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Abstract 

In this paper we present marginal association and regression models as an alternative to classical 
association models for cross-classified ordinal data. It is shown that the methods easily incorporate 
various types of association structures, are able to include covariate information and generalize easily to 
multi-way classifications. The proposed approach is used to analyze data from a multicentre psychiatric 
study. (E) 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Over the past decades, a vast part of the literature, devoted to multivariate cate- 
gorical data, focused on describing the association structure between two or more 
variables. Eminent references are Yule and Kendall (1950) and Goodman (1969, 
1979, 1981a, b, 1983). A commonly used measure of association is the cross-ratio. 

Recently, the focus in multivariate categorical data has somewhat shifted to regres- 
sion models, intended mainly for the analysis of longitudinal data. A wide class is 
provided by the so-called marginal models. Non-likelihood marginal methods, such 
as generalized estimating equations (Liang and Zeger, 1986) and likelihood based 
marginal methods (Dale, 1986; Molenberghs and Lesaffre, 1994; Lung and Agresti, 
1994; Glonek and McCullagh, 1995) have been proposed. It is now common prac- 
tice to describe the association between repeated binary outcomes by two-way and 
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Table l 
Cross-classification of British male sample according to each subject's occupational status 
category and his father's occupational category, using seven status categories 

Father's Subject's status 
status 

1 2 3 4 5 6 7 

1 50 19 26 8 18 6 2 
2 16 40 34 18 31 8 3 
3 12 35 65 66 123 23 21 
4 11 20 58 110 223 64 32 
5 14 36 114 185 714 258 189 
6 0 6 19 40 179 143 71 
7 0 3 14 32 141 91 106 

higher-order cross-ratios. Molenberghs and Lesaffre (1994) developed their method 
for multivariate ordinal data. For this kind of data, they advocate the use of the 
global cross-ratio. This extends the work by Dale, who exploited the structure of 
the bivariate Plackett distribution to estimate the parameters in a global cross-ratio 
model. Molenberghs and Lesaffre (1997b) generalize this method to a wide class of 
association measures, applicable to both ordinal and nominal data. However, it is 
not sufficiently recognized that these models provide a versatile basis, not only for 
regressing multiple outcomes on predictors, but also to study the association between 
two (or more) categorical variables. In other words, they can be used for the analysis 
of association. To this end, it is necessary to construct more complex association 
models than is customary in the marginal modelling framework. For this purpose, 
one can borrow flexible models such as described in Goodman (1981a). 

Two examples are presented. First, to illustrate the use of the models in the case 
of contingency tables with a large number of categories, we re-analyze the data 
presented in Goodman (1979). Subjects are cross-classified, according to their occu- 
pational status and their father's occupational status, using seven ordered categories. 
The data are presented in Table 1. 

The main example is a multicentre study involving 315 patients that were treated 
by fluvoxamine for psychiatric symptoms described as possibly resulting from a 
dysregulation of serotonine in the brain. Patients with one or more of the follow- 
ing diagnoses were included: depression, obsessive, compulsive disorder and panic 
disorder. Several covariates were recorded, such as sex and initial severity on a 5- 
point ordinal scale, where severity increases with category. After recruitment of the 
patient in the study, he or she was investigated at three visits. On the basis of about 
20 psychiatric symptoms, the therapeutic effect and the side-effects were scored at 
each visit in an ordinal manner. Side effect is coded as (1 )=no ;  ( 2 ) = n o t  interfer- 
ing with functionality of patient; ( 3 ) =  interfering significantly with functionality of 
patient; ( 4 )= the  side-effect surpasses the therapeutic effect. Similarly, the effect of 
therapy is recorded on a four-point ordinal scale: (1) no improvement over baseline 
or worsening; (2) minimal improvement (not changing functionality); (3) moderate 
improvement (partial disappearance of symptoms) and (4) important improvement 
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Table 2 
Psychiatric study: cross-classification of initial severity 
and side effect at the second occasion. The fitted values 
for the independence model are shown in parentheses 

Severity Side 2 

1 2 3 4 

1 1 0 1 0 
(0.86) (0.86) (0.18) (0.10) 

2 21 28 5 5 
(25.29) (25.29) (5.42) (3.01) 

3 62 62 15 7 
(62.57) (62.57) (13.41) (7.45) 

4 41 31 6 2 
(34.29) (34.29) (7.35) (4.08) 

5 1 5 0 I 
(3.00) (3.00) (0.64) (0.36) 

(almost disappearance of  symptoms). Thus, a side effect occurs if new symptoms 
occur while there is therapeutic effect if old symptoms disappear. 

To illustrate the flexibility of  the proposed approach, we select four two-way clas- 
sifications from the psychiatric study. We will first consider a cross-classification of  
side effects and initial severity (Table 2). Then, we cross-classify the measurements 
on therapeutic effect at visits 2 and 3 in Table 3. A similar table is constructed for 
side effects (Table 4). Finally, we consider a cross-classification of side effects and 
therapeutic effect, recorded at visit 2 (Table 5). 

Note that the total of  Table 5 (299) is higher than the total of  Table 2 (294), since 
there are five subjects with information on therapeutic and side effects, but without 
initial severity measurement. 

These tables cover different settings: a cross-classification of  an outcome and a 
baseline variable, the same outcome at subsequent measurement times and a "cross- 
sectional" picture, comprised of  two variables measured simultaneously. 

In Section 2, we first sketch the so-called multivariate logistic models 
(McCullagh and Nelder, 1989; Glonek and McCullagh, 1995). Then we review the 
classical RC association models (Goodman, 1981a) and the marginal association 
model (Dale, 1986; Molenberghs and Lesaffre, 1994). It is indicated that both fami- 
lies can be seen as specific multivariate logistic models. This observation naturally 
leads to the observation that within the multivariate logistic models family, very gen- 
eral association models can be constructed. Tables 1-5 are analyzed in Section 3. 
The psychiatric study calls for extension of  the methodology beyond a single two- 
way classification. This problem is addressed in Section 4. First, it is shown how 
covariates can be included. E.g., if  a cross-classification is made for males and 
females separately, the sex effect in both the marginal responses and the inter- 
actions can be studied. Also, continuous covariates such as age can be incorporated. 
Further, the methodology is not restricted to two-way classifications, as arbitrary 
cross-classifications can be handled as well. Several proposals for three- or higher- 



390 K. Lapp et al. I Computational Statistics & Data Analysis 28 (1998) 387-411 

Table 3 
Psychiatric study: cross-classification of therapeutic effect 
at the second and third occasion. The fitted values are 
in parentheses: the first entry corresponds to the constant 
association Dale model, while the second entry stands for 
the row and column local association model 

Ther. 2 Ther. 3 

1 2 3 4 

1 13 2 0 0 
(11.64) (2.87) (0.49) (0.15) 
(13.06) (1.87) (0.06) (0.01) 

2 37 40 8 4 
(40.46) (39.77) (5.50) (1.39) 
(34.98) (44.28) (7.55) (2.20) 

3 13 58 18 4 
(10.09) (53.94) (23.38) (4.77) 
(15.65) (52.42) (18.49) (6.45) 

