[bookmark: _GoBack]Towards Better Road Safety Management: Lessons Learned from Inter-national Benchmarking

Yongjun Shen1,2, Elke Hermans2, Qiong Bao1, Tom Brijs2, Geert Wets2

1School of Transportation, Southeast University
Sipailou 2, 210096 Nanjing, China
shenyongjun@seu.edu.cn; baoqiong@seu.edu.cn
2Transportation Research Institute (IMOB), Hasselt University
Wetenschapspark 5 bus 6, 3590 Diepenbeek, Belgium
elke.hermans@uhasselt.be; tom.brijs@uhasselt.be; geert.wets@uhasselt.be

Abstract 
Inter-national benchmarking of road safety, with the purpose of achieving continuous improvement by learning lessons from existing best practices, has currently been widely encouraged by most countries as an emerging management tool to improve the level of road safety. However, performing a successful road safety benchmarking practice is by no means easy. Challenges exist from ascertaining the benchmarking framework at the very beginning to making final policy decisions. In this study, based on the identification of leading road safety risk factors, a comprehensive set of hierarchically structured safety performance indicators was developed, some necessary data processing procedures were conducted, and the use of data envelopment analysis (DEA) for composite indicator (CI) construction was elaborated. An interval multiple layer DEA-based CI model was proposed to take both the hierarchical structure of the indicators and the data uncertainty into account, and was used to benchmark road safety performance for a set of European countries. Based on the model output, best-performing and underperforming countries were distinguished and all the countries were further ranked by computing their cross-index score. Moreover, by taking the characteristics of each country in the data set into account, country-specific benchmarks for those underperforming countries were identified, and useful insight in the areas of underperformance in each country was gained. Meanwhile, by summarizing the risk aspects that need urgent policy action for all these countries, some specific road safety enhancing recommendations for this region as a whole were formulated.
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1. INTRODUCTION
The road traffic crashes and consequent injuries and fatalities, traditionally viewed as random ‘accidents’, have been increasingly recognized as a preventable public health problem (Li et al., 2017; Wang et al., 2018; Gu et al., 2019). Given the fact that more and more countries are currently taking great efforts to improve their road safety situation (World Health Organization, 2018), there is a growing need for a country to evaluate its own road safety performance and to compare it with that of other countries. As a consequence, inter-national benchmarking of road safety, with the purpose of achieving continuous improvement by learning lessons from existing best practices, has currently been widely advocated by most countries and international bodies as a useful management tool to improve the level of road safety. Taking the European Union (EU) as an example, the European Commission has claimed that “the establishment of a structured and coherent cooperation framework which draws on best practices across the Member States, [i]s a necessary condition to implement in an effective manner the road safety policy orientations 2011-2020.” (European Commission 2010).
So far, most of the road safety benchmarking studies focus on road safety final outcomes, i.e., road fatalities, with the purpose of country ranking and target setting (e.g., Shen et al., 2012; Bastos et al., 2015), which is also known as road safety outcome benchmarking. However, setting targets in terms of road fatalities does not guarantee their achievement. Road safety policy makers aiming at a lower number of road fatalities need to take into account as many factors influencing safety as possible or, at least, those factors they are able to manage or control. To this end, a second type of benchmarking component, i.e., road safety performance benchmarking, which is used to compare human-vehicle-infrastructure performance between countries, has been receiving more and more policy attention over the last decade (see e.g., Bax et al., 2012). In doing so, safety performance indicators (SPIs), defined as any measurement that is causally related to the number of crashes or to the injury consequences of a crash, are widely investigated in current road safety studies (e.g., Yannis et al., 2013, Tesic et al., 2018). 
Today, having recognized the complex nature of road safety problems, a large number of factors involved in road safety development have been identified, and more and more SPIs are developed for inter-national comparisons of road safety performance (e.g., Gitelman et al., 2010; Bax et al., 2012; Yannis et al., 2013; Gomes et al., 2018). Knowledge on these indicators is valuable in understanding the processes that lead to crashes and injuries, in identifying corresponding interventions, and in monitoring the effectiveness of the safety actions that are taken. However, since a number of indicators can be used to represent a particular risk factor, it is unrealistic to examine the gaps in performance by making a comparison of each indicator. Alternatively, a composite road safety indicator, which combines separate indicators into an overall index, is valuable to be computed for the purpose of meaningful benchmarking.
