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Background: Estimating key infectious disease param-
eters from the coronavirus disease (COVID-19) out-
break is essential for modelling studies and guiding 
intervention strategies. Aim: We estimate the gen-
eration interval, serial interval, proportion of pre-
symptomatic transmission and effective reproduction 
number of COVID-19. We illustrate that reproduction 
numbers calculated based on serial interval estimates 
can be biased. Methods: We used outbreak data from 
clusters in Singapore and Tianjin, China to estimate 
the generation interval from symptom onset data 
while acknowledging uncertainty about the incuba-
tion period distribution and the underlying transmis-
sion network. From those estimates, we obtained 
the serial interval, proportions of pre-symptomatic 
transmission and reproduction numbers. Results: The 
mean generation interval was 5.20 days (95% cred-
ible interval (CrI): 3.78–6.78) for Singapore and 3.95 
days (95% CrI: 3.01–4.91) for Tianjin. The proportion 
of pre-symptomatic transmission was 48% (95% CrI: 
32–67) for Singapore and 62% (95% CrI: 50–76) for 
Tianjin. Reproduction number estimates based on the 
generation interval distribution were slightly higher 
than those based on the serial interval distribution. 
Sensitivity analyses showed that estimating these 
quantities from outbreak data requires detailed con-
tact tracing information. Conclusion: High estimates of 
the proportion of pre-symptomatic transmission imply 
that case finding and contact tracing need to be sup-
plemented by physical distancing measures in order 
to control the COVID-19 outbreak. Notably, quaran-
tine and other containment measures were already in 
place at the time of data collection, which may inflate 
the proportion of infections from pre-symptomatic 
individuals.

Introduction
The 2019 coronavirus disease (COVID-19) outbreak 
that started in Wuhan, China in December 2019 has 
now been declared a pandemic. As at 22 April 2020, 
2,573,143 cases of COVID-19 have been confirmed in 
185 countries and territories around the world [1]. In 
order to plan intervention strategies aimed at bringing 
disease outbreaks such as the COVID-19 outbreak under 
control as well as to monitor disease outbreaks, public 
health officials depend on insights about key disease 
transmission parameters that are typically obtained 
from mathematical or statistical modelling. Examples 
of key parameters include the reproduction number (R) 
(average number of infections caused by an infectious 
individual), and distributions of the generation interval 
(time between infection events in an infector-infectee 
pair), serial interval (time between symptom onsets in 
an infector-infectee pair) and incubation period (time 
between moment of infection and symptom onset) [2]. 
Estimates of the reproduction number together with 
the generation interval distribution can provide insight 
into the speed with which a disease will spread. On the 
other hand, estimates of the incubation period distri-
bution can help guide determining appropriate quaran-
tine periods.

As soon as line lists were made available, statistical 
and mathematical modelling was used to quantify 
these key epidemiological parameters. Li et al. [3] esti-
mated the basic reproduction number using a renewal 
equation to be 2.2 (95% confidence interval (CI): 1.4–
3.9), the serial interval distribution to have a mean of 
7.5 days (95% CI: 5.3–19) based on six observations, 
and the incubation period distribution to have a mean 
of 5.2 days (95% CI: 4.1–7.0) based on 10 observations. 
Other studies estimated the incubation period distribu-
tion to have a mean of 6.4 days (95% credible interval 
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(CrI): 5.6–7.7) [4], mean of 5.0 days (95% CrI: 4.2–6.0) 
[5], mean of 5.2 days (range: 1.8–12.4) [6], and a mean 
of 4.8 days (range: 2–11) [7].

When the incubation period does not change over 
the course of the epidemic, the expected values of 
the serial and generation interval distributions are 
expected to be equal but their variances to be different 
[8]. It has recently been shown that ignoring the dif-
ference between the serial and generation interval can 
lead to biased estimates of the reproduction number 
[8]. More specifically, when the serial interval distribu-
tion has larger variance than the generation interval 
distribution, using the serial interval as a proxy for 
the generation interval will lead to an underestima-
tion of the effective reproduction number, R. When R is 
underestimated, this may lead to prevention policies 
that are insufficient to stop disease spread [8].