4 1 13 36 21 
(2.68) (16.71) (32.52) (21.64) 
(0.32) (14.44) (35.91) (20.34) 

Table 4 
Psychiatric study: cross-classification of side effects at the second and third occasion. The 
fitted values are in parentheses: the first entry corresponds to the row and column effects 
Dale model, while the second entry corresponds to model (2.6) 

Side 2 Side 3 

1 2 3 4 

1 105 14 0 0 
(104.98) (13.84) (0.16) (0.00) 
(105.01) (13.98) (0.01) (0.00) 

2 34 80 7 1 
(33.88) (80.46) (7.27) (0.27) 
(33.63) (79.96) (8.20) (0.22) 

3 2 7 10 2 
(2.09) (7.02) (8.76) (2.91) 
(2.71) (7.14) (7.58) (3.57) 

4 3 1 0 2 
(3.14) (1.01) (0.00) (2.21) 
(2.65) (0.92) (1.21) (1.22) 

dimensional tables are discussed, based on generalizing Dale 's  model and the RC 
model. A cross-classification o f  the therapeutic effect at measurement occasions 2, 3, 
and 4 is used to illustrate that the marginal regression family is able to summarize 
this kind o f  three-way tables in a fairly parsimonious way. Support to this claim is 
given using a few other cross-classifications from the psychiatric study. 

In Section 5 it is indicated how the association models can be embedded in fami- 
lies o f  models, arising as discretizations o f  continuous distributions. A commonly  
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Table 5 
Psychiatric study: cross-classification of side effects and therapeutic effect at the second 
occasion. The fitted values are shown are in parentheses. The first model is the global 
association column effects model. The second global cross-ratio model includes row and 
column effects, as well as interactions. The third set of fitted values corresponds to the 
RC model (row and column effects) 

Side 2 Therapeutic 2 

1 2 3 4 

1 8 40 40 40 
(7.46) (38.32) (44.19) (38.11) 
(8.10) (39.58) (40.41) (39.50) 
(8.91) (38.18) (41.85) (39.05) 

2 7 45 51 25 
(9.73) (45.60) (43.33) (29.09) 
(6.61) (46.37) (49.46) (25.49) 
(6.33) (46.92) (48.99) (25.75) 

3 2 9 8 9 
(1.37) (7.82) (10.39) (8.52) 
(2.22) (7.49) (9.66) (8.64) 
(2.02) (8.12) (8.95) (8.91) 

4 2 1 3 9 
(0.32) (2.15) (4.45) (8.15) 
(2.24) (1.30) (2.52) (8.95) 
(1.74) (1.77) (2.20) (9.29) 

M~e subjects 

1 4 18 12 16 
2 0 9 19 9 
3 0 4 3 4 
4 0 1 1 5 

Female subjects 

1 4 22 28 24 
2 7 36 32 16 
3 2 5 5 5 
4 2 0 2 4 

used argument in favour of RC models is their well-known capability to approx- 
imate discretizations of  the bivariate normal distribution. The model used in this 
context is Goodman's uniform association model (Goodman, 1981a). Elements to 
this discussion are brought forward by Goodman (1981b, 1983) and Becker (1989). 
We indicate that this relationship naturally follows from the results of Holland and 
Wang (1987) on the local dependence function (LDF). Also, a similar correspon- 
dence holds between the marginal global cross-ratio models and the Plackett dis- 
tribution. We argue that the choice between different models should not be made 
on the ground of potential classes of underlying densities, but on the structure of 
associations. The fact that the different models treated here are multivariate logistic 
models gives additional support to this point of view. 
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2. Association models 

We first introduce the necessary notation. Suppose a contingency table arises from 
cross-classifying n subjects w.r.t, two categorical variables Yl and Y2, having I and 
J levels, respectively. It is convenient to introduce both ordinary multinomial cell 
counts 

Z,~* = { 1 if ylr --- i and Y2r = j ,  
0 otherwise, 

as well as their cumulative counterparts 

1 if Ylr < i and Y2r < j,  
Zo'r= 0 otherwise, 

with a subscript r denoting the rth subject. The corresponding probabilities are de- 
fined by #* = pr(Z,~* = 1) and #ig = pr(Z~jr-- 1). This notation will be used to describe 
the association models. Should the probabilities depend on the subject (for exam- 
ple through the introduction of covariate information), then a subscript r will be 
added (#*.~ and #o'r). We will first introduce a general framework, largely due to 
McCullagh and Nelder (1989) and Glonek and McCullagh (1995). Then, the RC 
family of  models (Goodman, 1981a) and the Dale (1986) model are shown to fit 
within this framework, conditional on a slight generalization in the RC case. Finally, 
it is indicated how the modelling framework can be used to combine useful aspects 
of  both subclasses, to yield a very wide and versatile class which in addition allows 
extension to covariates as well as to higher-order tables. 

2.1. Multivariate logistic models 

McCullagh and Nelder (1989) defined a useful class of  generalized linear models, 
by writing the vector link function in terms of  the joint probabilities in the following 
way: 

~/= C T In(L/l* ), (2.1) 

with /~* the vector of  joint probabilities, formed by stacking the #*. The matrix L 
consists solely of zeros and ones, such that L/** contains the probabilities necessary to 
construct the required link functions. Then, contrasts of log-probabilities are equated 
to a vector of  linear predictors r/ using the contrast matrix C. Contrasts of  log- 
probabilities encompass many commonly used links for both marginal probabilities 
and associations. Within this model formulation, the marginal means can be modelled 
via, e.g. baseline-category logits, adjacent category logits, continuation-ratio logits, 
or cumulative logits. The association can be described in terms of, e.g. local or 
global cross-ratios. This means that this formulation applies to binary, ordinal, and 
nominal data. When cumulative logits and/or global cross-ratios are used, the model 
can be expressed directly in terms of  the cumulative probabilities/tij, such that (2.1) 
becomes t /=  CTln(L/O. In this case, L may contain other elements than merely 
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zeros and ones. Alternatively, the connection between #0 and #* (/~ = BF*, for some 
constant matrix B) can be absorbed into the matrix L as well. As counterexamples, 
modelling the marginal distribution via, e.g. the probit or the complementary log- 
log link is excluded from (2.1). One usually requires that /~* and ~/ are in 1-to-1 
relationship. Model (2.1) is called the multivariate logistic transform by Glonek 
and McCullagh (1995). They illustrate its use for both marginal and conditional 
regression models, as well as for mixed marginal-conditional parameterizations. A 
general and flexible class of marginal logistic models of the form (2.1) was studied 
by Lang and Agresti (1994), who allow a many-to-one relationship between F* and 1/ 
since they do not require that the (higher-order) associations are modelled explicitly. 
Examples will be given in the next two sections. 

In the spirit of generalized linear modelling, McCuUagh and Nelder (1989) 
completed (2.1) by 

= X ~ ,  (2.2) 

i.e., by adopting a vector of linear predictors. Here, X is a known design and/or 
covariate matrix and { is a vector of parameters of direct interest. Glonek and 
McCullagh (1995) call the resulting family multivariate logistic regression models. 