Over the last decade, some research efforts towards a road safety index have been devoted, such as Al-Haji (2007), Hermans et al. (2008), Wegman et al. (2008), Gitelman et al. (2010), Bax et al. (2012), Shen et al. (2015), and Tesic et al. (2018). Generally speaking, one of the difficulties to develop a road safety index lies in data collection and processing. In order to compute an index score, the availability of high quality data influences to a large extent the final selection of indicators on the one hand and the usefulness of the resulted index on the other. Given the high number of potential SPIs, a large data set has to be collected, and a number of data errors are to be expected in spite of careful study design, conduct, and error-prevention strategies, such as missing values. As a result, necessary data processing procedures are required in order to identify and correct these errors or at least minimize their impact on the following benchmarking analysis. Moreover, from the methodological point of view, to combine individual road safety indicators into an overall index score, both objective approaches (e.g., factor analysis and principal component analysis) and subjective approaches (e.g., budget allocation and analytical hierarchy process) were attempted in the aforementioned studies. A common point among these approaches is that they all assign the same indicator weights for all the countries under consideration. It indeed makes the direct comparison among countries possible. However, in such a way, country-specific characteristics are not fully taken into account. In other words, the importance level of each indicator in different countries cannot be reflected, which makes it difficult to examine the root causes of poor performance in each country. 
In this study, we demonstrate the implementation of road safety performance benchmarking for a selected set of European countries. In doing so, an appropriate selection of road safety indicators, a harmonized data collection and processing procedure, and a scientifically sound methodology are indispensable. They are the fundamental conditions of making meaningful comparisons between countries, and also the key to designing more effective safety policies. More specifically, based on the identification of leading road safety risk factors, a comprehensive set of hierarchically structured SPIs is developed first in order to capture the entire road safety risk of a country, and various international data sources providing indicator values for a large set of countries are consulted. Next, as necessary data processing procedures, potential outliers in the data set are examined by means of univariate and multivariate analyses, and those outlying observations that are identified as erroneous are removed from the data set. Subsequently, missing values are imputed by using the technique of multiple imputation. Two types of complete data set are then generated. One is to replace all the missing values by the mean imputed values. Alternatively, by taking one step further, a range of values that constitutes a certain confidence interval around the imputed mean is derived, and the missing values are then replaced by an interval within which the true values are believed to lie.
Having obtained the complete data set(s), the next step is to construct a road safety performance index for cross-country comparison. In this study, a non-parametric optimization technique named data envelopment analysis (DEA) - originally developed to measure the so-called relative efficiency of a homogeneous set of decision making units (DMUs) (Charnes et al., 1978) and lately also received considerable attention in the construction of CIs (see e.g., Cherchye et al. (2007, 2008), Shen et al. (2014)) - is investigated. In transportation research, DEA has been widely applied for efficiency and productivity analysis with respect to road network, transit, airport and air service (see e.g., Chen et al. (2013), Álvarez and Blazquez (2014), Wanke et al. (2016), Wu et al. (2016)), and several initial research of using DEA for CI construction in this field has also been carried out, such as Hermans et al. (2008), Babaee et al. (2014) and Shen (2018). Generally speaking, the most attractive feature of DEA, relative to the other methods in developing CIs for country comparison is that, each country obtains its own best possible indicator weights, i.e., the weights resulting in the highest index score for a country. This implies that dimensions on which the country performs relatively well get a higher weight. In this way, key problems on road safety can be identified for each country separately. More importantly, DEA assesses the relative performance of a particular country by taking the performance of all other countries into account, and the final index score is measured with respect to the best observed performance, which is different from other statistical techniques (e.g., multiple regression) that are based on either the average observed or some predetermined performance. As a result, valuable insights into the sources of underperformance can be gained and country specific benchmarks can be identified. 
However, to apply DEA for this study, the basic model cannot be used directly because it simply treats all the indicators to be in the same layer and thus the information on their hierarchical structure is totally ignored. Therefore, extension of the basic DEA model into a multilayer one for CI construction, which can take the layered hierarchy of the indicators into account, is crucial for the success of this benchmarking study. Moreover, by performing multiple imputation to deal with missing data in this study, both mean imputed values and imputed data intervals are computed. To apply DEA for both of the data sets, especially for the latter one, which consists of both observed data and imputed data intervals, a new model has to be developed, as a complete and crisp data set is normally the prerequisite for the DEA implementation.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The remaining of this paper is organized as follows. In Section 2, we briefly introduce the currently available national SPIs based on the identification of various risk factors in road transport. Their hierarchical structure is then established, and corresponding data collected. Next, some necessary data processing procedures, including statistical outlier detection and missing data treatment, are elaborated in Section 3 with a view to the following index construction. In Section 4, we focus on the usage of DEA for CI construction in general and the realization of an interval multiple layer DEA-based CI model in particular. In Section 5, we apply the proposed model to combine all the hierarchical SPIs, using both the mean imputed values and the imputed data intervals. Model outputs and corresponding road safety enhancing recommendations are subsequently presented. The paper ends with discussion and concluding remarks in Section 6.
