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Abstract

IMPORTANCE Exposure to ambient air pollution has been associated with the risk of carcinogenesis
in later life. Changes in histone modifications might have long-term adverse health effects.

OBJECTIVE To investigate the association of prenatal exposure to ambient air pollution with levels
of circulating total histone H3 and specific trimethylation marks (ie, H3 lysine 4, H3 lysine 36) in
maternal cord blood.

DESIGN, SETTING, AND PARTICIPANTS The Environmental Influence on Aging (ENVIRONAGE)
birth cohort study included 609 mothers and their newborns. Participants were recruited when
mothers entered the Hospital East Limburg (Genk, Belgium) for delivery between February 2010 and
January 2017. The inclusion criteria were singleton pregnancies and the ability to fill out
questionnaires in Dutch. Data analysis was conducted from March to August 2019.

EXPOSURES Exposure to particulate matter with a diameter less than 2.5 μm (PM2.5), black carbon,
and nitrogen dioxide during pregnancy was modeled with a high-resolution air pollution model on
the basis of maternal address for each trimester of pregnancy as well as for the entire pregnancy.

MAIN OUTCOMES AND MEASURES Circulating total histone H3 levels and specific trimethylation
marks (ie, trimethylated H3 lysine 4 and trimethylated H3 lysine 36) in cord blood.

RESULTS A total of 609 mother-newborn pairs were included in the study. Mean (SD) maternal age
was 29.3 (4.6) years, 391 mothers (64.2%) never smoked, and 314 (51.3%) had a high education level.
Overall, 322 newborns (52.4%) were boys, and mean (SD) birth weight was 3414 (485) g. Participants
experienced mean (SD) exposure to PM2.5, black carbon, and nitrogen dioxide of 13.4 (2.6) μg/m3,
1.29 (0.31) μg/m3, and 17.98 (4.57) μg/m3, respectively, during their entire pregnancies.
Trimethylated H3 lysine 4 and total histone H3 were positively associated with gestational PM2.5

exposure, with a 74.4% increment (95% CI, 26.7% to 140.2%, P < .001) and a 40.2% increment
(95% CI, 24.1% to 58.3%, P < .001), respectively, observed for each 5-μg/m3 increase in PM2.5

exposure during the entire pregnancy. For the same exposure window, trimethylated H3 lysine 36
levels were inversely associated with PM2.5 exposure (−34.4%; 95% CI, −50.1% to −13.7%; P = .003).
Exposure to black carbon during the entire pregnancy was positively associated with trimethylated
H3 lysine 4 (38.4%; 95% CI, 6.2% to 80.3%; P = .003).

CONCLUSIONS AND RELEVANCE Associations of ambient air pollution with cord plasma histone
H3 modifications during early life might indicate that circulating histones are a risk factor in the
development of air pollution–associated disease later in life. Additional study is required to correctly
estimate the long-term consequences of our findings.
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Key Points
Question Is prenatal exposure to

ambient air pollution associated with

levels of circulating total histone H3 and

specific trimethylation marks in

cord blood?

Findings In this cohort study with 609

mother-newborn pairs, prenatal

exposure to ambient air pollution was

positively associated with circulating

total histone H3 levels and with

trimethylated histone H3 lysine 4 levels

and negatively associated with

trimethylated histone H3 lysine

36 levels.

Meaning The findings of this study

suggest that cord plasma histone H3

modifications during early life might

indicate circulating histones are a risk

factor in the development of air

pollution–related disease later in life.
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Introduction

The fetus is particularly vulnerable to adverse effects of environmental exposures, given that it is
growing and developing at a rapid pace.1 Epidemiologic studies have shown that exposure to
airborne particulate matter (PM) during gestation increases the risk of low birth weight and
preterm birth.2

The developmental origin of health and disease concept explains how challenges early in life can
affect lifelong health.3 Determining which molecular mechanisms underlie prenatal exposure to air
pollution is important for the discovery of potential novel biomarkers of exposure as well as for the
identification of potential mediators between exposure and disease.

