power and data generation cost, especially when
many of the genes are expressed at low or medium levels

Fig. 3 Zodiac plot representing the trade-off between power and cost. The zodiac plot shows the statistical power (at 5% significance level) to call a
single gene DE versus the relative total cost of data generation for three different cost-saving strategies compared to a reference design. The power
is calculated for a gene with relative abundance ρ = 10−7 in one group, LFC (‘effect size’) θ ∈ {0.5, 1}, and over-dispersion (‘variability’) φ ∈ {0.5, 2}.
The reference design consists of 120 samples (n1 = n2 = 60) with average library size of 20M per sample and no pooling. Strategy A is pooling with
pool size q ∈ {2, 3, 4, 6} and average library size of 20M per pool. Strategy B is similar to the reference, except the number of samples is reduced to
n ∈ {60, 40, 30, 20}. Strategy C is similar to the reference, except the sequencing depth is reduced to L ∈ {10M, 5M, 1M, 0.5M}. The relative cost is
calculated as the total cost of a particular strategy divided by that of the reference design
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like long-non-coding RNAs [6] with a substantial reduc-
tion of the library and sequencing costs. Of note, for gene
expression levels with a small biological variability (rep-
resented by a negative binomial dispersion φ = 0.5) and
large LFCs (θ = 1), all strategies seem to be equally effec-
tive. In such scenarios, it can be suggested that reducing
the number of samples (strategy B) or pooling with a large
pool size can be used to optimize the cost with comparable
power to the reference design.
The same conclusion can be drawn when different pool

sizes are used across pools. That is, let qk denote the pool
size in pool k, then the variance of the LFC estimate in the
pooled experiment θ̂∗ becomes at least 2n

m2
∑m

k=1

(
1

1+qk

)

times higher than that of the estimates from standard
experiment. As a result, the same power function (4) can
be used with the constant q is substituted by the fraction
n/m, where, as defined earlier,m and n are the number of
pools and RNA samples in a given group, respectively.

Experimental scenarios
To evaluate the pooling strategy compared to the stan-
dard procedure, two sets of scenarios were investigated,
one starting from the tumor tissue RNA-seq data and

one from the cell line RNA-seq data, representing typ-
ical data with high and low within-group variability,
respectively [6].
The first set comprises a total of 12 test scenarios and

one reference scenario (Table 1a). The reference scenario
represents a standard tissue RNA-seq experiment with-
out pooling consuming amaximum budget in terms of the
number of samples, number of libraries, and sequencing
depth. The 12 test scenarios include a unique combination
of the number of RNA samples, sequencing depth, num-
ber of libraries, and pool size (q). Consequently, the data
generation cost (total cost of RNA sample preparation,
library preparation and sequencing) is different for each
scenario. In particular, the reference scenario contains a
subset of 80 high-risk neuroblastoma samples forming
two groups: the MYCN amplified (n1 = 40) and MYCN
non-amplified (n2 = 40). The average sequencing depth
per sample in this data is approximately 20 million reads
with a range 11− 30× 106. Subsequently, the data for the
test scenarios were generated from the reference scenario
according to the data generation model in (1).
The second set of experimental scenarios constitutes of

three test scenarios generated with the cell line RNA-seq

Table 1 Summary of RNA-seq experimental scenarios

Scenario Number of Number of Total reads Total cost ≈ depth per Number of Pool size RNA
RNA libraries counts library ×106 libraries pooling
samples ×106 (min – max) per group