[bookmark: _Toc324499635]2. SAFETY PERFORMANCE INDICATORS AND AVAILABLE DATA
Road safety problems have traditionally been viewed as the result of malfunctions in the road transport system, which consists of three main components, i.e., the road user, the vehicle and the road (World Health Organization, 2004). Each crash is in most cases a direct consequence of failure in one or several of these three factors who influence each other (see Figure 1). 
--------------------------------
Insert Figure 1 about here
--------------------------------
As a result, the European Transport Safety Council (2001) recommended the development of SPIs related to road user behavior, vehicle, and road. In addition, trauma management, or emergency medical services (EMS) in particular, which is concerned with the medical treatment of injuries resulting from road crashes, was also highlighted in the report due to its significant influence on post-crash injury outcomes, and it constitutes the factor of infrastructure together with the road in this paper (see Section 2.3). On the basis of this report, the European SafetyNet project (Hakkert et al., 2007) provided a methodological basis for indicator development, and Hermans (2009) further summarized from literature eight criteria for indicator selection, which are: relevant, measurable, understandable, data available, reliable, comparable, specific, and sensitive. 
In Europe, several initiatives and research studies have been implemented in order to assess the road safety performance across the EU, such as the DaCoTA project (Thomas et al., 2013). Data are available in a number of European institutions and databases such as International Road Traffic and Accidents Database (IRTAD), European Transport Safety Council (ETSC), Eurostat, and European Road Federation (ERF). The inter-national best practice reviews (European Transport Safety Council, 2001) indicated that despite some differences in levels of motorization, the road safety problems in most Member States have many similarities. A number of common road safety risk factors are therefore designated as central to road safety activities in Europe and are selected for the development of SPIs as well. 
In this study, to develop a comprehensive set of safety performance indicators for inter-national road safety performance benchmarking, three main components of the road transport system, i.e., road user behavior, vehicle and infrastructure, are considered, and six risk factors on the basis of these three components are identified. They are alcohol, speed, protective systems, vehicle, road, and emergency medical services. Totally, 32 currently available SPIs representing the characteristics of each of these six risk factors are specified, and they constitute a multilayer hierarchical structure as presented in Figure 2. In addition to the formulation of SPIs, indicator data are collected (or calculated) for 28 European countries from a wide range of international data sources (see Table 1). 
-----------------------------------------------
Insert Figure 2 and Table 1 about here
-----------------------------------------------
Generally speaking, the indicators developed for most of the risk factors are extensive and comprehensive based on our current knowledge, except for the factor of road, in which only two proxy indicators currently available to reflect the road performance of a country were selected. Regarding the indicator data, especially for alcohol, speed, and EMS, reliable and comparable values are still lacking to a certain extent. Taking EMS as an example, only four countries (i.e., Belgium, Estonia, Germany, and Latvia) have provided complete data on these eight EMS indicators. With respect to the other countries, various levels of missing data exist. In addition, it should be noted that these data were collected from questionnaire surveys, which may produce considerable response bias due to for instance different definitions about some concepts in different countries. Data examination is therefore essential to determining their rationality and usefulness. In the following sections, some necessary data processing procedures are therefore conducted before the further analyses can be implemented.
[bookmark: _Toc324499647]3. DATA PROCESSING
Given the high number of risk factors and corresponding SPIs, a large data set has to be collected, and a number of data errors are to be expected in spite of careful study design, conduct, and error-prevention strategies. In this study, apart from using the 3-year average of the data for most of the SPIs, two more data processing procedures, i.e., statistical outlier detection and missing data treatment, are performed with the intention to identify and correct these errors or at least minimize their impact on the following benchmarking analysis. 
[bookmark: _Toc324499648]3.1. Outlier detection
In any data analysis, one of the first steps is the detection of outlaying observations, or outliers. Hawkins (1980) defines an outlier as an observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism. Often, detected outliers are candidates for aberrant data that may otherwise adversely lead to model misspecification, biased parameter estimation and incorrect results. It is therefore important to identify them prior to modeling and analysis (Liu et al., 2004). Over the last decades, a large number of outlier detection methods have been proposed, and one fundamental taxonomy is between univariate methods and multivariate methods (Ben-Gal, 2005). Both of them are briefly introduced in the following sections, along with the applications for this study.
3.1.1. Univariate methods