Air pollution is known to, at least in part, exert its effects on human health by upregulating
oxidative stress and pro-inflammatory responses.4 Epigenetic mechanisms are involved in the
regulation of oxidative stress as well as in inflammatory responses.5 Histones are small, abundant
proteins that help form nucleosomes. Circulating histones can either be secreted from living or
apoptotic cells. When released in circulation, they mediate the inflammatory response and can lead
to endothelial dysfunction and organ failure.6

Histone posttranslational modifications (PTMs) are an epigenetic trait induced by oxidative
stress7 and specific inflammatory mediators.8 Posttranslational modifications have a critical role in
the regulation of nucleosome dynamics and the processes of DNA transcription, replication, and
repair.9 Histones have also been shown to have toxic and pro-inflammatory activities when they are
released into the extracellular space.6

We hypothesized that histone modifications may serve as a molecular pathway in the response
to prenatal ambient air pollution exposure. Modifications to histone H3 are the most-studied histone
changes at present, and these changes have been associated with changes in gene expression.10

Previous evidence has identified specific histone H3 modifications after exposure to organic
chemical compounds,11 heavy metals,12-14 and, recently, traffic-related PM exposure in adults.15 To
our knowledge, no human studies have reported on prenatal air pollution exposure and its role in
histone H3 modifications.

Trimethylated H3 lysine 4 (H3K4me3) is a modification typically associated with transcriptional
activity. We selected H3K4me3 for this study because it has been shown to play an important role in
memory and cognitive impairment. Because air pollution exposure is known to affect the brain but
the underlying molecular mechanisms are poorly understood, we hypothesized that HK4me3 might
play an important function here. Global levels of H3K4me3 are increased in the hippocampus during
memory formation, and H3K4 methyltransferases and H3K4 demethylases have been associated
with impaired cognition in neurologic disorders.16

Methylation of H3 lysine 36 (H3K36) plays crucial roles in the regulation of a wide range of
biological processes. Deregulation of H3K36 methylation is associated with disease, including cancer.
This has been shown for lung cancer, in which alterations in histone lysine methylation are associated
with clinical prognosis.17 The H3K36 demethylase KDM2A has been shown to be frequently
upregulated in non–small cell lung cancer tumors and to promote tumor growth and invasiveness.18

In this study, we measured 2 specific histone H3 modifications (ie, H3K4me3 and H3K36me3) as
well as total histone H3 levels in cord blood samples collected from newborns from the
Environmental Influence on Aging (ENVIRONAGE) birth cohort. To our knowledge, this is the first
report studying gestational air pollution exposure and circulating levels of histones and histone
modifications. We selected these PTMs as a discovery study on the potential role of histone PTMs in
the adverse effects of gestational exposure to ambient air pollution.
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Methods

Study Design and Population
From the ongoing population-based birth cohort study ENVIRONAGE, 609 mother-child pairs were
recruited between February 2010 and January 2017 at Hospital East Limburg (Genk, Belgium) and
included in the current study. Women were recruited when they arrived at the hospital for delivery
and filled out study questionnaires at the maternity ward before leaving the hospital. Inclusion
criteria were singleton pregnancy and the ability to fill out questionnaires in Dutch. The overall
participation rate of eligible mothers was 61.0% (1080 of 1770), and we previously demonstrated
that the cohort represents births in Flanders well.19

Study approval was obtained from the ethics committees of Hospital East Limburg and Hasselt
University and has been carried out according to the Declaration of Helsinki.20 Written informed
consent was obtained from the mothers before participation. This study followed the Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline. Data analysis was
conducted from March to August 2019.