When not only regression aspects are of scientific interest, but focus is placed 
on the association structure as well, it is useful to generalize the vector of linear 
predictors (2.2) to the potentially non-linear class 

t / =  C T ln(L/~* ) = g(~) ,  (2.3)  

where g(~) is a known vector-valued function. 

2.2. Goodman's local association models 

Goodman (1981a) defines association models in terms of log local cross-ratios for 
I × J tables. These log cross-ratios are given by 

= ]~ij •i+ 1, j +  1 . = l n ( P r ( Y ,  i, Y 2 = j ) p r ( Y l - - - i + l ,  Y 2 = j + l ) ~  * * 
ln0ij \pr(Yl i, Y 2 = j  + l~p~-(Y~---i+ l--~2---~} = l n  ' * * ' 

~ti, j +  1/Ai+l , j  

with i = 1,...  , I -  1 and j = 1 . . . . .  J -  1. They naturally follow from the following 
closed-form model for the joint cell probabilities: 

• = ~iflje ~'~'v', (2.4) #ij 

( i =  1 . . . .  ,I;  j =  1 , . . . , J ) .  Here, 0~i and /~j are main effect parameters while 2;, vj 
and q~ describe the association structure. Indeed, the local cross-ratios are In 0* = 
~b(2i - 2i+ 1 )(vs - V/+l ). Identifiability constraints have to be imposed on the parameters 
in (2.4). This model is also called the row-column model (RC model). 

Model (2.4) can be seen as a member of (2.3) by setting L and C equal to the 
identity matrix: 1/= In/l* --- 9(~), with g(~) defined by 

go(~) = In ~i + In/~j + 4)J.ivj. (2.5) 
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Due to its third term, the predictor function (2.5) is non-linear. Note that (2.5) is a 
mixture of main effect and association parameters. By setting C equal to the identity 
matrix, the concept of contrasts of log-probabilities is not maintained and thus (2.3) 
is slightly extended. 

An alternative association parameterization is additive in the log cross-ratios: In 
0~ = 6 1 i  ql_ 62j .  This model is induced by the following expression for the cell prob- 
abilities: 

j i = ~iflj~li~'2j. (2.6) 

For this parameterization (2.5) changes to 

gij( ~) = In o~ i 2f_ In flj + j In ~'1i + i In Y2j. (2.7) 

Note that this predictor is of the linear type in In ~i, etc. Fitting algorithms for (2.4) 
and (2.6) can be found in Goodman (1981a). 

Goodman (1981a) generalizes model (2.4) to 

#* =O~ifljexp(~--~k=l ~)k~ki~kj) ' ( 2 . 8 )  

where 21i and 23i are linear functions of the index i and vii and v2j are linear in j .  
The others are allowed to be non-linear. He shows that the log cross-ratios can be 
written as 

* I 1 J lnO,j=rl + rli + q~ + (i~j. (2.9) 

This models allows the inclusion of additive effects on the association. Goodman 
calls it the R + C + R C  model. 

Although the above models provide an elegant description of the association in 
contingency tables, a disadvantage of the RC family is the cumbersome form they 
induce for the marginal distributions. The model presented next is built from the 
marginal probabilities. 

2.3. Dale's marginal models 

Dale (1986) and Molenberghs and Lesaffre (1994, 1997b) define a marginal model 
for ordinal data in terms of marginal cumulative logits and global cross-ratios. The 
cumulative logits 

r/li = logit(pr(Y1 _< i ) ) =  ln(#;j) -- ln(1 - #i J), (2.10) 

r/2j = logit(pr(Y2 _< j ) ) =  In(#0) - ln(1 - #0), (2.11) 

( i =  1 , . . . , I  - 1; j =  1 , . . . , J  - 1), and the global cross-ratios 

In ~k 0 = In (pr(Yl _< i, Y2 _< j)pr(Y1 >i ,  Y2 > j ) )  
\pr(Y~ _< i, Y2 >j)pr(Y~ >i, Y2 <_ j ) J  

= In #ij(1 -- #lj -- #iv -~- #ij) (2.12) 
( # , J  -  ij)(uo - # ,+)  

define the joint probabilities. 
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It is clear from (2.10)-(2.12) that this model is a member of (2.1). For the special 
case of binary data (I= J=2), (2.1) becomes 

where the model is written in terms of the cell probabilities ,u$. Since 

1 0 00 
-1 1 00 
-1 0 10 

1 -1 -1 1 

it is clear that an expression in terms of the cumulative probabilities pjk is immediate. 
Should it be thought reasonable, then local cross-ratios: 

(2.13) 

can be used instead. For the particular case of binary variables, both types of cross- 
ratios coincide. 

For the association (2.12), we will pay particular attention to 

ln $4j = 4 + Pli + P2j + fllic2j, (2.14) 

including a constant association parameter, row and column effects, and interac- 
tions between rows and columns, respectively. This model is identified, e.g. by im- 
posing plr = p2 J = CT~I= c2 J = 0 and gll = 1. Due to the fourth term of (2.14) this 
parameterization is a member of the non-linear family (2.3). It is very similar in 
structure to the local cross-ratios of the R+C+RC model (2.9). Of course, model 
(2.14) is only one of many possibilities, since there is a whole spectrum of possible 
models between independence and constant association on the one hand and a satu- 
rated association model on the other hand. When the number of categories increases, 
it becomes more crucial to look for parsimonious association models in order to 
reduce the number of parameters in the model. To this end, the more flexible class 
(2.3) might be preferable over (2.2). 

Model fitting proceeds, e.g. via Newton-Raphson or Fisher scoring techniques. In 
order to do so, the cumulative cell probabilities need to be computed. First, note 
that p[J = 1. Then, piJ and ,LQ follow from qli and q2j, i.e. Eqs. (2.10) and (2.11) 
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are solved for ]~iJ and I~lj. The other counts follow from 

1 + [#iJ + ]~ij](~ij - -  1) - S o if g~- # 1, 
pij = 2(~j - 1) (2.15) 

]2i j [A lj otherwise, 

where 

= V/J1 + - + u o ) ]  2 + 4 j(1 - Cu)  JUo- 

Molenberghs and Lesaffre (1994, 1997b) show how to extend this class of  
models to more than two variables. They also indicate how to adopt other asso- 
ciation measures, such as marginal correlations, which corresponds to the Bahadur 
(1961) model. Molenberghs (1994) and Lesaffre et al. (1994) provide details on 
maximum likelihood estimation for the two-way and higher-order versions of  the 
model. 

2.4. A general class o f  models 

The models described in Sections 2.2 and 2.3 differ in two respects: 
1. The association in the RC model is in terms of  local cross-ratios, while the Dale 

model is based on global cross-ratios. This difference is not essential, since we 
argued that local cross-ratios can be incorporated in the marginal model without 
problem. 

2. The marginal probabilities of  the RC model are complex functions of the model 
parameters, whereas the Dale model is expressed directly in terms of  the marginal 
logits. 

