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Abstract 

Atomic layer deposition (ALD) of thin Al2O3 (  10 nm) films is used to improve both front and rear surface 
passivation of large-area screen-printed p-type CZ Si passivated emitter and rear cells (PERC). As emitter 
passivation, the SiNx anti reflection coating (ARC) is capped with Al2O3, giving improved hydrogenation during co-
firing and a front recombination current (J0,front) of 128 ± 5 fA/cm2. As rear surface passivation, a blister-free stack of 
Al2O3/SiOx/SiNx is employed, leading to optimal back reflection and a rear recombination current (J0,rear) of 92 ± 6 
fA/cm2. Internal quantum efficiency (IQE) measurements clearly confirm the improved passivation properties of both 
Al2O3-based stacks, even compared to passivation stacks based on thermally grown SiO2. 
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1. Introduction 

As published in the International Technology Roadmap for Photovoltaics (ITRPV), the specific costs 
per Watt peak of PV modules are expected to decrease by 8 to 12 % per year. According to the 
Crystalline Silicon PV Technology and Manufacturing (CTM) Group this implies that recombination 
losses at front and rear side of the crystalline Si solar cells must be reduced as indicated in Fig. 1 [1]. 

Research on aluminum oxide (Al2O3) as surface passivation for p-type Si already started long time ago 
[2,3]. In the meanwhile, its underlying passivation mechanism is understood quite well as a combination 
of chemical passivation of interface defects and field-effect passivation caused by a high density of fixed 
negative charges [4,5,6]. More recent research has also shown its potential as capping layer of positively 
charged dielectrics to passivate n-type Si surfaces [7]. 
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This work develops and integrates an approach using thermal ALD of Al2O3 to improve as well front 
and rear surface passivation of large-area screen-printed p-type Si PERC. 

 

 

Fig. 1. Expected trends for recombination losses J0,front and J0,rear as reported by the CTM Group [1] 

 

2. Results and discussion 

2.1. Rear surface passivation 

As p-type Si surface passivation, a stack of Al2O3/SiOx/SiNx is used. The Al2O3 film (  10 nm) has 
been capped with SiOx/SiNx to optimize the back reflection at long wavelength. Also, the Al2O3 film has 
been out-gassed prior to SiOx/SiNx deposition to prevent blistering of the full stack after co-firing. More 
details can be found in [8], where a J0,rear of 92 ± 6 fA/cm2 is approximated for the Al2O3/SiOx/SiNx rear 
surface passivation, well in line with the ITRPV roadmap beyond 2015 [1]. In the meanwhile, by 
optimizing the Ag screen printing paste and grid, average and maximum efficiencies of large-area screen-
printed Al2O3/SiOx/SiNx rear surface passivated p-type Si PERC have been increased. An average and 
maximum cell efficiency of respectively 19.4 and 19.5 % has been obtained, as shown in Table 1. 
 
Table 1. Overview of the cell characterization results (AM1.5 G) for 149 cm2 Al2O3/SiOx/SiNx rear passivated p-type CZ Si PERC. 
The cells are 150 μm thick, have a base resistivity of 1.5 Ω.cm and an emitter resistance of 60 Ω/sq. A more detailed processing 
sequence is given in [8] 

 JSC 
(mA/cm2) 

VOC 
(mV) 

FF 
(%) 

η 
(%) 

Avg. (4 cells) 38.1 645 78.9 19.4 
± 0.1 ± 1 ± 0.1 ± 0.0 

Best cell 38.2 646 78.9 19.5 
 

2.2. Front surface passivation 

In high injection regimes, where Δn >> Ndop, the recombination in the emitter region can be 
distinguished from the bulk recombination due to the injection level dependence of the minority carrier 
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lifetime in the emitter region and of the bulk. By plotting the inverse effective minority carrier lifetime 
reduced by the inverse Auger carrier lifetime versus the excess carrier density, it is possible to extract the 
emitter saturation current density J0,front, which is directly proportional to the slope of the resulting curve; 
see the equation shown in Fig. 2. 