a Scenarios based on the Zhang neuroblastoma samples

A0 (reference) 80 80 1600 e 21,800.00 20 (11.2–30.0) 40 - No

A1 40 40 800 e 10,800.00 20 (11.2–29.7) 20 - No

A2 40 40 400 e 7,800.00 10 (4.9–13.1) 20 - No

A3 80 80 800 e 15,600.00 10 (5.0–13.5) 40 - No

A4 80 80 400 e 12,600.00 5 (2.5–6.7) 40 - No

B1 80 40 800 e 11,600.00 20 (11.8–28.3) 20 2 Yes

B2 40 20 400 e 5,800.00 20 (13.4–28.7) 10 2 Yes

B3 80 40 400 e 8,600.00 10 (5.3–12.7) 20 2 Yes

B4 40 20 200 e 4,300.00 10 (6.0–12.9) 10 2 Yes

C1 80 20 400 e 6,600.00 20 (15.00–27.8) 10 4 Yes

C2 40 10 200 e 3,300.00 20 (14.7–26.0) 5 4 Yes

C3 80 20 200 e 5,100.00 10 (6.7–12.5) 10 4 Yes

C4 40 10 100 e 2,550.00 10 (6.6–11.7) 5 4 Yes

b Scenarios based on the NGP neuroblastoma cell lines

A0 (reference) 18 18 270 e 4,185.00 15 (14.3–19.3) 9 - No

A 6 6 90 e 1,395.00 15 (15.0–17.7) 3 - No

B 12 6 90 e 1,515.00 15 (14.9–17.6) 3 2 Yes

C 18 6 90 e 1,635.00 15 (15.3–17.9) 3 3 Yes

The total data generation cost of a particular scenario is given by (S× 20) + (L× 100) + (R× 7.5), where S is the number of RNA samples (with RNA preparation cost e20.00
per sample), L is the number of libraries (with library preparation cost e100.00 per library), R is the total sequencing depth (with cost e7.50 per 1 million sequencing reads)
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data (Table 1b). These scenarios enable us to explore the
utility of pooling strategies in experiments in which the
biological variability is typically low. The three scenar-
ios consist of 3 sequencing libraries per treatment group,
derived from either single (unpooled) or pooled RNA
samples (2 or 3 per library). A reference scenario with 9
RNA samples per treatment group without pooling is also
included.
The experimental scenarios in Table 1a represent dif-

ferent cost-saving strategies in RNA-seq experiments. In
particular, reducing the number of RNA samples (sce-
nario A1), reducing both the number of RNA samples and
sequencing depth (scenario A2), reducing the sequenc-
ing depth (scenarios A3 and A4), pooling of RNA samples
(scenarios B1 and C1), pooling and reducing the number
of RNA samples (scenarios B2 andC2), pooling and reduc-
ing the sequencing depth (scenarios B3 and C3), and both
(i.e. pooling, reducing the sequencing depth and reduc-
ing the number of RNA samples, scenarios B4 and C4).
Similarly, the scenarios in Table 1b represent cost-saving
strategies by pooling of RNA samples with different pool
sizes.

Empirical evaluation of pooling RNA samples
Using the Zhang and NGP nutlin RNA-seq datasets,
we empirically compared the experimental scenarios in
Table 1 (a and b). In particular, we focus on comparing
the distribution of the mean and variability of normalized
gene expression levels, the LFC estimates, and the num-
ber and characteristics of genes called DE at 5% nominal
FDR level.
The varying sequencing depth across scenarios resulted

in different numbers of genes with sufficient expres-
sion level (i.e. the non-zero counts in at least 3 samples,

Supplementary Fig. S5). From a cost perspective, the pool-
ing scenarios generally have lower cost with relatively
higher number of sufficiently expressed genes, compared
to that of non-pooling scenarios (Table 1 and Supplemen-
tary Fig. S5). Besides, the sample level exploratory data
analysis shows that the degree of similarity between sam-
ples (in terms of correlation) increases with increasing
pool size (Supplementary Fig. S6). The two-dimensional
visualization of the neuroblastoma samples (for each sce-
nario) using principal component analysis also shows that
the within-group variability is smaller than the between-
group variability in pooled experiments, where group is
here the MYCN status (Supplementary Fig. S7). On the
other hand, pooling may not help to reduce the frequency
of zero counts per sample, as this characteristic is mostly
related to the sequencing depth (Supplementary Fig. S6).
The distribution of gene-specific average expression is