However, upon generalizing (2.3) slightly, both models are seen as subclasses of 
this flexible family. For both models, linear and non-linear predictors are possible. 
Indeed, for the RC family, (2.7) is linear whereas (2.5) is non-linear. For the Dale 
model, (2.14) is non-linear, but if the fourth term is dropped, it becomes a linear 
predictor. 

The advantage of  this result is that completely general models can be constructed, 
combining and extending interesting aspects of  both the RC and the Dale model. For 
example, a genuine marginal model can be constructed, with an association function 
of  the RC type. Depending on the data problem, one can opt for local or for global 
cross-ratios. Arguably, local cross-ratios are suitable for nominal variables, whereas 
global cross-ratios are a natural choice for cross-classified ordinal variables. 

3. Analysis of examples 

Standard RC and Dale models, fitted to Table 1, are presented in Table 6. The 
Dale model with row effects, column effects, and interactions, provides a good fit. 
This means that no model of  the form (2.2) fits the data and that the full non-linear 
version (2.14) is necessary to achieve a acceptable fit. No RC model, not even the 
R + C + R C  model, fits the data well. 
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Table 6 
Deviance ~2 goodness-of-fit statistics for Dale and RC Models, Fitted to the data in Ta- 
ble 1. The models with an acceptable fit are indicated by an asterisk 

Description Dale RC 

df Z 2 df ~2 

Independence 36 897.52 36 897.52 
Constant association 35 207.23 35 98.19 
Row effects only 30 105.23 30 87.14 
Column effects only 30 100.69 30 80.74 
Row and column effects 25 42.94 25 75.59 
Row, coltmm, interactions 16 "20.11 16 38.09 
Saturated model 0 0.00 0 0.00 

Table 7 
Deviance X z goodness-of-fit statistics for Dale and RC models, fitted to Tables 2-5 (models with an 
acceptable fit are indicated by an asterisk) 

Description Table 2 Table 3 Table 4 Table 5 

df X 2 df X 2 df X 2 df ~2 

Dale models 
Independence 12 "14.20 9 141.95 9 158.15 9 17.12 
Constant association 11 "11.71 8 "11.48 8 18.27 8 17.12 
Row effects only 8 *8.34 6 *3.80 6 14.49 6 *9.78 
Column effects only 9 * 11.37 6 * 10.26 6 * 12.29 6 16.74 
Row and column effects 6 * 8.03 4 * 1.29 4 * 2.05 4 * 9.31 
Row, column, interactions 2 *0.22 1 "0.31 1 *0.35 1 *0.94 
Saturated model 0 0.00 0 *0.00 0 0.00 0 0.00 

RC models 
Independence 12 "14.20 9 141.95 9 158.15 9 17.12 
Constant association 11 "12.04 8 19.46 8 48.66 8 16.71 
Row effects only 8 "8.21 6 12.90 6 18.84 6 "11.69 
Column effects only 9 "11.88 6 14.35 6 45.12 6 15.14 
Row and column effects 6 *2.22 4 "5.16 4 10.48 4 * 1.44 
Saturated model 0 0.00 0 0.00 0 0.00 0 0.00 

Next ,  w e  turn to the psychia t r ic  study. Table  7 summar izes  the deviance  Z2 

goodness-of - f i t  statistics for  the mode l s  fitted to Tables  2 - 5 .  

Table  2 shows  a comple te  lack o f  associat ion.  As  a consequence ,  the independence  

mode l  is accepted  for  bo th  the Dale  and the RC model .  O f  course,  the deviance  for  

the independence  mode l  in bo th  families is exact ly  the same. Initial severi ty  measures  

s y m p t o m s  present  at baseline,  whereas  side effects measures  s y m p t o m s  induced  b y  
the therapy.  Thus,  the independence  mode l  implies that inc idence  and intensi ty o f  
side effects do no t  depend  on  the initial condit ions.  No te  that for  Tables  2 - 5  the 

R + C + R C  m o d e l  is overparamete r ized  and  thus coincides  wi th  the saturated model ,  

w h e n c e  it is not  inc luded in Table  7. 
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Table 8 
Psychiatric study: global cross ratios for the clas- 
sification of side effects at Time 2 versus Time 3 
(Data in Table 4) 

Side 2 Side 3 

1 2 3 

Observed 
1 21 .15  +cx~ +o~ 
2 6.00 31.37 41.74 
3 1.17 6.05 43.17 

Row and column effects 
1 21.07 116.88 760.06 
2 5.70 31.65 205.37 
3 1.20 6.67 43.26 

For Table 3 we find a strong association main effect with the Dale model. The 
constant global cross-ratio is very high: 6 = 6ij = exp(2.52)= 12.43. Note that this 
model corresponds to an underlying Plackett (1965) distribution, as such a distribu- 
tion is characterized by a constant global cross-ratio. The fit improves by 7.68 on 
2 degrees of  freedom if we add a row effect. This model deserves our preference. 
For the RC family, there is certainly a strong constant association effect, but the fit 
is not acceptable at that point. A fully satisfactory fit is provided by the row and 
column association model. 

There is also a clear global association main effect in Table 4. Including this 
parameter improves the fit of  the model dramatically, although adding both row and 
column effects provides a better fit. Associations are shown in Table 8. Some of  
the observed cross-ratios are infinite, due to zero cells in the contingency table. All 
but one associations are high to extremely high. High associations in the upper right 
corner are explained by the fact that side effects over time are of  course highly 
correlated, but also tend to go down, and only rarely go up, showing that the drug 
has a beneficial effect. It is remarkable that no RC model fits the data well, as can 
be learnt from Table 7. In conclusion, a marginal model such as the Dale model 
fits the data better than a model from the RC family. Should one choose to remain 
within the RC family, then a model of  a more elaborate nature, such as the ones 
discussed in Section 5, might be needed. Note, again, that the R + C + R C  model is 
no alternative, since it is overparameterized. Fitting related model (2.6) to Table 5 
yields an acceptable fit: Z2= 6.33 on 4 degrees of  freedom ( P =  0.1760). 

Both Tables 3 and 4 are cross-classifications of  an ordinal variable, recorded at 
two subsequent measurement times. In both cases, a parsimonious global association 
model explains the data well. It seems to be much harder to fit these data with local 
association models. 

For Table 5, the row effects model is the most parsimonious one that provides an 
acceptable fit. One might argue that it is careful to retain the model adding column 
effects and interactions as well. Therefore, fitted frequencies for both models are 
shown in Table 5. Table 9 shows the global cross-ratios for the data of  Table 5, 
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Table 9 
Psychiatric study: global cross ratios for the classifi- 
cation of side effects versus therepautic effect (both 
at the second occasion) 
Side 2 Therapeutic 2 

1 2 3 

Observed 
1 0.97 0.95 0.74 
2 0.61 1.33 2.12 
3 0.41 2.57 4.26 

Column effects only 
1 0.86 0.86 0.86 
2 1.77 1.77 1.77 
3 3.24 3.24 3.24 

Row, column, interaction 
1 0.92 0.86 0.80 
2 0.55 1.55 1.92 
3 0.37 2.17 4.00 

together with the predicted values under both models. We observe two patterns in 
Table 9. First, the association increases along the main diagonal. This means that 
the association between the variables I(SIDE2 < 1) and I(THER2 < 1) is smaller 
than the association between the variables I(SIDE2 < 3) and I(THER2 < 3). Also, 
the association becomes "negative" (i.e. smaller than 1 on the cross-ratio scale) for 
pairs such as I(SIDE2 < 3) and I(THER2 < 1). The RC models, fitted to this table, 
suggest the selection of  the row and column effects model. The fitted model is also 
presented in Table 5. 
All RC models are based on model (2.4). 