The most well-known method to estimate the serial 
interval distribution from line list data is the likeli-
hood-based estimation method proposed by Wallinga 
and Teunis [9]. In 2012, Hens et al. [10] proposed using 
the expectation-maximisation (EM) algorithm to esti-
mate the generation interval distribution from incom-
plete line list data based on the method by [9] and 
allowing for auxiliary information to be used in assign-
ing potential infector-infectee pairs. Te Beest et al. [11] 
used a Markov chain Monte Carlo (MCMC) approach 
as an alternative to the EM algorithm, to facilitate tak-
ing uncertainty related to the dates of symptom onset 
into account. In this paper, we use a MCMC approach 
to estimate, next to the serial interval distribution, the 
generation interval distribution upon specification of 
the incubation period distribution. We compare the 
impact of differences among previous estimates of the 
incubation period distribution for COVID-19.

Methods

Data sources
The data used in this paper are symptom onset 
dates and cluster information for confirmed cases in 
Singapore (21 January to 26 February 2020) and Tianjin, 
China (14 January to 27 February 2020).

As at 26 February, 91 confirmed COVID-19 cases had 
been reported in Singapore. Detailed information on 
age, sex, known travel history, time of symptom onset 
and known contacts was available for 54 of these cases 
from the Ministry of Health (https://www.moh.gov.sg/
news-highlights/, last accessed 26 February). For cases 
with no infector information available, it was assumed 
that they could have been infected by any other case 
within the same cluster. There were four clusters in 
these data, i.e. Grace Assembly of God church, Grand 
Hyatt business meeting, Seletar Aerospace Heights 
construction site and Yong Thai Hang shop. Cases 
known to be Chinese/Wuhan nationals or known to 
have been in close contact with a Chinese/Wuhan 

national were labelled as index cases. All other cases 
were assumed to have been infected locally.

As at 27 February, 135 confirmed cases had been 
reported by the Tianjin Municipal Health Commission. 
Data on these cases were available in official daily 
reports (http://www.tjbd.gov.cn/zjbd/gsgg/, last 
accessed 27 February) and included age, sex, relation-
ship to other known cases, and travel history to risk 
areas in and outside Hubei Province, China. In these 
data, 114 cases can be traced to one of 16 clusters. 
The largest cluster consisting of 45 cases could be 
traced to a shopping mall in Baodi district of Tianjin. 
Through contact investigations, potential transmission 
links were identified for cases who had close contacts. 
Travel history information was used to identify some 
individuals as imported cases. For cases with no infec-
tor information available, it was assumed that they 
could have been infected by any other case within the 
same cluster.

Model
For i = 2,…,n, denote ti the time of infection for individ-
ual i, tv(i) the time of infection for the infector of individ-
ual i, δi the incubation period for individual i and δv(i) the 
incubation period for the infector of individual  i. The 
serial interval (Zi ) for case  i  is a linear combination of 
latent variables, i.e. Zi  = (ti  + δi ) – (tv(i)  + δv(i) ). Assuming 
the incubation period is independent of the infection 
time, Zi can be rewritten as a convolution of the genera-
tion interval for individual i and the difference between 
the incubation period of individual i and the incubation 
period of its infector v(i) [8], i.e.,

The random variables  Xi  and  δi  are positive and are 
both assumed to be independent and identically dis-
tributed, i.e. Xi ~ f(x; Θ 1) and δi ~ k(δ; Θ 2), so that Yi ~ 
g(yi ; Θ 2). Formula (1) implies that both the generation 
interval and serial interval distributions have the same 
mean and that the latter has a larger variance and can 
be negative.