Most univariate analyses for outlier detection rely on the assumption of an underlying known distribution of the data, which is assumed to be identically and independently distributed. A central assumption in statistical-based univariate methods for outlier detection is a generating model that allows a small number of observations to be randomly sampled from distributions , differing from the target distribution F, which is often taken to be a normal distribution  (Barnett and Lewis, 1994). The outlier detection problem is then translated to the problem of identifying those observations that lie in a so-called outlier region. This leads to the following definition (Davies and Gather, 1993): For any confidence coefficient , the -outlier region of the  distribution is defined by 
	

	(1)




where zq is the q quintile of the N(0,1). A number x is an -outlier with respect to F if .
Based on this principle, one simple way to identify univariate outliers in practice is to convert all of the values for a variable i to standard scores (or z-scores) as follows:
	

	(2)



where  denotes the sample mean, and sd the sample standard deviation. A case is generally considered as an outlier if its z-score exceeds 3.0 in absolute value (Schiffler, 1988).
To detect univariate outliers for this study, each of the 32 SPIs is standardized using Eq. (2). We thus obtain the z-scores of each country’s indicator values. Five univariate outliers related to vehicle and EMS indicators are detected for four different countries with an absolute z-score higher than 3.0 (see Table 2).
------------------------------
Insert Table 2 about here
------------------------------
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]By checking the raw data set in Table 1, these indicator values are either extremely higher or greatly lower than others. Taking the EMS medical staff per 10,000 citizens in Austria as an example, a relatively high indicator value (51.32) was responded by Austria in the questionnaire survey conducted within the European SafetyNet project, while the average value of this indicator responded by all the other countries was only 4.83. Given the fact that the data were collected from a questionnaire survey, it could probably happen due to misunderstanding or a different definition of EMS medical staff in Austria. The same goes to the EMS transportation units per 100 km of road length in Austria and the percentage of high-equipped transportation units in United Kingdom. As a consequence, these three indicator values are omitted and treated as missing values in the following analysis. 
However, with regard to the remaining two data, i.e., the annual renewal rate of passenger cars in Luxemburg, and the average percentage occupant protection score for new cars in Romania, by checking the raw data in the corresponding data sources as well as by consulting with the experts in this field, we believe that they are the true values for these two countries, although they are statistically potential outliers. Therefore, it is reasonable to keep them in the data set. 
3.1.2. Multivariate methods
In many cases multivariable observations cannot be detected as outliers when each variable is considered independently. Specifically, for a number of variables, the value for any of the individual variables may not be a univariate outlier, but, in combination with other variables, is a case that occurs very rarely. It is therefore called a multivariate outlier. Detection of such kind of outliers is only possible when multivariate analysis is performed, and the interactions among different variables are compared within the class of data.