In conclusion, the Dale model yields a non-linear association model for Tables 1 
and 5, through the interaction terms in (2.14), which is a very natural association 
model since it is a Dale model analogue of  Goodman's R + C + R C  model, of  which 
the cross-ratios are given by (2.9). For Tables 2-4 ,  simpler association models, 
including at most row and/or column effects, but no interactions, are found to be 
acceptable. The models of  RC type fitted to these data tend to be of  a more complex 
nature, arguably since they model the association through local cross-ratios even 
though the data are ordered categorical. 

4. Extensions 

As mentioned earlier, the psychiatric study recorded more than two outcomes and 
further there is covariate information available. We consider in turn two ways of  
extending the models described sofar. First, we discuss the inclusion of  covariates in 
marginal association models, followed by a generalization to multi-way tables. These 
extensions are members of  the class (2.3). 
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Table 10 
Deviance ~(2 goodness-of-fit statistics for Dale models, fit- 
ted to Table 5 (distinguishing between sex groups). Mod- 
els with an acceptable fit are indicated by an asterisk 

Marginal model Association model df Z 2 

No sex effect Constant 23 39.32 
No sex effect Sex, row 20 *27.76 
No sex effect Sex, row, column 18 *27.30 
Sex effect Constant 21 36.80 
Sex effect Sex effect 20 31.74 
Sex effect Sex, row, column 16 *25.53 
Saturated Saturated 0 0.00 

4.1. Covariates 

The marginal Dale model presented here is flexible in incorporating covariate 
effects. Their influence on the marginal means and on the association can be de- 
scribed in separate ways. For example, age could be found to influence the marginal 
response functions, while the association could be seen to change with sex. We will 
exemplify the possibilities that are brought about by this feature using two covari- 
ates. First, the data presented in Table 5 are split into two sex groups. Secondly, 
we will add the effect of  the continuous covariate age on the responses and on the 
association between responses. 

Let us consider sex first. Selected models, fitted to these data, are presented in 
Table 10. Obviously the marginal regressions are independent of  sex, but we do find 
a sex effect in the association. If we add row effects (but no column effects), the fit 
is satisfactory (P = 0.12). The association structure of this model is 

In ~jr = 1.64 - 0.88SeXr - 1.24I(i = 1 ) - 0.56I(i = 2), 

where ~k/jr is the global cross-ratio, depending on subject r through their sex, and 
I(.)  is the indicator function. The association is stronger for males than for females 
(P = 0.0402). 

Even though Table 5 (split by sex) contains four sampling zeros, no convergence 
problems are encountered and all parameters lie in the interior of  their space. The 
Dale likelihood attains its maximum in the interior of  the parameter space under very 
mild conditions, a feature shared with univariate ordinal logistic regression, which 
it generalizes. First, there must not be a complete separation in the covariate space 
between response groups. A similar condition was derived for the multigroup logistic 
model by Albert and Lesaffre (1986). Secondly, even with zero cell counts, models 
can be constructed for which the MLE lies in the interior of  the space. For example, 
in a 3 x 3  table with cells (1, 1), (1,3), (2,2), (3, 1), and (3,3) equal to zero (with the 
other cells non-zero), a model with global cross-ratio dependent on row and column 
classification, yields finite estimates. Clearly, these properties simplify inclusion of  
continuous covariates, such as age. For 296 subjects out of  299 recorded in Table 5, 
age (in yr) is recorded. Age ranges from 16 to 75 yr, with a mean of 42.2yr (median 
is 40.5 yr). There are 97 distinct age by sex combinations, which yields an average of  



1(. Lapp et al./ Computational Statistics & Data Analysis 28 (1998) 387-411 401 

Table 11 
Backward selection for Dale models, fitted to Table 5 (including sex and age). The number of model 
parameters (Par), the deviance (Dev) of the model are reported. For each model comparison, the 
reference model (Comp), and the corresponding ~2 statistic and P value are reported 

Nr Side 2 Ther. 2 Association Par Dev Comp df Z 2 P 
1 Sex, age Sex, age Sex, age, row, col. 17 1372.50 
2 Age - -  Sex, age, row, col. 14 1375.02 1 3 2.52 0.472 
3 Age - -  Sex, age, row 12 1375.52 2 2 0.50 0.779 
4 Age - -  Age, row 11 1378.99 3 1 3.47 0.063 
5 Age - -  Sex, row 11 1379.01 3 1 3.49 0.062 
6 Age - -  Row 10 1382.65 4 1 3.66 0.056 
6 Age - -  Row 10 1382.65 3 2 7.13 0.028 

about 3 subjects per distinct 4 x 4 table! Thus, we have a generalization o f  a purely 
contingency table analysis to multivariate ordinal regression. Obviously, a saturated 
model is not meaningful here, since the number o f  covariate levels (and hence the 
number o f  cells) increases with the sample size. Derivation of  formal goodness-of- 
fit tools, such as appropriate residuals, requires further research. The most complex 
model we will consider, contains sex and age effects in both the marginal mean 
and in the association and lets the association further depend on row and column 
classification. Clearly, this model could be extended (for example, by means o f  
higher-order effects o f  age and interactions between sex and age). Table 11 reports 
on a backward selection performed to simplify the model. In the final model, the 
marginal logits are simplified such that only SIDE2 depends on age. The association 
is independent o f  the column classification. Although sex and age could be omitted 
from the association when comparing models 4 and 5 with 3, or 6 with 4 and 5, a 
direct comparison of  model 6 (no covariate influence on association) with model 3 
(both age and sex influence the association) is significant at the 5% level. Therefore, 
we prefer model 3. The cumulative logits (2.10) and (2.11) for subject r are 

q~ir = 0.54I(i = 1 ) + 2.63I(i = 2) + 3.75I(i ----- 3) -- O.O19ager, 

t/2jr = - 2 . 6 9 I ( j  = 1 ) - 0 .47I( j  = 2) + 0.95I( j  --- 3), 

and the association structure is 

In ~jr = 2.94 - 0.80sexr - 0.028age r - 1.44I(i = 1 ) - 0.63I(i = 2). 

The logit for side effects decreases with age, implying e.g., that the probability of  
category 1 (no side effects) decreases and the probability of  category 4 (highest 
level o f  side effects) increases with age. The association is stronger for males than 
for females (consistent with Table 10) and decreases with age. 