Information on maternal age, smoking behavior (mother and coresidents), ethnicity,
prepregnancy body mass index (BMI, calculated as weight in kilograms divided by height in meters
squared), and parity were obtained through questionnaires. Ethnicity was classified based on the
native country of the neonates’ grandparents as either European (�2 grandparents were European)
or non-European (�3 grandparents were not European). The study questionnaire also asked
mothers to provide their residential address and to indicate whether they moved during pregnancy.
If they had, they were asked to provide their former residential address. Furthermore, they provided
their exact moving date to allow for accurate exposure calculation. Perinatal parameters, such as
newborn sex, birth date, birth weight, and gestational age, were collected from birth records.
Information on maternal education was missing for 7 individuals, resulting in a final study population
of 609 participants.

Sample Collection
Umbilical cord blood was collected directly after delivery in BD Vacutainer plastic whole blood tubes
with spray-coated K2EDTA (BD). Within 20 minutes of cord blood collection, samples were
centrifuged at 3200 rpm for 15 minutes to separate plasma from blood. Plasma was collected and
stored in Eppendorf tubes at −80 °C until analysis.

Exposure Assessment
Based on the mother’s residential address, daily mean concentrations of PM with a diameter less
than 2.5 μm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in micrograms per cubic meter
were estimated using a high-resolution spatial-temporal interpolation method (ie, kriging)21 in
combination with a dispersion model.22,23 This interpolation method uses hourly measured PM2.5

pollution data collected at the official fixed-site monitoring stations (34 sites for PM2.5, 44 for NO2,
and 14 for BC) and land-cover data obtained from satellite images.24 The model chain provides daily
PM2.5, NO2, and BC values on a dense, irregular receptor grid by using data both from the Belgian
telemetric air-quality network and emissions from point sources and line sources. In the Flemish
region of Belgium, more than 80% (R2 = 0.8) of the temporal and spatial variability was explained by
this interpolation tool.

The accuracy of the model has also been demonstrated by showing that modeled PM2.5 and BC
at residence correlates with internal exposure to nano-sized BC particles measured in urine.25 Based
on daily residential air pollution levels, we averaged trimester-specific exposure during pregnancy
(first trimester, date of conception until 13th week; second trimester, 14th until 26th week; and third
trimester, 27th week until delivery) and exposure during the entire period of pregnancy (date of
conception until delivery). When participants moved during pregnancy, we accounted for these
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changes in our exposure calculations. The mean daily outdoor temperature (°C) was provided by the
Belgian Royal Meteorological Institute.

Analysis of Total and Modified Histone H3 Levels
EpiQuik Global Tri-Methyl Histone Quantification Kits (Epigentek) were used to analyze and measure
H3K4me3 (cat No. 3112), H3K36me3 (cat No.3130), and total histone H3 (cat No. 3091) levels in
circulation. Extracellular nucleosomes bearing those modifications were captured in the strip-wells
coated with corresponding antibodies. The captured histones were then detected with a labeled
detection antibody, followed by a color development reagent. The ratio of methylation is
proportional to the intensity of absorbance. We applied 30 μL plasma with 5 control samples added
in duplicate with the same volume. The 5 control samples included on each plate were used to
calculate a plate-level normalization factor to minimize plate-to-plate variability. The measurements
were done according to the instructions of the manufacturer, and absorbance was measured at 450
nm on a FLUOstar Omega microplate reader (BMG Labtech). To minimize interassay variability, the
609 samples were randomly distributed across nine 96-well plates, including 5 control samples on all
plates. In a pretesting phase, we determined the intra- and interassay variation of histone
methylation assays. The intra-assay coefficients of variation were 7.2%, 6.3%, and 6.4% for
H3K4me3, H3K36me3, and total histone H3, respectively. The interassy coefficients of variation were
18.4%, 11.8%, and 9.0% for H3K4me3, H3K36me3, and total histone H3, respectively. To accurately
determine levels of trimethylated and total histone H3 levels, a standard curve using the control
delivered with the kit was included on each plate, and the slope of this calibration curve was used in
following calculation: H3K4me3 (ng/ml) = (sample optical density − blank optical
density) / ([slope × 30 μL] × 1000).