As traditional multivariate outlier detection procedures, statistical methods often indicate those observations that are located relatively far from the center of the data distribution. Several distance measures can be implemented for such a task. The Mahalanobis distance is a well-known criterion which indicates the distance between a set of scores for an individual observation and the sample means for all variables. It is used as a diagnostic to assess for multivariate nonnormality (Ben-Gal, 2005). Given n observations from a p-dimensional data set, denote the sample mean vector by  and the sample covariance matrix by Vn, where
	

	(3)



The squared Mahalanobis distance for each multivariate data point i, i=1, …, n, denoted by , is given as below:
	

	(4)




Since  follows a chi-square distribution with degrees of freedom equal to the number of variables included in the calculation, a case would likely be a multivariate outlier if a significant  score is obtained (at the p<0.001 level) (Peat and Bartion, 2005).

In this study, multivariate analysis is also performed to the 32 SPIs. Rather than examining each individual indicator, here, the SPIs in each category, such as the two alcohol indicators, the three indicators related to the mean speed, and so on, are considered simultaneously, and the probability for the Mahalanobis  of these grouped indicators for each country is calculated in SPSS 25.0. We find that Cyprus has an unusual combination of its six indicator values corresponding to the technical scores of new passenger cars (with a probability of 0.0006), resulting in its designation as multivariate outlier. By checking the data source we consulted for these six indicators, it is found that Cyprus was the only country with a proportion of non-tested cars representing more than 50% of the new cars sold in 2008, which well interprets the generation of these unusual, or rather, erroneous observations for this country. As a consequence, we decide to exclude these six indicator values for Cyprus from the following data analysis.
[bookmark: _Toc324499651]3.2. Missing data treatment
To take as many of the available indicator information into account for road safety index research, a certain risk in the form of missing values is always present as no data collection system grants perfect data sets. Moreover, detecting and removing univariate and multivariate outliers from the original data set leads up to more missing values. The overall situation of missing data for this study is summarized in Figure 3.
--------------------------------
Insert Figure 3 about here
--------------------------------
As can be seen, there are only 8 out of 32 SPIs for which all 28 countries have data, and no single country has values for the whole set of SPIs. Totally, around 23% of the indicator values are missing in the data set. Therefore, prior to the analysis, we have to decide whether to leave cases with missing data out of the analysis, or to replace the blank information by imputed values, as complete data matrices are in most cases the prerequisite of performing classical analyses. 
3.2.1. Multiple imputation
During the last decades, various methods have been developed for handling missingness. The literature on the treatment of missing data is extensive and still in rapid development. Amongst others, performing data imputation – defined as the process by which missing values in a data set are estimated by appropriately computed values, thereby producing a complete data set (Rubin, 1987) – is currently the most commonly used strategy to deal with missing data. See also Howell (2008); Jiang and Gruenwald (2008); Wang and Wang (2009); Silva-Ramírez et al. (2011), Li et al. (2018) and their references.
[bookmark: OLE_LINK7][bookmark: OLE_LINK10]Over the past decades, a variety of imputation approaches have been proposed ranging from extremely simple to rather complex, such as unconditional mean imputation, regression imputation, hot deck imputation, decision trees imputation, clustering imputation, and neural networks imputation. All of them are known as single imputation, i.e., each missing value in a data set is replaced with one imputed value. If the simplicity is its main appeal, an important limitation of these methods is that subsequent analyses would fail to account for missing data uncertainty. To solve this problem, Rubin (1987) has developed the paradigm of multiple imputation. Instead of filling in a single value for each missing value, a multiple imputation procedure replaces each missing value with a list of simulated values that represent the uncertainty about the right value to impute. 