4.2. M u l t i - w a y  con t ingency  tables  

Molenberghs and Lesaffre (1994) extended the Dale model, originally constructed 
for two response variables, to arbitrary dimensions. This implies that the model is 
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suitable to analyze multi-way contingency tables. Computational details can be found 
in Molenberghs and Lesaffre (1994). We illustrate this technique on the psychiatric 
data set, for a cross-classification of  therapeutic effect at visits 2, 3, and 4. The data 
are presented as a 4 x 4 x 4 contingency table (Table 12). There are 242 patients 
with measurements on all three outcomes. Let the variables Yi, Y2, and Y3 have 
I, J,  and K levels, respectively, and define cumulative three-way probabilities #uk 
( i =  1 , . . . , I ;  j =  1 , . . . , J ;  k = 1 . . . .  ,K),  similar to the definition in Section 2. The 

Table 12 
Psychiatric study: cross-classification of therapeutic effect at the second, third, and fourth occasion. The 
fitted values are in parentheses. The first entry corresponds to Model 1, the second entry corresponds 
to Model 2, the third entry corresponds to the generalized RC model 

Side 4 

Side 2 Side 3 1 2 3 4 

1 11 1 0 
(10.18) (1.19) (0.10) 
(13.75) (2.07) (0.18) 
(10.99) (0.48) (0.00) 

2 0 1 1 
(0.60) (1.46) (0.30) 
(0.89) (1.88) (0.40) 
(1.16) (0.97) (0.02) 

3 0 0 0 
(0.05) (0.18) (0.15) 
(0.08) (0.21) (0.13) 
(0.05) (0.15) (0.07) 

4 0 0 0 
(0.01) (0.03) (0.04) 
(0.02) (0.05) (0.04) 
(0.01) (0.02) (0.03) 

1 33 2 0 
(36.27) (2.92) (0.33) 
(30.39) (3.18) (0.35) 
(32.34) (2.76) (0.00) 

2 13 23 2 
(13.80) (18.28) (2.14) 
(13.03) (16.81) (2.19) 
(16.88) (17.72) (0.73) 

3 1 2 3 
(0.47) (1.84) (1.87) 
(0.44) (1.31) (1.05) 
(1.48) (4.48) (2.39) 

4 0 1 1 
(0.10) (0.30) (0.34) 
(0.10) (0.29) (0.22) 
(0.20) (0.83) (0.99) 

0 
(0.02) 
(0.05) 
(0.00) 

0 
(0.06) 
(O.lO) 
(o.oo) 

o 
(0.06) 
(0.05) 
(O.Ol) 

o 
(0.02) 
(o.o2) 
(0.03) 

o 
(0.08) 
(0.09) 
(o.oo) 

o 
(0.39) 
(0.46) 
(o.oo) 

o 
(0.62) 
(0.40) 
(0.24) 

1 
(0.21) 
(0.11) 
(0.95) 
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Table 12 (contd.) 
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Side 4 

Side 2 Side 3 i 2 3 4 

1 12 1 0 0 
(8.39) (1.04) (0.16) (0.04) 
(7.41) (1.12) (0.17) (0.05) 

(12.59) (1.70) (0.00) (0.00) 

2 25 25 1 1 
(22.86) (24.33) (1.45) (0.27) 
(24.97) (28.79) (2.09) (0.38) 
(19.74) (24.31) (1.48) (0.00) 

3 1 8 5 1 
(1.15) (10.76) (7.30) (1.56) 
(1.33) (9.96) (6.61) (1.64) 
(2.75) (8.61) (4.98) (0.63) 

4 0 3 0 0 
(0.22) (0.83) (1.16) (0.97) 
(0.30) (1.05) (1.02) (0.71) 
(0.43) (1.78) (2.07) (1.91) 

1 l 0 0 0 
(1.96) (0.42) (0.07) (0.02) 
(1.42) (0.36) (0.06) (0.02) 
(0.08) (0.05) (o.oo) (o.oo) 

2 5 6 0 0 
(8.87) (5.58) (0.46) (0.11) 
(8.16) (5.55) (0.44) (O.ll) 
(5.50) (11.75) (2.70) (0.03) 

3 7 18 9 1 
(3.07) (19.88) (7.74) (0.99) 
(3.26) (19.69) (6.67) (0.97) 
(3.82) (13.39) (10.15) (2.78) 

4 0 2 8 6 
(0.51) (3.13) (7.48) (4.78) 
(0.68) (4.42) (7.84) (4.45) 
(0.98) (3.98) (4.37) (3.41) 

model  extends as follows. Apart from three sets o f  marginal parameters, one for each 
measurement  time: 

rhi = logit(pr(Y1 < i ) )  = ln(/~ijr) -- In(1 - ].£iJK), 

qV = logit(pr(Yz _< j ) )  = l n (#o r )  - ln(1 - I~liX), 

q3k = logit(pr(Y3 _< k ) )  = ln(#Hk) -- ln(1 --/~isk) 

(4.16) 

(4.17) 

(4.18) 
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( i =  1 . . . .  , I - 1 ;  j =  1 , . . . , J - I ;  k =  1 , . . . , K - I ) ,  there are also three sets of pairwise 
association parameters: 

In ~112,ij = In pijK(1 - ~I jK - -  ~ iJK q- ]2ijK ) (4.19) 
(~ iaK  - -  ]-lijK )(]-~IjK - -  ]AijK ) ' 

In ~b13,ik = In #igk(1 - #lgk - tAiJK ~- ~ i J k )  (4.20) 
(/*~Je --/~Jk)(/~IJ~ -- ~iJk) ' 

In ~3 jk = In #Ok(1 - -  #tgk --  [.lljK -~- t-lljk) (4.21) 
' ( ~ l J k  - -  ~ l j k ) ( ~ I j K  - -  IAljk) ' 

together with a set of three-way associations (generalized cross-ratios): 

In ff123,ijk = 

In #~j~(#iJK - -  ~ i j e - - 1 2 i J k - ~  ~i jk  ) ( ~ l j K  - -  ~i jK - -  ]-lljk~-IAijk ) (~ l lgk - -  ~iJk - -  ~ljk-Jl-12ijk ) 

(#i jK --  #ijk )(lZiJk - - /~ i jk ) ( /~*yk-- /~ i jk ) (1  - #iJK - t21jK - -  l l lJk ~- ~i jK ~- IAiJk "~ ~l jk  - -  ~ijk )" 

(4.22) 

Clearly, the link functions (4.16)-(4.22) are all expressed in terms of constrasts of 
log-probabilities, and hence fit in (2.1). Molenberghs and Lesaffre (1994, 1997b) 
describe ways to determine the joint probabilities #ijk from the links and to compute 
maximum likelihood estimates. Indeed, the key issue in a marginal model of this 
type is the construction of the joint probabilities. The univariate marginal probabili- 
ties #iJX,  # l j x ,  and #,Jk are easily determined from inverting (4.16)-(4.18), just as 
with (2.10) and (2.11). The pairwise marginal probabilities #ijK, #iJk, and #0k, can 
be written in analogy with (2.15), since links (4.19)-(4.21) have the same form 
as (2.12). Determining the third-order cumulative probabilities #;jk is more difficult. 
Several proposals have been made. Molenberghs and Lesaffre (1994) solve defin- 
ing polynomials to obtain the probabilities as well as their first and second order 
derivatives with respect to the parameters of interest to construct the multinomial 
log-likelihood, the score equations, and the Hessian matrix, respectively. Lang and 
Agresti (1994) solved so-called constrained equations and Glonek and McCullagh 
(1995) used a Newton iteration scheme. Both authors use a version of the Newton- 
Raphson iteration procedure to maximize the likelihood. Finally, Molenberghs and 
Lesaffre (1997b) adapted the iterative proportional fitting algorithm (Deming and 
Stephan, 1940), typically used to fit log-linear models (which are defined in terms 
of conditional probabilities) to the current marginal setting. Fitzmaurice and Laird 
(1993) used the iterative proportional fitting algorithm to determine the probabilities 
in their mixed marginal-conditional model. 