the same for all scenarios (Fig. 4-panel A). This result is
in line with the theoretical result that pooling results in
an unbiased estimate of the average gene expression level
even for different choices of pool size. In contrast, the
observed variance was lower for pooling scenarios (Fig. 4-
panel B). This result also supports the theoretical results
in (3) that the variability decreases with increasing pool
size q.
We also evaluated the bias of the LFC estimates in

each test scenario relative to the estimates from the ref-
erence scenario. In particular, the mean absolute differ-
ence (MAD) for scenario s is calculated as MADs =
G−1 ∑G

g=1 |LFCgs − LFCg0|, where LFCgs and LFCg0 are
the LFC estimate for gene g from test scenario s and the
reference scenario (A0), respectively. MADs evaluates the
risk associated with using scenario s in terms of losing DE
signals that would be detected at the full budget design

Fig. 4 Empirical results. a–distributions of the average normalized counts per genes (in log2 scale), b–distributions of the variability of normalized
counts per gene (in log2 scale), and c–The LFC bias in terms of the mean absolute difference with the LFC estimate from the reference scenario (A0)
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(A0). The observed LFC bias was generally low across the
scenarios (Fig. 4-panel C). A small number of replicates,
however, tends to result in a higher LFC estimate bias
compared to a lower sequencing depth per library. The
magnitude of bias caused by the reduction in the number
of replicates is relatively smaller for pooling scenarios than
for non-pooling scenarios. For example, pooling scenar-
ios C1 and C3 (that have 10 libraries per group and 20M
and 10M depth, respectively) resulted in lower bias than
that of the non-pooling scenario A1 and A2 (that have
20 libraries per group with 20M and 10M depth, respec-
tively). On the other hand, pooling scenarios B2, B4, C2
and C4 resulted in the largest bias, which can be explained
by the highest reduction of the number of replicates.
Reducing the within-group variability by pooling RNA

samples may enhance the resolution of the biological
effect. This can be seen from the standardized LFC esti-
mate

(
LFC/σ̂ (LFC)

)
, which is also known as the signal-

to-noise ratio. The absolute standardized LFC increases
with increasing sample size and decreasing variance. We
compared the scenarios with respect to the standardized
LFC estimates for a subset of genes. Two particular sub-
sets of genes were considered: MYCN pathway genes –
known to be DE between the 2 groups [16], and the top
200 DE genes detected in the reference scenario. The
result (Supplementary Fig. S8) shows that the standard-
ized LFC estimates from scenarios A3 and A4 are the
lowest followed by pooling scenarios B1, B3, C1 and C3
(for MYCN pathway) and B1 and B3 (for the top 200 DE
genes). Scenario A3 and A4 contain the maximum num-
bers of libraries, and hence they resulted in estimates close
to the reference scenario. On the other hand, the pool-
ing scenarios B1, B3, C1 and C3 have lower variability
and hence resulted in estimates almost close to that of the
reference scenario, but with fewer libraries.
From the DGE analysis, both limma-voom and edgeR

called the largest number of genes DE (at 5% nominal
FDR) in the reference scenario, followed by pooling sce-
narios B1, B3, C1, and C3 (limma-voom) and B1, A3
and A1 (edgeR) (Supplementary Fig. S9-panel A). To
gain a rough insight in the number of false and true
positives, we use the level of concordance with the ref-
erence scenario (defined as the fraction of genes called
DE in test scenario that are also called DE in the ref-
erence scenario). Scenarios A3 and A4 from edgeR, and
scenario A3, A4, B1, B3, C1 and C3 from limma-voom,
resulted in more than 75% concordance (Supplemen-
tary Fig. S9-panel B). Overall edgeR tends to call a large
number of genes DE with lower concordance level com-
pared to that of limma-voom. For limma-voom, more
than 87.5% of concordance was achieved with scenarios
A3, A4 and B1, whereas less than 50% concordance was
observed from pooling scenarios B4, C2 and C4. These
results indicate that with moderate depth per sample and