Substituting the jth element of each list for the corresponding missing value, , produces N plausible alternative versions of the complete data. Each of the N data sets is then analyzed by using standard procedures for complete data and the results from these analyses are then combined. Multiple imputation retains much of the attractiveness of single imputation. However, it does not attempt to estimate each missing value through simulated values but rather to represent a random sample of the missing values. This process results in valid statistical inferences that properly reflect the uncertainty due to missing values, such as the valid confidence intervals for the parameters. Accordingly, multiple imputation is now becoming the dominant approach for the treatment of missing data. A further discussion of this method can be found in Rubin (1996), Schafer and Olsen (1998), Allison (2001), and Howell (2008).
3.2.2. Interval data generation
After performing the technique of multiple imputation, we generate several sets of new data whose coefficients vary from set to set[footnoteRef:1]. All the missing indicator values in the data set can then be replaced by their mean imputed values. In doing so, we implicitly impose an assumption that the average imputations are most likely to correspond with the true values, Its correctness, however, is difficult to judge. In fact, the application of multiple imputation also provides us with an alternative solution for missing values, which is to use imputed data intervals (see also Cherchye et al., 2011). That is, the missing values are replaced by approximations in the form of intervals estimated from multiple imputation in which the true values are believed to lie.  [1:  Rubin (1987) has shown that in many cases three to five data sets are sufficient.] 

Specifically, with N imputations, the mean imputed value for Y can be computed as follows:
	

	(5)





With respect to the variance of , two different components can be distinguished. They are the average within-imputation variance  and the between-imputation variance B. The first component measures the natural variability in the data, which is analogous to the variance we would produce if we do not need to account for missing data. It can be computed by averaging the variance estimates from each imputed data set () as follows:
	

	(6)


The second component is to capture the extra inferential uncertainty introduced by the existence of missing data. In other words, it measures how the point estimates vary from data set to data set. We can compute this variance by using the following formula:
	

	(7)



The total variance (T) associated with  is then a weighted sum of the above two variance components:
	

	(8)



According to Rubin (1987), the statistic  is approximately distributed as a Student’s t-distribution with degrees of freedom:
	

	(9)


where r is the between-to-within ratio:
	

	(10)


Therefore, confidence intervals can be calculated by taking the overall estimate plus or minus a multiple of the standard error.
Based on the above introduction, at least two types of complete data set can be generated from multiple imputation. One is to replace all the missing values by the mean imputed values (after several imputations) calculated from (5). Alternatively, by taking one step more, a range of values that constitutes for example a 90% confidence interval around the imputed mean can be derived, and the missing values can then be replaced by an interval within which the true values are believed to lie. As a result, we can obtain a complete but imprecise data set that comprises both observed data and imputed data intervals.
3.2.3. An illustration
In this study, we use the multiple imputation procedure in SPSS 25.0 to generate five complete data sets. Due to the relatively small number of countries with respect to the number of SPIs, the imputations are not straightforward but done separately for the indicators belonging to each of the three components of the road transport system, i.e., road user behavior, vehicle and infrastructure. Afterwards, the imputed mean and its 90% confidence interval are calculated for each missing value based on formulas (5)-(10). Taking the mean speed on motorways as an example, the original indicator data and the imputed data derived from the above two methods are illustrated in Table 3.