To illustrate the model, let us analyze the three therapeutic effect measurements. 
Model 1 assumes the marginal logits (4.16)-(4.18) are independent of covariate 
effects, yielding nine marginal parameters. Each of the association parameters ~ in 
(4.19)-(4.22) is assumed independent of covariate effects as well as of the category 
indicators i, j ,  and k, yielding three pairwise and one three-way association para- 
meters. This brings the total number of parameters to 13. Marginal parameter 
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estimates (standard errors in parentheses) are 

qll = -2.76(0.27), 

q~2 = -0.45(0.13), 

q13 = 1.00(0.15), 

q 2 t  = - 1 . 0 4 ( 0 . 1 4 ) ,  

q22 = 0.75(0.13), 

~23 = 2.40(0.22), 

/~31 = -0.21(0.13), 

q32 = 1.58(0.17), 

~33 = 3.12(0.32). 

The constant global cross-ratios are 612 = 612,ij = exp(2.58)= 13.18(3.08) for the first 

and the second outcome, ~13 ~---1~13,/k =exp(1 .38)=3.99(0 .89)  for the first and the 

third outcome, and ~23 = ~23,jk = exp(3.08)=21.76(5.74) for the second and the third 

outcome. The three-way interaction, 61z3 =6L23,ijk=exp(0"18) = 1.19(0.66), is not 
significantly different from 1. Fitted frequencies are given in Table 12. 

The overall deviance goodness-of-fit statistic is 37.13 on 50 degrees of freedom 
(P = 0.9115). Inspecting standardized residuals, 62 out of  64 are less than 2 in ab- 
solute value, the remaining ones being 2.24 and 2.39. Thus, model fit is acceptable, 
but one might want to simplify the model further. We will in turn simplify the 
marginal and association structures. First, the three sets of  logits reveal an increase 
over time, suggesting an improving response to therapy. A simpler model would as- 
sume: r/l~ = cti, r/2j = ~j + rc2, and q3k = ctk + r~3 (i, j ,  k = 1,2, 3 ). We interpret ~z, ~2, and 
~3 as cut-off points at the first occasion and n2 and 7c 3 as "proportional" shift parame- 
ters at occasions 2 and 3 respectively. Secondly, one might argue that the association 
between outcomes is mainly a function of  the time lag between the outcomes, but 
not so much of  the measurement times themselves. This is supported by the fact that 
In ff12 and 1n~23 are roughly the same (given their standard errors of  about 0.24), 
with In ~k13 approximately half of  the other association. Should one grant belief to 
this assumption, then an association model of  the form 7 = In I//12 = 0.5 In I]/13 = In ~23 
might be considered. The multiplier 0.5 for 1n~13 is suggested by the data and 
has limited empirical or theoretical support. Alternatively, one could estimate this 
parameter from the data. Thirdly, the three-way interaction can be set to zero. There 
are six parameters in total. 

Parameter estimates (standard errors) for this model are &1=-2.41(0.17) ,  
&2=-0.52(0.12) ,  c23=1.02(0.14) for the cut-off points, with time shifts ~2--- 
1.32(0.11) for the second period and ~3 =2.17(0.16) for the third period. The single 
association parameter is equal to ~ =2.81(0.17), resulting in ~12 = ~3 = 16.56(2.77) 
and ~ 1 3 - - - ~  =4.07(0.34). Fitted frequencies are given in Table 12. This model 
has a deviance of  43.67 on 57 degrees of  freedom (P = 0.9029), and again only two 
standardized residuals are larger than 2 (being 2.07 and 2.70), showing that there is 
some support in the data for the assumed model. Finally, comparing Models 1 and 
2 yields a deviance of  6.54 on 7 degrees of  freedom (P = 0.4782), indicating that 
the first and more complex model is not necessary. 

A similar model is obtained from the analysis of  side effects at times 2, 3, and 
4. Analyzing initial severity, side effects at time 2, and therapeutic effect at time 
2, yields a satisfactory model with only constant association. No details on these 
models are included. These results are promising since they support the thesis that 
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for a range of ordinal data applications, parsimonious marginal global cross-ratio 
models are sufficient to describe the data. 

In case nominal data are to be analyzed, then the model can be adapted to cell 
probabilities * #ijk. This would mean that Eqs. (4.16)-(4.22) have to be changed in 
the spirit of  (2.13). In particular, the global cross-ratios might have to be replaced 
by their local counterparts. 

In addition to the extensions studied so far, it is possible to extend the RC model 
to more than two dimensions. One option is to extend model (2.4) by defining 

IAij* = ct i f l j  T k e  4"~'vj°)k (4.23) 

with obvious notation. Of course, the marginal pairwise local odds ratio for a pair 
( i , j )  has a very complicated form and (2.4) is not a submodel of (4.23) in the sense 
that the interpretation of the parameters will change in passing from a bivariate 
to a trivariate model. The conditional pairwise odds ratio on the other hand is 
ln0~l k = ~btok(2i - 2 i+l ) (V j  - -  V j + l ) ,  where co~ can be considered as an adjustment 
for the category conditioned upon. The three-way odds ratio is similar in structure 
to the two-way odds ratio of  the bivariate model (2.4). 

Fitting model (4.23) to the trivariate therapeutic data of Table 12 yields a 
deviance of  67.96 on 47 degrees of  freedom (P=0.0243) ,  indicating that the fit 
is not satisfactory. Fitted frequencies are displayed in Table 12. One could consider 
more elaborate alternatives, such as trivariate versions of  the R + C + R C  model (2.8). 
However, as indicated earlier, for this kind of data, the marginal model defined in 
terms of  cumulative probabilities seems to be more promising, since it yields very 
parsimonious descriptions of  the association structure. 