number of replicates per group (e.g. scenario B3 (q=2)
with 10M reads per library and 2×20 replicates or C1
(q=4) with 20M reads per library and 2×10 replicates)
one can increase the chance of recovering the DE genes
that would be detected with the full budget design. We
will formally examine the false and true positive propor-
tions in a simulation study in the subsequent section.
Furthermore, the characteristics of the genes that are
exclusively called DE in each test scenario are quite dif-
ferent. Pooling scenarios tend to favor low-abundance
genes with high coefficients of variation (as determined
based on the data from the reference scenario). In con-
trast, the non-pooling scenarios are biased towards highly
expressed genes with small variability (Supplementary Fig.
S10). This result is in agreement with the theoretical argu-
ment discussed above that pooling strategies are generally
robust for low and medium expressed genes compared
to designs with shallow sequences (such as scenario A3
and A4).
The results from the comparison of the second set of

experimental scenarios with the NGP nutlin dataset (see
Table 1b) show that pooling did not have much effect on
the overall result. In particular, unlike the pooling sce-
narios based on the Zhang data, the variability of the
gene expression data did not change across the scenarios
(Supplementary Fig. S11-panel A). The gene expression
levels in the NGP nutlin dataset present with low vari-
ability. Consequently, in line with the theoretical results,
a large pool size is required to reduce the variability of
the virtual counts. Only a small reduction of the LFC
estimation bias was observed for the pooling scenarios
than for the non-pooling scenario (Supplementary Fig.
S11-panel B). The number of detected DE genes (at 5%
nominal FDR) and the concordance level were nearly the
same across scenarios (Supplementary Fig. S12). However,
it is worth noting that the difference in the concordance
level between edgeR and limma-voom reached up to
40%. Approximately 65% of concordance was observed for
edgeR, whereas limma-voom achieved approximately 99%
concordance (Supplementary Fig. S12-panel B). From a
cost perspective, a pooling strategy seems not effective in
this case. In addition, we compared the power-cost trade-
off for designs representing the scenarios in Table 1b
under the negative binomial assumption. In particular,
the power-cost trade-off was assessed for designs with
equal number of replicates (3 replicates per group), that
is, 3 individual cell line samples (scenario A), 3 pools
of 2 cell line samples (q = 2, scenario B) and 3 pools
of 3 cell line samples (q = 3, scenario C). The results
indicate that scenarios B and C come with higher power
but also with somewhat higher cost (due to extra RNA
preparation) compared to scenario A. The benefit is espe-
cially true for low abundant genes with a small LFC (θ )
(Supplementary Fig. S13). For medium or high abundant
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genes with higher LFC (θ ≥ 1), cell line sample pooling is
not cost-effective.

Simulation based evaluation of pooling RNA samples
Next, we run a simulation study to determine the actual
false discovery rate (FDR) and true positive rate (TPR,
or sometime called sensitivity) associated with testing of
DGE in the experimental scenarios shown in Table 1a.
RNA-seq datasets were simulated with built-in truths
using the SPsimSeq R package (v1.0.0) [17]. SPsimSeq sim-
ulates realistic RNA-seq data from a semi-parametrically
constructed distribution of gene expression levels from
a real RNA-seq data (see the Methods section for the
implementation of the simulation).
The simulation results (Fig. 5) indicate that the scenar-

ios markedly differ with respect to the sensitivity (TPR)

of detecting true DE genes, for both edgeR and limma-
voom. The actual FDR rate for limma-voom is equally well
controlled across all scenarios, whereas edgeR showed
variable and overall weak FDR control. The maximum
sensitivity was attained with the reference scenario and
scenario A3 and A4 for both DGE tools and across all
simulation settings.
The level of sensitivity for limma-voom differs among

scenarios quite substantially with a range 20-75% and 55-
95% at the 5% nominal FDR when the LFC of the DE genes
is greater than 0.5 and 1, respectively. In particular, scenar-
ios with equal number of libraries and pool size resulted in
almost the same sensitivity, regardless of the sequencing
depth difference. For example, scenarios B1 and B3 or C1
and C3 or A1 and A2, attained an equivalent level of sen-
sitivity. For pooling scenarios B1, B3, C1 and C3, higher

