
Gene expression

SPsimSeq: semi-parametric simulation of bulk and

single-cell RNA-sequencing data

Alemu Takele Assefa 1,*, Jo Vandesompele2,3,4 and Olivier Thas1,3,5,6

1Data Analysis and Mathematical Modeling, 2Biomolecular Medicine, 3Cancer Research Institute Ghent, 4Center for Medical Genetics,

Ghent University, Ghent, Belgium, 5National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong,

Wollongong, Australia and 6Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on June 19, 2019; revised on January 2, 2020; editorial decision on February 8, 2020; accepted on February 11, 2020

Abstract

Summary: SPsimSeq is a semi-parametric simulation method to generate bulk and single-cell RNA-sequencing
data. It is designed to simulate gene expression data with maximal retention of the characteristics of real data. It is
reasonably flexible to accommodate a wide range of experimental scenarios, including different sample sizes, bio-
logical signals (differential expression) and confounding batch effects.

Availability and implementation: The R package and associated documentation is available from https://github.com/
CenterForStatistics-UGent/SPsimSeq.

Contact: alemutakele.assefa@ugent.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The number of computational tools for the analysis of bulk and
single-cell RNA-sequencing (RNA-seq) data is growing rapidly
(Zappia et al., 2018). Several methods have been introduced for a
single task, e.g. testing for differential expression (DE). These tools
typically pass through an evaluation process, often focusing on false
discovery rate control and sensitivity. Although such an evaluation
often relies on simulated data with a built-in truth, to realistically as-
sess the performance of these data analysis tools, the simulated data
must faithfully recapitulate the data characteristics of real data
(Soneson and Robinson, 2018; Weber et al., 2019).

Various methods have been proposed for simulating either bulk or
single-cell RNA-seq data. The starting point is typically a distribution-
al assumption of the gene expression levels, e.g. the (zero-inflated)
negative binomial distribution (Zappia et al., 2017). Although these
parametric simulation methods are flexible and allow simulating vari-
ous scenarios by generating synthetic data with good fit to the real
data (Soneson and Robinson, 2018), such strong distributional
assumptions do not hold in general. Due to the intrinsic biological
variability and technical noise, single-cell RNA-seq data sometimes
show multimodal distributions (Bacher and Kendziorski, 2016).
There are also fully non-parametric approaches that employ subsam-
pling from real data (Benidt and Nettleton, 2015). Although non-
parametric simulators generate realistic synthetic data, they have
limited flexibility and require a large source dataset to subsample
from Assefa et al. (2018) and Benidt and Nettleton (2015).

Here, we present a new simulation procedure for simulating
bulk and single-cell RNA-seq data. It is designed to maximally

retain the characteristics of real RNA-seq data with reasonable flexi-
bility to simulate a wide range of scenarios. In a first step, the loga-
rithmic counts per millions of reads (log-CPM) values from a given
real dataset are used for semi-parametrically estimating gene-wise
distributions and the between-genes correlation structure. In par-
ticular, the estimation of the probability distributions uses the fast
log-linear model-based density estimation approach developed by
Efron and Tibshirani (1996) and Lindsey (1974). The method makes
use of the Gaussian-copulas (Cario and Nelson, 1997) to retain the
between-genes correlation structure, as implemented by Hawinkel
et al. (2019) for parametric microbiome data simulation. Arbitrarily
large datasets, with realistically varying library sizes, can be sampled
from these distributions while maintaining the correlation structure
between the genes. Our method has an additional step to explicitly
account for the high abundance of zero counts, typical for single-cell
RNA-seq data. This step models the probability of zero counts as a
function of the mean expression of the gene and the library size
(read depth) of the cell (both in log scale). Zero counts are then
added to the simulated data such that the observed relationship
(zero probability to mean expression and library size) is maintained.
In addition, our method simulates DE by separately estimating the
distributions of the gene expression from the different populations
(e.g. treatment groups) in the source data, and subsequently sam-
pling a new dataset from each group.

Our simulation procedure enables benchmarking of statistical
and bioinformatics tools with realistic simulated datasets. In Section
3 and Supplementary Material, we demonstrate that the simulated
data from our method retains the characteristics of the source data
in terms of variability, distribution of mean expression levels,
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fraction of zero counts and the dependence between genes (Fig. 1
and Supplementary Material). The details of the SPsimSeq proce-
dures, implementations and benchmarking results can be found in
the Supplementary Material. Data simulated with our procedure are
compared with the original real source data and with data simulated
with the parametric Splat procedure (Zappia et al., 2017), which
uses a gamma-Poisson hierarchical model (splatter R Bioconductor
package, v1.6.1; Zappia et al., 2017).

2 Dataset

For the demonstration and benchmarking of the SPsimSeq method,
we used three publicly available datasets: (i) neuroblastoma bulk
RNA-seq data retrieved from Zhang et al. (2015; GEO accession
GSE49711), (ii) neuroblastoma NGP cells single-cell RNA-seq data
retrieved from Verboom et al. (2019; GEO accession: GSE119984)
and (iii) peripheral blood mononuclear cell single-cell RNA-seq data
retrieved from (www.10xGenomics.com). The details of the datasets
can be found in the Supplementary Material.

3 Results

Using the three source RNA-seq datasets (one bulk and two single-
cell), we benchmarked the novel SPsimSeq simulation method. In
particular, we compared the simulated data (using SPsimSeq and
Splat) with the real data with respect to various gene and sample
(cell) level characteristics as suggested by Soneson and Robinson
(2018) and Zappia et al. (2017). To simulate bulk RNA-seq
data using Splat, we disabled its feature for adding dropouts
(dropout.type ¼ “none”), which is specifically designed for
single-cell RNA-seq data simulation.

The results generally show that our simulation procedure suffi-
ciently captures the properties of the real data both for bulk and
single-cell RNA-seq datasets (Fig. 1 and Supplementary Figs S1–
S14). The variability (in terms of variance and coefficients of vari-
ation), distribution of mean expression level of genes, the fraction of

zero counts (per gene and sample/cells), the relationship between the
mean and variability gene expressions, the relationship between the
mean expression and fraction of zero counts and the dependence be-
tween genes in SPsimSeq simulated data resemble that of the real
datasets. When compared with Splat, SPsimSeq generates more real-
istic data with respect to all the considered metrics. In the
Supplementary Material, we present the detailed benchmarking
results, including the application of SPsimSeq for simulating single-
cell RNA-seq data with read-counts and UMI-counts (unique mo-
lecular identifier).
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