An alternative fashion to extend (2.4) would start from three pairwise marginal 
RC models: 

* .(12) o(12) .,b(12)2(12)v(12) 
~ i j+  = (Li Pj  e~ ~ J , 

* _ (13) (13) d)(13)2(13)z(13) 
l - t i+k=c x i  Yk e ~  ~ k , 

* __ [~ (23),~)(23) ~q~(23) V123)Z~23) 
IA+jk - -  I"j I k  ~ " 

(4.24) 

(4.25) 

(4.26) 

(i = 1 , . . . , I ;  j = 1 , . . . , J ;  k = 1 , . . . ,K) .  In order for (4.24)-(4.26) to define a valid 
probability mass function Pijk,* complicated restrictions must be satisfied. Indeed, 
summing (4.24) over j and (4.25) over k yields I restrictions: 

d K 
(X(12) ~--', ,,(12~ ~"2).~(mv(m (13~ a,03).03) ,3) 

p )  " e "  i j = o~} 13) Z '~,~ "e" ~, ~' 

j = l  k = l  

(i = 1,... , I) ,  with similarly J and K restrictions for the other two marginals. The 
reason is that the parameters in the RC models are not marginal and hence are not 
reproducible in the sense of Liang et al. (1992). 
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5. Relation to latent continuous densities 

Several publications are devoted to the comparison of local and global association 
models. Important references are Goodman (1981b), Mardia (1970), Dale (1984) 
and Becker (1989). An argument, often used to claim superiority of local over 
global association models, is the close relationship between Goodman's UM model 
and discretizations of the bivariate normal distribution (Goodman, 1981b; Becker, 
1989). Also, their close connection with log-linear modelling is brought forward as 
an argument in favour. 

Holland and Wang (1987) introduced the local dependence function (LDF) of a 
bivariate continuous density function f as an analog to the local cross-ratios for 
contingency tables (Yule and Kendall, 1950). The probability of a rectangular cell 
around (x,y) with edges dx and dy is approximated by f (x ,y)dxdy.  For cells 
around (x, y), (x, v), (u, y) and (u, v), the log local cross-ratio is given by 

O(x, y; u, v) = In ( f(x, y)f(u, v)'] 
\ f ( x ,  v)f(u, y),]" 

The local dependence function (LDF) at (x, y) is defined as 

7f(x, y) = lim O(x, y; x + dx, y + dy) 0 2 
dx---*0.dy---*0 dx dy - t3xO~ In f(x, y). (5.27) 

Holland and Wang (1987) show that a bivariate density is characterized by its LDF 
and its two marginal densities. Further, a bivariate normal is characterized by a 
constant LDF and two normal marginal densities. Precise statements and proofs are 
found in Holland and Wang (1987). 

The LDF of a normal density with correlation p is equal to ~b = p/(1 _p2). Exactly 
this quantity, together with appropriately chosen scores ei, flj, 2i and vj, are used 
by Becker (1989) to approximate the discretized normal by model (2.4). Note that 
a special version of the RC model, i.e. the UM model, implies a constant local 
cross-ratio. It can be observed from Wang (1987), who provides an alternative way 
of computing normal probabilities, that the local association model introduced by 
(2.4) and the bivariate normal go naturally together. This explains why the local 
association models fit far better the discretized normal than do global cross-ratio 
models. In general, local association models correspond to bivariate densities via the 
LDF. 

An analogous relationship holds between the Dale model and the Plackett distri- 
bution (Plackett, 1965; Mardia, 1970). Indeed, if the global cross-ratio is constant 
(or in particular zero) throughout a contingency table, then it corresponds to a bi- 
variate Plackett distribution (constant "Yulean association"). This was the case for 
the global association models, selected in the case of Tables 2 and 3. 

However, we observed that model construction is restricted to neither a constant 
local association, nor a constant global association. Within the family (2.3), one can 
even consider non-linear association models. In particular, we considered various 
types of row and column effects, together with interactions. This suggests that the 
normal distribution and the Plackett distribution are not the only ones of interest as 
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Local Cross Ratios 
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Local Cross Ratios 

¢P 
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Global Cross Ratios Global Cross Ratios 

- / . / -  

Fig. 1. 

continuous distributions, underlying a contingency table. Different forms for the local 
and global cross-ratios correspond to different distributions. 

The correspondence between contingency tables and distribution functions in the 
Dale model case is very easy. The definition of  the distribution is found by the con- 
tinuous version of  (2.15), of  which the explicit form is straightforward. A continuous 
version of  (2.14) would include linear (and quadratic) terms in x and y, together 
with an interaction term. 

Let us turn attention again to Goodman's R + C + R C  model (2.8). To construct 
a continuous density having a similar association structure, we first select a local 
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dependence function of the form 

7(~; x, y) = ~bl + dpzfz(x) + ¢~303(Y) q- ~4f4(x)g4(y), (5.28) 

where fk and gk are integrable functions. Molenberghs and Lesaffre (1997a) show 
how the corresponding density can be approximated. The RC model is found by 
setting all terms, except those with subscript 4, equal to zero. 

The models, fitted to Table 1, can be seen as extensions of both an underlying 
normal and an underlying Plackett distribution. The choice between different models 
should not be made on the ground of potential classes of underlying densities, but 
on the shape (structure) of associations. Fig. 1 presents local and global cross-ratios 
found from the fitted values of both the RC+R+C model and the global cross-ratio 
model with row and column effects, as well as interactions. Obviously, there is little 
pattern in the local cross-ratios, whereas the global cross-ratios show a clear tendency: 
all associations are high, with an increase if the dichotomy is constructed closer to the 
categories with low labels, being highest between the variables/(Father's status < 1 ) 
and/(Child 's  status < 1). This implies that social mobility increases with increasing 
category. There is also slight evidence that the association surface is symmetric, 
which would then correspond to a global cross-ratio distribution with symmetric 
global cross-ratio function, such as a symmetric second degree polynomial. 

6. Concluding remarks 

In this paper we presented association models for cross-classified data that belong 
to the unified multivariate logistic framework, described by McCullagh and Nelder 
(1989) and Glonek and McCullagh (1995). This family provides a versatile way of 
exploring the association structure of cross-classified data. It encompasses both local 
and global measures of association, with emphasis on cross-ratios, since log cross- 
ratios can be written as contrasts of log-probabilities. Both fully marginal models, 
such as the Dale model and its multivariate extensions, as models with a conditional 
flavour, such as Goodman's (1981a) RC model, are members of this family. Further, 
linear as well as non-linear link functions (e.g., involving interactions between row 
and column effects) link functions fit within this family. 

We argue that, in spite of the close connection between an RC model and an 
underlying normal density and the absence of this connection with a fully marginal 
model, this last category of models provides a versatile way of exploring the associa- 
tion structure of cross-classified data, whether of nominal or of ordinal type. We infer 
from the examples that they often yield parsimonious descriptions of the association 
structure. Further, marginal association models are easily extended to marginal regres- 
sion models to include covariate effects. Extensions to multi-way tables are possible, 
both with the RC as well as with the marginal family. 

Both Dale (1984) and Anscombe (1981) suggest the use of global cross-ratios as 
soon as the outcomes are recorded as ordinal variables. We have shown in Sections 
3 and 4.2 that this choice is supported by a very good fit for this kind of models 
to a range of  applications. Further, we claim that the global cross-ratio can lead to 
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interesting interpretations of the association structure itself, which we think is an 
often neglected aspect of data analysis. 

An argument, in favour of RC models, is their computational simplicity. How- 
ever, with the current state of high-quality statistical software, fitting marginal global 
association models poses no problems. In particular, we encountered no conver- 
gence problems. The calculations, necessary to carry out the fitting procedures for 
both types of models were performed with the statistical software packages GAUSS 
(Aptech, Inc.) and SPLUS (StatSci Division, MathSoft, Inc.). 
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