Fig. 5 Simulation results. Results of the simulation based evaluation: The curves show the trade-off between the true positive rate (TPR) and the
actual FDR evaluated at 0-40% nominal FDR level. The solid circles on each curve indicate the TPR and actual FDR at 5% nominal FDR (indicated by
the vertical dashed line). The DE genes in the simulated dataset have |LFC| ≥ 0.5 a or |LFC| ≥ 1 b
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sensitivity is observed than for the non-pooling scenarios
A1 and A2, even though A1 and A3 have twice the number
of libraries than C1 and C3, or equal number of libraries
to B1 and B3. This result points at the utility of an RNA
sample pooling strategy to balance the number of repli-
cates and variability. For edgeR, scenarios A0, A3, A4, B1,
B3, C1 and C3 show comparable sensitivities for both LFC
thresholds. Although the actual FDR is overall not well
controlled by edgeR, it is relatively lower for the pooling
scenarios B1, B3, C1, and C3 with maximal sensitivity.
Furthermore, for limma-voom, among the pooling sce-

narios, B1 and B3 are less than 10% off from themaximum
sensitivity achieved with the reference scenario (Fig. 5-
panel A). This offset further reduces to less than 5% when
the LFC threshold is at least 1 (Fig. 5-panel B). Similarly,
pooling scenarios C1 and C3 resulted in less than 20%
and 10% lower sensitivity than that of scenario A0 for a
LFC threshold of 0.5 and 1, respectively. In general, the
magnitude of the LFC for the simulated DE genes showed
considerable effect on the sensitivity (for both edgeR and
limma), such that for simulations with high LFC for DE
genes, the performance-gap between scenarios narrows
down. This result suggests that pooling strategies in RNA-
seq experiments have the potential to replace the full
design experiment if one looks for DE genes with a high
magnitude of biological effects.
Generally, the simulation and empirical results align

with each other and support the theoretical predictions
in the sense that the reduction in the number of repli-
cates (libraries) comes with the cost of losing sensitivity.
However, both results demonstrate that pooling strategies
compensate the performance offset caused by sample size
reduction. In addition, the choice of DGE tool is a criti-
cal factor for DGE analysis with pooled experiments. For
example, edgeR focuses on maximizing the sensitivity to
detect true DE genes with liberal performance in terms
of the FDR control. Therefore, if one aims at only high-
lighting all possible candidate DE genes, then edgeR can
be a good choice for pooling experiments with relatively
flexible choice of pooling designs. On the other hand,
limma-voom guarantees control of the FDR for all design
choices but its sensitivity is strongly dependent to the
number of replicates. Therefore, if one aims at maximiz-
ing the sensitivity with the actual FDRwithin the tolerance
range and pooling does not result in too much reduction
of the sample size, then limma-voom is a good choice for
pooled experiments.

General summary of the empirical and simulation results
The experimental scenarios in Table 1a are ranked based
on a score that summarizes the empirical and simulation
results (see Fig. 6). In particular, five metrics were summa-
rized: the inverse of the LFC estimate bias, standardized
LFC for MYCN geneset (absolute value), concordance

with reference scenario, oneminus the average actual FDR
(at 5% nominal FDR level), and sensitivity (at 5% nom-
inal FDR level). These metrics are standardized across
scenarios, and then scenarios are ranked based on the
average standard score across the metrics. Higher ranks
indicate better performance. Among the non-pooling sce-
narios, A3 and A4 outperformed all other test scenarios.
The theoretical results have demonstrated that the strat-
egy of reducing only the sequencing depth (equivalent to
scenarios A3 and A4) is effective in recovering the power
and reduce sequencing cost mostly for medium to highly
expressed genes, which is the case for the Zhang data.
However, from a cost perspective, these scenarios reduce
only the sequencing cost (Fig. 6). Also, as the theoretical
and empirical results show, these strategies (A3 and A4)
are not generally effective for genes with low and medium
levels of expression. This can be seen by the fact that
because of the library size reduction, scenarios A3 and A4
resulted in a substantially smaller number of genes with
sufficient level of expressions compared to that of all the
remaining scenarios (Supplementary Fig. S5, see for exam-
ple C1 and C3 vs. A3 and A4). The pooling scenarios B1,
C1, B3 and C3 are ranked above the average, with lower
library preparation and sequencing costs and with higher
number of sufficiently expressed genes compared to that
of A3 and A4. In contrast, pooling scenarios C2, C4, B2
and B4 and the non-pooling scenarios A1 and A2, showed
worst overall performance.
In general, the difference in the number of libraries