Statistical Analysis
We used SAS software version 9.4 (SAS Institute) for statistical analysis. The quantities of H3K4me3,
H3K36me3, and total histone H3 were log-transformed because of their nonnormal distribution. The
collected data are presented as categorical data with numbers and percentages and as continuous
data with means and SDs. For histone methylation levels, geometric means and 25th and 75th
percentiles are given. The association of levels of total histone H3 in cord blood with prenatal air
pollution exposure was assessed using a linear regression model, while accounting for the following
covariates: newborn sex, ethnicity (European or non-European), gestational age (in weeks), season
of delivery (winter, spring, summer, or autumn), trimester-specific apparent temperature, maternal
age (in years), smoking status (never smoked, formerly smoked, or currently smokes), educational
status (coded as low, no diploma or primary school; middle, high school; and high, college or
university degree), prepregnancy BMI, and parity (1, 2 or �3). In a sensitivity analysis, we additionally
adjusted for white blood cell count and the percentage of neutrophils. As data on blood cell count
was missing for 116 individuals, the sensitivity analysis was performed with the remaining 493
individuals. Statistical significance was set at P < .05, and all tests were 2-tailed.

Results

General Characteristics of the Study Population
Detailed maternal and newborn characteristics are shown in Table 1. The mean (SD) maternal age
was 29.3 (4.6) years, 391 mothers (64.2%) never smoked, and 314 (51.3%) had a high educational
level. The mean (SD) maternal prepregnancy BMI was 24.3 (4.6). Overall, 322 newborns (52.4%)
were boys, and 536 (88.0%) had European descent. The mean (SD) gestational age was 39 (1.7)
weeks (range, 36-41 weeks). Mean (SD) birth weight was 3414 (485) g. Residential prenatal air
pollution exposure is summarized in Table 2. Mean (SD) PM2.5, BC, and NO2 exposure was 13.4 (2.6)
μg/m3, 1.29 (0.31) μg/m3, and 17.98 (4.57) μg/m3, respectively, during the entire pregnancy.
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Association of Air Pollution Exposure With Cord Blood H3K4, H3K36, and Total
Histone H3 Levels
PM2.5 Exposure
Cord blood H3K4me3 levels were positively associated with in utero PM2.5 exposure during the first
trimester (33.9%; 95% CI, 3.1% to 73.4%; P = .04), second trimester (68.5%; 95% CI, 26.4% to
124.5%; P = .01), and the entire pregnancy (74.4%; 95% CI, 26.7% to 140.2%; P < .001), and total
histone H3 levels were positively associated with in utero PM2.5 exposure for each trimester and the
entire pregnancy (first trimester: 15.8%; 95% CI, 4.3% to 28.7%; P = .03; second trimester: 18.7%;
95% CI, 6.1% to 32.8%; P = .005; third trimester: 21.0%; 95% CI, 10.5% to 32.5%; P < .001; entire
pregnancy: 40.2%; 95% CI, 24.1% to 58.3%; P < .001). Cord blood H3K36me3 levels were inversely
associated with first trimester (−27.4%; 95% CI, −42.3% to −8.5%; P = .04), third trimester (−26.7%;
95% CI, −40.0% to −10.4%; P = .009), and entire pregnancy (−34.4%; 95% CI, −50.1% to −13.7%;

Table 1. Demographic Characteristics of the Study Populationa

Characteristic No. (%) (N = 609)
Mother

Age, mean (SD), y 29.3 (4.6)

Pregestational body mass index, mean (SD)b 24.6 (4.6)

Educational level

Low 75 (12.4)

Middle 220 (36.3)

High 314 (51.3)

Parity

1 336 (55.5)

2 202 (33.0)

≥3 71 (11.5)