The observed serial interval,  zi  , can be expressed in 
terms of the latent variables as zi  = xi  + yi , which implies 
that, zi ~ h(zi ; Θ 1, Θ 2). The density function h(.) is given 
by Mood et al. [12],

In general,  h(z;Θ  1,  Θ  2) and  g(y;  Θ  2) have no closed 
form for arbitrary choices of f(x; Θ 1) and k(δ; Θ 2). Monte 
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Carlo methods [13] can be used to estimate h(z; Θ 1, Θ 2) 
as follows,

where J is the number of Monte Carlo samples (i.e. 300) 
and yj is the jth Monte Carlo sample drawn from g(y; Θ 2). 
When all infector-infectee pairs are observed, the like-
lihood function is given by,

where  Θ = [Θ  1,  Θ  2] [8]. To account for uncertainty in 
the transmission links we resort to a Bayesian frame-
work in which missing links are imputed [11] (see the 
following section, ‘Parameter estimation’). The likeli-
hood function is then given by L (Θ,v(i) missing |zi , v(i)). In 
the main analyses missing links v(i)  missing are imputed 
allowing for positive serial intervals only. As a sensi-
tivity analysis, we do not impose any constraints on 
whether or not serial intervals have a positive value.

Parameter estimation
We use the Bayesian method described in te Beest 
et al. [11] for parameter estimation. This method pro-
ceeds in two steps. The first step updates the missing 
links v(i) missing and the second step updates the param-
eter vector  Θ  1, i.e. the parameters of the generation 
interval distribution. We assume that both the gen-
eration interval and the incubation period are gamma 
distributed, i.e.  f(x;  Θ  1) ≡  Γ(α  1,  β  1) and  k(δ;  Θ  2) 
≡  Γ(α  2,  β  2). The parameter vector  Θ  2  is fixed to 
(α  2 = 3.45; β  2 = 0.66), corresponding to an incubation 
period with a mean of 5.2 days and a standard devia-
tion (SD) of 2.8 days [6]. Minimally informative uniform 
priors are assigned to the parameters of the generation 
interval distribution, i.e. α 1 ~ U(0,30) and β 1 ~ U(0,20). 
For cases with multiple potential infectors, the possible 
links  v(i)  missing  are assigned equal prior probabilities. 
The missing links are updated using an independence 
sampler, whereas Θ  1  is updated using a random-walk 
Metropolis-Hastings algorithm with a uniform proposal 
distribution [13]. We evaluate the posterior distribution 
using 3,000,000 iterations of which the first 500,000 
are discarded as burn-in. Thinning is applied by tak-
ing every 200th iteration. The mean and variance of 
the generation interval distribution are monitored 
within the MCMC chain. Posterior point estimates are 
given by the 50% percentiles of the converged MCMC 
chain. CrIs are given by the 2.5% and 97.5% percentiles 
of the converged MCMC chain. The serial interval dis-
tribution is obtained by simulating 1,000,000 draws 
from h(z; Θ 1, Θ 2). All analyses were performed using R 
software version 3.6.2 (R Foundation, Vienna, Austria), 

while datasets and code are available on GitHub 
(https://github.com/cecilekremer/COVID19).

Corollary epidemiological parameters
The Figure shows three possible transmission scenarios. 
The proportion of pre-symptomatic transmission is 
calculated as  p = P(Xi   < δv(i)  ), i.e. pre-symptomatic 
transmission occurs when the generation interval is 
shorter than the incubation period of the infector. This 
proportion was obtained by simulating values from the 
estimated generation interval and incubation period 
distributions, assuming a mean incubation time of 5.2 
days [6].

For each of the two outbreaks, i.e. Singapore and 
Tianjin, R is calculated as

In this, r denotes the exponential growth rate estimated 
from the early ascending phase of the incidence curve, 
and μ and σ  2 are the mean and variance of either the 
generation interval distribution or the serial interval 
distribution [14]. We calculate R in order to highlight the 
bias that occurs when the serial interval distribution is 
used as a proxy for the generation interval distribution 
[8].

CrIs for p and R are calculated by evaluating p and R at 
each iteration of the converged MCMC chain, i.e. at 
each mean-variance pair of the posterior generation/
serial interval distribution. The 95% CrIs are given 
by the 2.5% and 97.5% percentiles of the resulting 
distributions.