appeared to be a critical factor that leads to the
overall performance difference between scenarios
(Supplementary Fig. S14-panel A). For example, sce-
narios A2 and A3 have equal sequencing depth per
library

(
approximately 20 × 106

)
but different numbers

of libraries (40 and 80, respectively). As a result, A2 is
seven ranks below A3 (Fig. 6). Similarly, a wide rank
gap is observed between scenarios A0 and A1, B3 and
B4, B1 and B2, C3 and C4, and C1 and C2. It is worth
noting that the performance gap because of sample size
difference is smaller for pooled scenarios than for non-
pooled scenarios. In addition, given an equal number of
libraries and sequencing depth per library, pooling sce-
narios (larger pool size) improve the overall performance
(Supplementary Fig. S14-panel C). For example, B1 is five
ranks ahead of A1, and B3 is six ranks ahead of A2. It can
also be seen that C1 is better than B2 and B3, and C3 is
better than B2 and B4; implying that increasing pool size
improves the overall performance. In contrast, the differ-
ence in sequencing depth per library showed a slim effect
on the overall score (Supplementary Fig. S14-panel B).

Discussion
The strategy of pooling RNA samples in gene expression
studies, especially in microarray studies, has been shown



Assefa et al. BMC Genomics          (2020) 21:312 Page 11 of 14

Fig. 6 Ranking of experimental scenarios based on the overall performance and cost. Performance ranking of RNA seq experiment design scenarios.
Ranks are determined using a score that summarizes the overall performance of scenarios using empirical and simulated RNA seq data. In particular,
five metrics were summarized: the inverse of the LFC estimate bias, standardized LFC for MYCN geneset (absolute value), concordance with
reference scenario, one minus the actual FDR (at 5% nominal FDR level), and sensitivity (at 5% nominal FDR level). These metrics are standardized
across scenarios, and then scenarios are ranked based on the average standard score across the metrics. The solid circles indicate the relative data
generation cost of RNA sample preparation, library preparation and sequencing (relative to the corresponding cost from the reference scenario)

to have the potential to optimize both the cost of the
data generation process as well as the statistical power
for testing DGE [9–13]. Given the very different nature
of RNA-seq data and biases, we have explored the utility
of pooling RNA samples in RNA-seq experiments using
several performance evaluation metrics and experimen-
tal scenarios.We started by mathematically describing the
data generationmodel for pooled experiments. Themodel
accounts for the additional sources of variability caused
by the pooling strategy, such as the random assignment
of biological samples to pools and the random mixing
weights of RNA samples. The model indicates that pooled
RNA-seq designs result in unbiased gene expression mea-
sures with reduced within-group variability. Therefore,
pooling has the potential to balance variability and sam-
ple size to detect the biological effects of interest. Similar
conclusions had been reached by studies that assessed
the utility of pooling strategies in microarray experiments