Smoking status

Never 391 (64.2)

Before pregnancy 152 (25.0)

During pregnancy 66 (10.5)

Newborn

Boy 322 (52.4)

Race/ethnicity

European 536 (88.0)

Non-European 73 (12.0)

Gestational age, mean (SD), wk 39 (1.7)

Birth weight, mean (SD), g 3414 (485)

Season of birth

Winter 156 (25.8)

Spring 157 (25.8)

Summer 144 (23.4)

Autumn 152 (25.0)

White blood cell count, mean (SD), /μl 15200 (4700)

Neutrophils, mean (SD), % 53.2 (9.4)

H3K4me3, log, median (IQR), ng/mL 10.3 (6.3-23.6)

H3K36, log, median (IQR), ng/mL 8.9 (4.6-16.6)

Total histone H3, log, median (IQR), ng/mL 32.3 (27.3-37.9)

Abbreviations: IQR, interquartile range; H3K4me3, trimethylated H3 lysine 4;
H3K36, H3 lysine 36.

SI conversion factor: To convert neutrophils to proportion of 1.0, multiply by
0.01; white blood cell count to ×109/L, multiply by 0.001.
a Means are presented as geometric means (ie, 25th to 75th percentile).
b Body mass index calculated as weight in kilograms divided by height in

meters squared.
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P = .03) PM2.5 exposure after correction for maternal education, smoking, age, prepregnancy BMI,
and parity, newborn sex, gestational age, season of delivery, and trimester-specific apparent
temperature (Figure 1).

NO2 Exposure
The estimated overall (weeks 1-40) change in H3K4me3 level for a 5-μg/m3 increment of NO2

exposure was 16.7% (95% CI, −0.8% to 37.4%; P = .003), and total histone H3 levels showed a 11.9%
increase (95% CI, 4.8% to 20.0%). Trimester-specific estimates were only significant for the second
trimester for H3K4me3 (20.8%; 95% CI, 2.4% to 42.5%; P = .02), whereas for total histone H3 levels,
first trimester NO2 exposure was associated with an increase in total histone H3 levels of 7.5% (95%
CI, 0.7% to 14.7%; P = .04); second trimester, 9.4% (95% CI, 2.4% to 16.9%; P=.03); and third
trimester, 11.3% (95% CI, 4.3% to 18.7%; P = .005).

BC Exposure
We found that H3K4me3 levels were significantly associated with second and third trimester as well
as entire pregnancy BC exposure (second trimester: 51.4%; 95% CI, 19.2% to 92.1%; P = .04; third
trimester: 29.9%; 95% CI, 2.9% to 64.2%; P = .01; entire pregnancy: 38.4%; 95% CI, 6.2% to 80.3%;

Table 2. Characteristics of Air Pollution Exposure Data for the Study Population

Exposure Period Mean (SD) [IQR]
PM2.5, μg/m3 Trimester 1 13.30 (4.64) [6.91-19.69]

Trimester 2 13.52 (4.72) [6.12-20.92]

Trimester 3 13.50 (5.15) [5.99-21.01]

Entire pregnancy 13.43 (2.55) [9.72-17.14]

BC, μg/m3 Trimester 1 1.30 (0.38) [0.76-1.84]

Trimester 2 1.30 (0.44) [0.72-1.88]

Trimester 3 1.27 (0.42) [0.69-1.85]

Entire pregnancy 1.29 (0.31) [0.86-1.72]

NO2, μg/m3 Trimester 1 17.95 (5.57) [10.56-25.34]

Trimester 2 18.10 (5.97) [9.58-26.62]

Trimester 3 17.89 (5.99) [9.61-26.17]

Entire pregnancy 17.98 (4.57) [11.84-24.12]

Abbreviations: BC, black carbon; IQR, interquartile
range; NO2, nitrogen dioxide; PM2.5, particulate matter
with a diameter less than 2.5 μm.