Sensitivity analyses
As sensitivity analyses, we investigate the robustness 
of our estimates of the generation interval distribution 
to the choice of different incubation period distribu-
tions. In particular, we fix  Θ  2  to (α  2 = 7.74;  β  2 = 1.21) 
and (α 2 = 4.36; β 2 = 0.91), corresponding to an incuba-
tion period with a mean of 6.4 and SD of 2.3 days [4], 
and a mean of 4.8 and a SD 2.6 days [7], respectively.

In our main, i.e. baseline, analyses, missing serial inter-
vals were only allowed to be positive, i.e. the symptom 
onset time of the infector has to occur before that of 
the infectee. However, given that pre-symptomatic 
transmission is possible, this can be deemed an unre-
alistic assumption. Therefore, we assess the impact of 
allowing for negative serial intervals on our estimates 
of the generation interval distribution.

To further assess the robustness of the estimated gen-
eration interval distribution, for each dataset, we fit 
the model to data from the largest cluster. In the Tianjin 
dataset, the largest cluster is the shopping mall cluster 
consisting of 45 cases. In the Singapore dataset, this 
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is the Grace Assembly of God cluster consisting of 25 
cases.

Results

Estimates of key epidemiological parameters
Table 1  shows parameter estimates of the generation 
and serial interval distributions for each dataset, 
assuming an incubation period with a mean of 5.2 
days and a SD of 2.8 days. The mean generation time 
is estimated to be 5.2 days (95% CI: 3.78–6.78) for the 
Singapore data, and 3.95 days (95% CI: 3.01–4.91) for 
the Tianjin data. As expected, the estimated means of 
the generation interval and serial interval distributions 
are approximately equal, but the latter has a larger 
variance.

Sensitivity analyses
Table 2  shows parameter estimates of the generation 
and serial interval distributions for each dataset, 
assuming incubation periods with a mean of 6.4 and 
a SD of 2.3 days, or a mean of 4.8 and SD of 2.6 days. 
The parameter estimates are fairly robust to the speci-
fied incubation period distribution, with mean genera-
tion times of about 5 days for Singapore and 4 days for 
Tianjin.

Table 3  shows parameter estimates of the generation 
and serial interval distributions obtained when 

allowing for negative serial intervals in case there is 
no known infector. Compared with baseline analyses 
(Table 1), estimates of the mean generation time are 
smaller when allowing for negative serial intervals. The 
mean generation time is 3.86 days for Singapore and 
2.90 days for Tianjin.

Table 4 shows parameter estimates obtained when we 
fit the model to data from the largest cluster (n = 45). 
We only show results for the Tianjin dataset because for 
the Singapore data, there were too few cases (n = 25) 
and the MCMC chain did not converge. When allowing 
only positive serial intervals for cases with no known 
infector, the mean generation time is estimated to be 
3.50 days. On the other hand, when allowing for nega-
tive serial intervals, it is estimated to be 2.57 days.

Estimates of corollary epidemiological 
parameters
Table 5  shows the proportions of pre-symptomatic 
transmission and reproduction numbers for each 
dataset. Pre-symptomatic transmission is higher when 
allowing for negative serial intervals for cases with 
no known infector. The reproduction number is lower 
when estimated using the serial interval compared 
with when using the generation interval.

Discussion
We estimated the generation time to have a mean of 
5.20 days (95% CrI: 3.78–6.78) and a SD of 1.72 days 
(95% CrI: 0.91–3.93) for the Singapore data, and a mean 
of 3.95 days (95% CrI: 3.01–4.91) with a SD of 1.51 days 
(95% CrI: 0.74–2.97) for the Tianjin data. These mean 
estimates increased only slightly when increasing the 
mean incubation period. For the Singapore data, allow-
ing the serial interval to be negative decreased the 
estimated mean generation time from 5.20 days, when 
restricting missing serial intervals to be positive, to 
3.86 days (95% CrI: 2.22–5.60), when allowing them 
to be negative. For the Tianjin data, the baseline esti-
mate of the mean generation time (3.95 days) is about 
the same as when allowing serial intervals to be nega-
tive in the Singapore data. However, there were already 
some negative serial intervals among the reported 
links in the Tianjin data, which may explain this lower 
estimate. The difference in these estimates could also 
be the result of differences in containment strate-
gies. When allowing for negative serial intervals in the 
Tianjin data, the mean generation time decreased to 
2.90 days (95% CrI: 1.85–4.12). The sensitivity analy-
ses showed that the assumptions made about the 
incubation period have only moderate impact on the 
results. On the other hand, assumptions made about 
the underlying transmission network (e.g. acknowl-
edging possibly negative serial intervals) had a large 
impact on our results.