------------------------------
Insert Table 3 about here
------------------------------
As can be seen, eight countries have no available data for this indicator. They are Estonia, Germany, Greece, Italy, Latvia, Poland, Romania, and Slovakia. Among the observed data, Cyprus has the highest indicator value (1.05), or the worst performance, while Czech Republic has the best (0.835). Now, by taking all the indicators belonging to the road user behavior into account for missing data imputation, Poland obtains the highest imputed mean (1.059), indicating that it has even worse performance than Cyprus with regard to this risk aspect. However, no country has an imputed indicator value lower than that of Czech Republic, indicating that none of them can overtake Czech Republic in this respect. Nevertheless, if we use interval data for replacement, such a crisp judgment is somewhat nuanced. For instance, Poland is no longer the worst country in all the cases. Although the performance of Poland is still poor compared to most of the countries even when its best possible value (1.029) is considered, countries like Italy and Romania could perform even worse if they catch the upper bound of their intervals. On the other hand, if the lower bound of the interval is reached, Romania can also become the best-performer in this aspect. Although ambiguity, using the interval data is more in accordance with our intuition on missing data, and more acceptable to countries and policy makers. Moreover, the relative big interval ranges derived for countries such as Romania and Italy can be further interpreted by the fact that they own the largest number of missing values in the data set (17 and 16, respectively), which renders their five imputed values to vary considerably from one data set to another. In other words, uncertainty due to the imputation is relatively high for these two countries. This information, again, cannot be reflected by using the mean imputed values.
4. CONSTRUCTING A COMPOSTIE INDICATOR BASED ON DEA
Technically, the construction of a CI is a mathematical aggregation of a set of individual indicators that measure multi-dimensional concepts but usually have no common units of measurement (Organization for Economic Co-operation and Development, 2008). Among various existing aggregation methods, the most widely used one is known as weighted sum approach. Suppose that a set of n DMUs (or countries in this study) is to be evaluated based on m indicators. yij denotes the normalized value of country j with respect to indicator i, with a higher value indicating better performance. The composite indicator for country j (j=1,…n) can therefore be constructed as follows:
	

	(11)



where wi denotes the weight assigned to indicator i, revealing the importance level of the corresponding indicator in the measurement of the multi-dimensional concept under study, and .
Although its simplicity, the use of this approach requires the pre-determination of the weights for all the indicators, which is practically difficult to always reach an agreement on because different countries have their own characteristics. As a result, the countries that are identified at the bottom of the ranking based on this approach could complain about unfair weighting. Moreover, by assigning the same indicator weights for all the countries under comparison, the importance level of each indicator in different countries cannot be reflected entirely, which makes the examination of root causes of poor performance in each country difficult.
4.1. A basic DEA-CI model
Relative to the weighted sum approach, the DEA approach provides a new way to combine multiple indicators, based on which each country obtains its own best possible indicator weights, and they are retrieved from the country data themselves. More specifically, the core idea of this technique is that good performance of a country in one particular indicator dimension (relative to other countries under study) is considered to be revealed evidence of comparatively higher indicator importance, while the reverse position is taken for indicator on which the country performs relatively poorly (Cherchye et al., 2007). Consequently, by comparing the relative performance of a particular country against all other countries, the weights that result in the highest index score for this country are selected. Mathematically, by employing linear programming tools, the DEA approach maximizes the CI score calculated in (11) for each country, subject to the constraint that the obtained weights produce results consistent for all the countries under study. The model is formulated as follows:
	

	(12)


subject to
	

	(13)

	