Figure 1. Results of the Main Analysis
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Estimates are shown with 95% CIs (error bars) for the relative percentage change in
histone H3 methylation for a 5-μg/m3 increment in exposure for particulate matter with
a diameter less than 2.5 μm (PM2.5) and nitrogen dioxide (NO2), and a 0.5-μg/m3

increment in exposure for black carbon (BC). Estimates are from linear regression models

and were adjusted for maternal education level, maternal smoking, maternal age,
maternal prepregnancy body mass index, parity, newborn sex, gestational age, season of
delivery, and trimester-specific apparent temperature. H3K4me3 indicates
trimethylated H3 lysine 4; H3K36me3, trimethylated H3 lysine 36.
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P = .003), while H3K36me3 levels were significantly and inversely associated only with third
trimester exposure (−19.1%; 95% CI, −33.1% to −2.3%; P = .02). All investigated time windows were
associated with total histone H3 levels in cord blood (first trimester: 13.6%; 95% CI, 3.8% to 24.3%;
P = .02; second trimester: 15.9%; 95% CI, 6.4% to 26.2%; P = .01; third trimester: 12.3%; 95% CI,
3.4% to 22.1%; P = .02; entire pregnancy: 19.2%; 95% CI, 8.4% to 31.1%; P = .002) (Figure 1).

Sensitivity Analysis
Because we did not know the exact cellular composition of our samples and this might affect our
results, we performed an additional analysis in which we corrected for white blood cell counts and
percentage of neutrophils in the samples. Although blood cell counts were missing for 116 samples,
the characteristics of the population did not change (data not shown). Results were similar to our
main analysis (Figure 2).

Discussion

Epigenetic modifications, such as histone modifications, are involved in mediating how early life
environment affects later health. Intracellular histones are known to play an important role in the
regulation of transcription and gene expression,26 whereas extracellular histones play an important
role in inflammation. Extracellular histones induce apoptosis in several human cell types.27,28 It has
been demonstrated that severely damaged tissues release high amounts of nucleosomes and free
histones into the bloodstream, aggravating the clinical features of a trauma. Circulating histones act
as mediators for distant organ damage (ie, lungs) through interaction with membrane phospholipids,
causing cellular calcium influx.26 Histones released in the bloodstream were found in patients with
severe blunt trauma, pancreatitis, and sepsis.6 Based on their pathological properties, extracellular
nucleosomes and histones are considered pathogen-associated molecular patterns and damage-
associated molecular patterns. These molecules are able to activate the innate immune system
through toll-like receptors.29 Once activated by toll-like receptors, endothelial cells were found to
secrete mediators including cytokines, chemokines, reactive oxygen species, and nitric oxide.30

The most important intracellular function of histones is to construct nucleosomes, which form
the basic structure of chromatin. Changes in the structure and function of chromatin affect gene
transcription and expression through fine-tuned mechanisms. Covalent modifications of the

Figure 2. Results of the Sensitivity Analysis Including Percentage of Neutrophils and White Blood Cell Count
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Estimates are shown with 95% CIs (error bars) for the relative percentage change in
histone H3 methylation for a 5-μg/m3 increment in exposure for particulate matter with
a diameter less than 2.5 μm (PM2.5) and nitrogen dioxide (NO2), and a 0.5-μg/m3

increment in exposure to black carbon (BC). Estimates were adjusted for maternal

education level, maternal smoking, maternal age , maternal prepregnancy BMI, parity,
newborn sex, gestational age, season of delivery, trimester-specific apparent
temperature, white blood cell count, and percentage of neutrophils. H3K4me3 indicates
trimethylated H3 lysine 4; H3K36me3, trimethylated H3 lysine 36.
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N-terminal tail of core histones are important regulators of chromatin status, structure, and gene
expression. Methylation of histone lysine can either silence or activate gene transcription, depending
on the target residue.31 Histone modification levels can predict levels of gene expression, and actively
transcribed genes are characterized by high levels of H3K4me3 in the promoter region.32

We do not know whether the cord blood circulating histones we measured are freely circulating
or encapsulated in extracellular vesicles, although it is known that extracellular vesicles can capsulate
histones and nucleosomes.33 In future research, it would be interesting to extract extracellular
vesicles from the cord blood plasma directly and determine whether the histones are indeed found
in circulating in extracellular vesicles or rather free circulating.