As expected, the proportion of pre-symptomatic trans-
mission increased from 48% (95% CrI: 32–67) in the 
baseline scenario to 66% (95% CrI: 45–84) when 
allowing for negative serial intervals, for the Singapore 

Figure 
Three possible coronavirus disease (COVID-19) 
transmission scenarios: (A) one symptomatic transmission 
scenario and (B) two pre-symptomatic transmission 
scenarios
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The upper figure of panel B shows pre-symptomatic transmission 
where the infector develops symptoms before the infectee (i.e. 
positive serial interval), whereas the lower figure shows pre-
symptomatic transmission where the infector develops symptoms 
after the infectee (i.e. negative serial interval). Note that the 
figure does not include asymptomatic transmission, i.e. infected 
individuals who may not show symptoms but can transmit 
infection.
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data, and from 62% (95% CrI: 50–76) to 77% (95% 
CrI: 65–87) for the Tianjin data. When the incubation 
period is larger, it is expected that these proportions 
will be higher and when it is smaller, they are expected 
to be lower. Hence, a large proportion of transmission 
appears to occur before symptom onset, which is an 
important point to consider when planning intervention 
strategies. It is worth noting that the outbreak data we 
used were collected in the presence of intervention 
measures such as case isolation and quarantining of 
identified contacts. This means that our estimates do 
not necessarily reflect the natural epidemiology of 
COVID-19, but instead reflect what is observed in the 
presence of these intervention measures. It is expected 
that these measures reduce the proportion of symp-
tomatic transmission, which implies that a high pro-
portion of infections is likely to have occurred before 
symptom onset because isolation prevents sympto-
matic transmission.

We also estimated R for the sole purpose of illustrating 
the bias that occurs when using the serial interval as a 
proxy for the generation interval [8]. Whereas the impact 
was limited for our analyses, estimates based on the 
generation interval are larger and should be preferred 

to inform intervention policies. Indeed, as expected, 
the reproduction number was underestimated when 
using the serial interval distribution which is more vari-
able than the generation interval distribution.

Tindale et al. [15] recently estimated the mean serial 
interval for COVID-19 to be 4.56 days (95% CI: 2.69–
6.42) for Singapore and 4.22 days (95% CI: 3.43–5.01) 
days for Tianjin. Although these estimates are differ-
ent from the ones we report, they fall within the uncer-
tainty ranges we obtained. An important advantage of 
our method is that we are able to infer the generation 
interval distribution while allowing serial intervals to 
be negative. Our estimates of  R  are smaller than the 
ones reported by Tindale et al. [15] because we use 
a different estimate of the growth rate  r. To expand, 
we used 0.04 for Singapore and 0.12 for Tianjin, as 
obtained from the initial exponential growth phase in 
each dataset, compared with the 0.15 used by Tindale 
et al. [15]. Our estimates of the serial interval are also 
in line with those of Du et al. [16], which estimated a 
mean of 3.96 days (95% CI: 3.53–4.39) and a SD of 4.75 
days (95% CI: 4.46–5.07).