 

 

Fig. 2. Emitter saturation current density for symmetrically POCl3 diffused (60 Ω/sq) textured p-type CZ Si, which are passivated by 
SiNx or SiNx/Al2O3 and co-fired at 865 °C peak firing temperature 

This emitter saturation current density is measured by quasi-steady-state photo-conductance (QSSPC) 
for symmetrically POCl3 diffused (60 Ω/sq) textured p-type CZ Si wafers passivated by SiNx or 
SiNx/Al2O3, as-deposited and after a co-firing at 865 °C peak firing temperature, see Fig. 2. In this Figure, 
as-deposited the J0,front is equivalent for SiNx and SiNx/Al2O3 emitter passivation. However, by capping 
the SiNx anti reflection coating (ARC) by Al2O3, the J0,front is decreased from 176 ± 5 to 128 ± 5 fA/cm2 
after co-firing. Hence, a fired stack of SiNx/Al2O3 clearly leads to improved emitter passivation, which is 
caused by enhanced hydrogenation of the Si/SiNx interface: the Al2O3 film has a high H content and is 
known to be a good diffusion barrier [9]. The same effect has been reported for SiO2/Al2O3 stacks [7]. 
Note that in the calculation of J0,front the front metallization has not been included. 

Unfortunately, obtaining a good fill factor (FF) on large-area screen-printed SiNx/Al2O3 front surface 
passivated p-type Si PERC has not been evident. Therefore, best solar cell efficiencies are not yet 
reported in this paper. 
 

2.3. IQE analysis 

Fig. 3(a) gives a comparison of IQE at low wavelength for SiNx, SiO2/SiNx and SiNx/Al2O3 passivated 
60 Ω/sq emitters, and at long wavelength for SiOx/SiNx, SiO2/SiOx/SiNx and Al2O3/SiOx/SiNx rear surface 
passivation stacks (SiO2 and SiOx denote thermally grown oxide and lower quality oxide deposited at 
much lower temperature, respectively). The IQE graphs at lower wavelength clearly show the improved 
emitter passivation by using a SiNx/Al2O3 stack; it passivates the front surface even better compared to a 
thermal oxidation. Also at long wavelength, the chart confirms the improved rear surface passivation by 
using the Al2O3/SiOx/SiNx stack; also here the Si surface passivation is better using Al2O3 compared to a 
thermal oxidation.  

An additional advantage is shown in Fig. 3(b), where the IQE is depicted at long wavelength with and 
without 1 sun of illumination for SiOx/SiNx, SiO2/SiOx/SiNx and Al2O3/SiOx/SiNx rear surface passivation 
stacks. This figure clearly shows that SiOx/SiNx or SiO2/SiOx/SiNx rear passivated cells have a reduced 
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response at low illumination levels or are bias light dependant, while the Al2O3/SiOx/SiNx passivated cells 
are not. See [10] for a detailed discussion on bias light dependency of positively and negatively charged 
passivation layers of p-type Si solar cells. 
 

 

 

Fig. 3. (a) Comparison of IQE (1 sun bias illumation) at low and high wavelength for the specified front and rear surface passivation 
stacks. (b) IQE values recorded at 0 or 1 sun bias illumination at high wavelength for the specified rear surface passivation stacks 

 

3. Conclusions 

This work has developed and integrated an approach using ALD of Al2O3 to improve as well front and 
rear surface passivation of large-area screen-printed p-type Si PERC: (a) As emitter passivation, the SiNx 
ARC is capped with an ultrathin Al2O3 layer (≤ 10 nm), and after co-firing the emitter passivation is 
improved significantly. (b) As p-type Si surface passivation, a stack of Al2O3/SiOx/SiNx is used. The 
Al2O3 film (≤ 10 nm) has been capped with SiOx/SiNx to optimize the rear internal reflection at long 
wavelength. Also, the Al2O3 was out-gassed prior to SiOx/SiNx deposition to prevent blistering of the full 
stack during co-firing.  

Realistic estimations for the recombination currents J0,front and J0,rear of the proposed passivation stacks 
are respectively 128 ± 5 and 92 ± 6 fA/cm2, well in line with the ITRPV roadmap after 2015 [1]. 
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