To our knowledge, this is the first report investigating the association of circulating
trimethylated and total histone H3 levels early in life with gestational particulate matter exposure.
Our findings showed a positive association between air pollution exposure and total histone H3
levels. This is in accordance with the observation that levels of circulating histones are increased in
inflammation and sepsis6 and that circulating histone levels are associated with acute lung injury
after trauma. In mice, increased levels of circulating histones lead to an increase in the size and
severity of stroke.26 Our results are in agreement with cohort studies on environmental exposure
measured in peripheral blood samples, including arsenite34 and nickel.35 Although it is known that
H3K4me3 is associated with DNA transcription activation, the exact mechanism behind its
association with environmental exposure is poorly understood. The inverse association we observed
between H3K36me3 and pollution exposure corresponds to results from a study among truck drivers
in Beijing, in which 14-day average ambient PM with a diameter less than 10 μm exposure was
significantly and inversely associated with H3K36me3 levels in plasma leukocytes from adults.15 It
appears that both short- and long-term air pollution exposure affect H3 methylation levels, given that
the study by Zheng et al15 considered 14-day moving averages for PM exposure, whereas we
observed significant associations between trimester and entire pregnancy exposure and H3
trimethylation marks. All the previously mentioned studies have measured cellular levels of histones
and histone modifications, whereas our study is the first, to our knowledge, to report circulating
histone levels in association with air pollution exposure.

The public health significance of our findings is currently not known. Air pollution exposure is
known to affect child health, considering that it has been associated with a decrease in birth weight36

and childhood blood pressure.37 However, insults to the genome in the perinatal period can
contribute to carcinogenesis during the life course and may be more important relative to other life
stages because of the higher probability that mutated and genomically unstable cells could populate
the rapidly growing tissues of an infant.38,39 Exposure to traffic-related air pollution was shown to
increase the risk of pediatric acute leukemia in the Italian Studio Epidemiologico sui Tumori Infantili
Linfoemopoietici (SETIL) study.40 Therefore, in utero exposures affecting histone (methyl) levels are
potentially important in creating an adverse environment that enables carcinogenesis in later life.

Limitations
The current findings must be interpreted in the context of their limitations. At this time, we cannot
make any predictions on the role of levels of trimethylated and total histone H3 in cord blood in
postnatal child health or adult disease risk. Furthermore, as our analyses were performed in plasma
extracted from cord blood, we do not know which cell types were responsible for the presence of
circulating histones in our samples; further research focusing on which cell types drove our
observations is warranted. Furthermore, although our results were consistent after multiple
adjustments, we cannot exclude the possibility of residual confounding by some unknown factor that
is associated with both cord blood histone H3 levels and air pollution exposure.

A potential source of bias for studies on air pollution exposure is exposure misclassification.
Errors in the measurement of PM by monitoring stations and interpolation methods used to estimate
individuals’ PM exposure may be a potential source of information bias. Personal PM exposure might
be quite different from the estimated outdoor PM exposure since participants may spend a large
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amount of time indoors and outside the direct environment of their home address, which results in
exposure misclassification. Under the assumption that this is not a systematic error (ie,
nondifferential misclassification), it would lead to attenuation of effect estimates and not to a greater
risk of false-positive results.

Conclusions

In this cohort study, we identified histone modifications at birth that were associated with prenatal
exposure to ambient air pollution. These modifications might have lasting consequences and
contribute to how early life environment affects later health.
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