Table 1
Parameter estimates and credible intervals of generation and serial interval distributions of COVID-19 using reported 
information on infector-infectee pairs and assuming an incubation period with a mean of 5.2 and a SD of 2.8 days, 
Singapore, 21 January–26 February 2020; Tianjin, China, 14 January–27 February 2020

Dataset Scenario Interval
Estimate (95% credible interval) (days)

Mean SD

Singaporea Baseline
GI 5.20 (3.78 - 6.78) 1.72 (0.91 - 3.93)
SI 5.21 (−3.35 - 13.94) 4.32 (4.06 - 5.58)

Tianjin (China)b Baseline
GI 3.95 (3.01 - 4.91) 1.51 (0.74 - 2.97)
SI 3.95 (−4.47 - 12.51) 4.24 (4.03 - 4.95)

COVID-19: coronavirus disease; GI: generation interval; SD: standard deviation; SI: serial interval.
a Source: Ministry of Health (https://www.moh.gov.sg/news-highlights/, as at 26 February).
b Source: Tianjin Municipal Health Commission (http://www.tjbd.gov.cn/zjbd/gsgg/, as at 27 February).

Table 2
Parameter estimates and credible intervals of generation and serial interval distributions of COVID-19 with missing serial 
intervals only allowed to be positive by different incubation periods, Singapore, 21 January–26 February 2020; Tianjin, 
China, 14 January–27 February 2020

Dataset Assumed incubation period (days) Interval
Estimate (95% credible interval) (days)

Mean SD

Singaporea

Mean 6.4, SD 2.3
GI 5.29 (3.89 - 6.77) 2.08 (0.97 - 4.07)
SI 5.29 (−2.13 - 13.16) 3.86 (3.40 - 5.21)

Mean 4.8, SD 2.6
GI 5.19 (3.82 - 6.74) 1.77 (0.91 - 4.11)
SI 5.19 (−2.86 - 13.45) 4.08 (3.79 - 5.51)

Tianjin (China)b

Mean 6.4, SD 2.3
GI 4.02 (3.11 - 5.00) 2.29 (1.02 - 3.80)
SI 4.02 (−4.83 - 13.45) 3.98 (3.41 - 5.00)

Mean 4.8, SD 2.6
GI 3.95 (3.05 - 4.93) 1.75 (0.77 - 3.35)
SI 3.95 (−4.60 - 12.73) 4.07 (3.76 - 4.97)

COVID-19: coronavirus disease; GI: generation interval; SD: standard deviation; SI: serial interval.
a Source: Ministry of Health (https://www.moh.gov.sg/news-highlights/, as at 26 February).
b Source: Tianjin Municipal Health Commission (http://www.tjbd.gov.cn/zjbd/gsgg/, as at 27 February).
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Table 3
Parameter estimates and credible intervals of generation and serial interval distributions of COVID-19 when allowing 
serial intervals to be negative and assuming an incubation period with a mean of 5.2 and a SD of 2.8 days, Singapore, 21 
January–26 February 2020; Tianjin, China, 14 January–27 February 2020

Dataset Scenario Interval
Estimate (95% credible interval) (days)

Mean SD

Singaporea Allowing for all possible negative SI
GI 3.86 (2.22 - 5.60) 2.65 (0.87 - 5.43)
SI 3.86 (−5.15 - 13.88) 4.76 (4.05 - 6.72)

Tianjin (China)b Allowing for all possible negative SI
GI 2.90 (1.85 - 4.12) 2.86 (1.37 - 5.04)
SI 2.90 (−6.12 - 13.47) 4.88 (4.19 - 6.41)

COVID-19: coronavirus disease; GI: generation interval; SD: standard deviation; SI: serial interval.
a Source: Ministry of Health (https://www.moh.gov.sg/news-highlights/, as at 26 February).
b Source: Tianjin Municipal Health Commission (http://www.tjbd.gov.cn/zjbd/gsgg/, as at 27 February).

Table 4
Parameter estimates and credible intervals of generation and serial interval distributions of COVID-19 for the largest cluster 
under different scenarios for the serial interval and assuming an incubation period with a mean of 5.2 and a SD of 2.8 days, 
Tianjin, China, 14 January–27 February 2020

Dataset Scenario Interval
Estimate (95% credible interval) (days)

Mean SD

Tianjin (China)a

Baselineb
GI 3.50 (2.10 - 5.03) 1.70 (0.65 - 4.10)
SI 3.50 (−5.02 - 12.25) 4.31 (4.01 - 5.70)

Allowing for all possible negative SI
GI 2.57 (1.14 - 4.30) 2.58 (0.68 - 6.11)
SI 2.57 (−6.28 - 12.70) 4.72 (4.02 - 7.28)

COVID-19: coronavirus disease; GI: generation interval; SD: standard deviation; SI: serial interval.
a Source: Tianjin Municipal Health Commission (http://www.tjbd.gov.cn/zjbd/gsgg/, as at 27 February).
b Baseline is the scenario in which missing serial intervals are only allowed to be positive.