[9–11, 13], such that a pooling strategy is particularly use-
ful when there is a large heterogeneity within a population
apart from cost-efficiency. However, the model (1) also
indicates that estimates of statistics that quantify the bio-
logical effect, such as the LFC, may have relatively higher
variance resulting from the reduction in the number of
replicates by pooling of biological samples. The extra vari-
ability of these statistics is less for smaller pool sizes. Con-
sequently, the statistical power of testing for DGE using
pooled experiments can be lower than that of the full bud-
get design unless a proper pool size is chosen. Specifically,
given there is a sufficient number of RNA samples, a small
pool size such as q = 2 is sufficient to stabilize the large
variability among the gene expression levels and optimize
the trade-off between the power and the data genera-
tion costs. In contrast to the typical cost-saving strategies
(lower sequencing depth or a smaller number of biological
samples), pooling strategies are robust and cost-effective
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for genes with low to moderate level of expression, for
which most statistical methods fail to perform optimally
[6]. The model makes use a few modest assumptions,
for instance that the mixing weights W in a given pool
follow a Dirichlet distribution. Of note, the parameters
of the Dirichlet distribution, α1, . . . ,αq, are all set to 1,
resulting in maximum variability representing the worst-
case-scenario. The independence assumption between the
allocation of RNA samples to pools (denoted by a random
variableA) and the gene expression levelsU is not a strong
assumption either, and can be effectively achieved by ran-
dom allocation of RNA samples to pools. Similarly, the
assumption betweenW andU holds if the mixing weights
in a pool are determined independently of the transcrip-
tome size in each biological sample. As sample pooling
should be done at the RNA level, the transcriptome size is
not know in advance, and hence, pooling will be random
and independent. Consequently, it is reasonable to assume
that the random variables A, W and U are independent
that drive the mean and variance of a pooled outcome in
(2) and (3), respectively.
The adequacy of pooling RNA samples in RNA-seq

experiments was subsequently assessed based on both
empirical and simulated RNA-seq datasets. For this pur-
pose, a variety of experimental scenarios were compared
with a reference design, using several performance evalu-
ation metrics. Besides cost reduction, our findings suggest
that pooling strategies offer a number of benefits. In par-
ticular, pooling reduces the within-group variability that
enables detecting biological effects with a small sample
size (the number of pools), hence lower library prepa-
ration and sequencing costs. We have also shown that
the high level of noise associated with low-abundance
genes, which challenge statistical tools for testing DGE,
can be mitigated by pooling RNA samples. Pooled experi-
ments can be valid alternatives for DGE analysis, in which
the objective is highlighting genes with strong biological
effect, such as large LFC. However, pooling in general does
not guarantee better results unless the key elements of
the pooling experiment are carefully chosen. That is, for
pooling to be equally effective to the standard RNA-seq
experiment, it is essential to carefully determine the pool
size, the number of pools, and sequencing depth depend-
ing on the level of variability and the number of RNA
samples. The choice of a statistical tool for testing DGE
is another essential part of designing pooled experiments.
One of the apparent drawbacks of pooling experiments
is the reduction of the number of replicates, which most
statistical methods strongly rely on for optimal perfor-
mance. However, our results demonstrate that pooling
has the potential to compensate for the loss of the num-
ber of replicates by reducing the within-group variability
unless the pooling strategy results in too much reduction
of the number of replicates. Of note, pooling might not

be beneficial when the gene expression levels display low
variability, as, for example, in experiments with cultured
cells.
One limitation of our study is that the demonstrated

utilities of a pooling strategy were based on proper pool-
ing and sub-sampling from a real read count matrix from
a particular experimental design. In practice, however,
pooling experiments would involve pooling of the RNA
molecules before library preparation, and hence extra
technical variability resulting from pooling could be antic-
ipated. This extra variability is represented in the data
generation model (1) by an additive random error term
εk , which, however, showed a negligible effect on the sta-
tistical power for testing DGE. Finally, we wish to note
that one single experiment with pooling of RNA samples
does not have the capacity to confirm or contradict the
theoretical findings in our study. In reality, a few dozen
experiments should be performed, but this is beyond the
scope of this study. We recommend further research with
real pooling of RNA samples to verify the theoretical
results presented in our computational study.