Table 5
Proportion of pre-symptomatic transmission (p) and reproduction number (R) of COVID-19 estimated using generation 
interval or serial interval and assuming an incubation period with a mean of 5.2 and a SD of 2.8 days, Singapore, 21 
January–26 February 2020; Tianjin, China, 14 January–27 February 2020

Dataset Scenario Interval
Estimate (95% credible interval)
p R

Singaporea

Baselineb
GI 0.48 (0.32–0.67) 1.27 (1.19–1.36)
SI NAc 1.25 (1.17–1.34)

Allowing for all possible negative SI
GI 0.66 (0.45–0.84) 1.19 (1.10–1.28)
SI NAc 1.17 (1.08–1.26)

Tianjin (China)d

Baseline
GI 0.62 (0.50–0.76) 1.59 (1.42–1.78)
SI NAc 1.41 (1.26–1.58)

Allowing for all possible negative SI
GI 0.77 (0.65–0.87) 1.32 (1.18–1.51)
SI NAc 1.17 (1.05–1.34)

COVID-19: coronavirus disease; GI: generation interval; NA: not applicable; SI: serial interval.
a Source: Ministry of Health (https://www.moh.gov.sg/news-highlights/, as at 26 February).
b Baseline is the scenario in which missing serial intervals are only allowed to be positive.
c Not applicable as the generation interval estimate is used for calculation the proportion of pre-symptomatic transmission.
d Source: Tianjin Municipal Health Commission (http://www.tjbd.gov.cn/zjbd/gsgg/, as at 27 February).
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Another advantage of our method is that we can derive 
a proper variance estimate for the generation interval, 
in contrast to using a too large variance estimate that 
is obtained when using the serial interval as a proxy for 
the generation interval. Furthermore, from a biological 
point of view, we do not need to condition on the order 
of symptom onset times. However, when the data do 
not provide sufficient information on directionality of 
transmission, this lack of auxiliary information may 
cause problems for estimation.

Our study does have some limitations. First, we rely 
on previous estimates for the incubation period. 
However, our sensitivity analyses showed that chang-
ing the incubation period distribution does not have a 
big impact on our estimates of the generation interval 
distribution. Second, we do not account for incomplete 
or possible changes in reporting over the course of the 
epidemic. Incomplete reporting means that cases are 
missing, with this leading to incomplete transmission 
networks. As the underlying transmission network has 
a large impact on our estimates, incomplete report-
ing may bias our estimates. Third, we do not acknowl-
edge changes in contact patterns and thus behavioural 
change, which could shape realised generation inter-
val distributions as well as serial interval distributions 
(data not shown). Fourth, we do not account for con-
traction of the generation interval because of depletion 
of susceptibles. Future work should take these short-
comings into account.

In the beginning of the pandemic, infection control for 
the COVID-19 epidemic relied on case-based measures 
such as finding cases and tracing contacts. A variable 
that determines how effective these case-based meas-
ures are is the proportion of pre-symptomatic transmis-
sion. Our estimates of this proportion are high, ranging 
from 48% to 77%. This implies that the effectiveness of 
case finding and contact tracing in preventing COVID-
19 infections will be considerably smaller compared 
with the effectiveness in preventing severe acute res-
piratory syndrome coronavirus  (SARS-CoV) or Middle 
East respiratory syndrome coronavirus (MERS-CoV) 
infections, where pre-symptomatic transmission did 
not play an important role (see e.g [17]). As has been 
shown by other studies, e.g Hellwell et al. [18], it is 
unlikely that these measures alone will suffice to con-
trol the COVID-19 epidemic. Additional measures, such 
as physical distancing, are required and are already 
implemented in most countries.
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