Conclusions
We have shown that the utility of an RNA sample pooling
strategy depends on the choice of the pooling parameters,
such as the pool size and the number of RNA samples.
Since the cost of RNA sample preparation is relatively
low, one may consider using as many RNA samples as
possible to capture the heterogeneity of the population
under study, and using an adequate pooling strategy, one
can substantially reduce the cost of the subsequent steps,
which are considerably more expensive, and maintain the
power of a DGE test. In particular, for scenarios with
a high biological variability, a small pool size such as 2
can be effective to optimize the cost of the experiment
and maintain the power that one would attain without
pooling. Unlike the typical cost-saving strategies, such
as reducing the sequencing depth or number of RNA
samples (replicates), an adequate pooling strategy is par-
ticularly effective for scenarios with many genes with low
and moderate levels of expression. We have demonstrated
that pooling RNA samples or pooling RNA samples in
conjunction with moderate reduction of the sequencing
depth can be good options to further optimize the cost
of the experiment without much loss of the power of
the DGE test. The findings discussed in this paper can
be useful for designing future experiments under possi-
ble constraints, such as limited budget, large biological
variability, or insufficient RNA input.

Methods
RNA-seq datasets
Two publicly available bulk RNA-seq datasets were used
in this study. The first is from Zhang et al. [18] (GEO
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accession number GSE49711), containing unstranded
poly(A)+ RNA seq data from 498 neuroblastoma tumors.
Paired-end sequencing (2 x 100 nucleotides) was done on
a HiSeq 2000 instrument (Illumina). On average 20 mil-
lion read pairs per sample were generated. Raw FASTQ
files were processed with Kallisto v0.42.4 (index build
with GRCh38-Ensembl v85). For this study, a subset of
172 patients with high-risk disease were selected, form-
ing two groups: the MYCN amplified (n1 = 91) and
MYCN non-amplified (n2 = 81) tumours. Further details
about the Zhang data can be accessed in [18]. The
second data set is from Assefa et al. [6] (GEO acces-
sion number GSE104756), containing stranded poly(A)+
RNA seq data from ten biological replicates of NGP
neuroblastoma cells treated with either nutlin-3 or vehi-
cle. Paired-end sequencing (2 × 75 nucleotides) was
done on a NextSeq 500 instrument (Illumina). On
average, 15 million read pairs per sample were gen-
erated. Raw FASTQ files were processed with Kallisto
v0.42.4 (index build with GRCh38-Ensembl v85). The
read quality assessment and validation was done using
FASTQC, and subsequently quality metrics were aggre-
gated using MultiQC [19] (v1.7) and are presented in
Additional file 2.

Differential gene expression analysis
For testing DGE, edgeR [4] and limma-voom [5] were
used. These tools are commonly used tools for testing
DGE, and implement different classes of models: edgeR
fits negative binomial models on the read counts, whereas
limma-voom fits normal linear models on the log2-counts
per millions of reads. These tools also exhibit different
performance with respect to their false-discovery rate
control and sensitivity [6]. edgeR is implemented using
edgeR [20] R Bioconductor package (v3.22.5) and limma-
voom is implemented using limma [21] R Bioconductor
package (v3.40.2).

RNA-seq data simulation with built-in truth
We used the Zhang neuroblastoma RNA-seq data as
source for the SPsimSeq [17] simulation. Upon first sim-
ulating the RNA-seq data for the reference scenario, sub-
sequently, for each test scenario, data is generated from
this reference scenario according to the design elements
in Table 1a and using the data generation model in (1).
The simulated datasets contain two groups of biological
samples and 5000 genes of which 10% are DE between
the groups (MYCN amplified vs MYCN not-amplified).
Two series of simulations were run, with an absolute
LFC estimate of the simulated DE genes of least 0.5 or
1, respectively. Afterwards, we calculate the actual FDR
and TPR over 100 independent simulation runs for each
particular simulation setting.

Supplementary information
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https://doi.org/10.1186/s12864-020-6721-y.

Additional file 1: Supplementary result. This file constitutes of
supplementary figures directly referred in this paper as well as the details of
the data generating model for pooled experiments and power calculation.
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the quality metrics generated using the MultiQC tool for the NGP nutlin
RNA-seq data.
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