	(14)



where  in (14) is a small non-Archimedean number to avoid the model to assign a weight of zero to unfavorable indicators. As can be seen, the above linear program is computed separately for each country to determine its optimal indicator weights. In other words, the weights in the objective function (12) are chosen with the purpose of maximizing country c’s index score and meanwhile respect the less than unity constraint for all the countries including c (see (13)). As a result, a country is considered to be best-performing if it obtains a score of one whereas a score less than one implies that it is an underperforming country. 
In addition, although the flexibility in selecting the indicator weights for each country is one of the important features of DEA, it on the other hand makes the comparison among countries on a common base impossible. Therefore, to rank all the countries on the same scale, we calculate a cross-index score for each country, which takes into account not only the optimal indicator weights of the country under study, but also the ones of all other countries. Thus, all the countries are evaluated based on the same weighting set (i.e., n sets of weights allocated for n countries), their comparisons can then be carried out, with a higher cross-index score indicating better overall performance.
4.2. A multiple layer DEA-based CI model
As indicated in the Introduction section, to take the information on the hierarchical structure of the indicators developed in this study into account, extension of the basic DEA-CI model into a multilayer one is necessary. Specifically, in the standard DEA-CI model (12-14), all the indicators are equally treated as they belong to the same layer. It is more acceptable when a low number of indicators is considered. As the amount grows, especially when a layered hierarchy is established, the hierarchical information on the indicators cannot be ignored arbitrarily (Shen et al. 2011). Suppose that the m indicators used to evaluate the performance of n DMUs (or countries) can be structured as a K layered hierarchy, which is shown in Figure 4. 
--------------------------------
Insert Figure 4 about here
--------------------------------
The main idea of the multiple layer DEA-based CI model (MLDEA-CI) is to first aggregate the values of the indicators within a particular category of a particular layer by the weighted sum approach in which the sum of the internal weights equals to one. With respect to the final layer, i.e., the Kth layer, the weights are determined using the standard DEA approach. As a result, a nonlinear model with the following objective function is constructed since all the weights are not given directly. 
	

	(15)





where  is the weight given to the ith category in the kth layer (k=1, 2, …, K, and ). m(k) denotes the number of categories in the kth layer. m(1)=m.  denotes the set of indicators of the ith category in the kth layer. i1=i.

To linearize the model, variable substitutions (i.e., ) are performed, and the derived MLDEA-CI model can be formulated as follows:
	

	(16)





where denotes the new weight assigned to indicator i for country c.  denotes the internal weights associated with the indicators of the ith category in the kth layer, which sum up to one within a particular category.  denotes the restrictions imposed to the corresponding internal weights, such as absolute weight restrictions, relative weight restrictions, ordinal weight restrictions, and virtual weight restrictions (see e.g., Thanassoulis et al. (2004)).

In general, the MLDEA-CI model has a similar structure as that of the one-layer model except for the additional sets of restrictions on layer-specific weights. Since the weights assigned in a particular category of a layer (i.e., the internal weights ) can be interpreted as the importance level of the corresponding indicator, the value judgment from experts can be easily incorporated by restricting their flexibility. Thus, consistency with a prior knowledge and the obtainment of acceptable layer-specific weights are guaranteed. For the detailed deduction process of this model, as well as its dual form, we refer to Shen et al. (2013). 
4.3. An interval MLDEA-CI model



Apart from the hierarchical structure of the indicators, how to properly deal with imprecise data (in the form of interval data) is another challenge regarding the application of DEA model for this study. More specifically, due to the mixture of observed data and interval data, the MLDEA-CI model (16) is no longer linear as, apart from the original variables  (i.e., the indicator weights) for the country under study, the indicators themselves, i.e., , are also variables whose exact values are not known, but lying within bounded intervals .
To convert this non-linear model into a linear one, we first introduce the following transformation:
	

	(17)






By using this expression, the term  is replaced by . We then introduce a new variable , which meets the condition . 
Applying the above transformations to model (16), we obtain the following linear programming problem:
	

	(18)


In fact, model (16) is a special case of model (18) in which all the lower and upper bounds coincide for all the indicators. In this case, exact rather than interval data are actually used for the calculation. The variable qij is then eliminated and model (18) is reduced to model (16). When interval data exist, i.e., the lower and upper bounds are not identical for all the indicators, the optimal index score of country c is obtained by adjusting not only the weights but also the levels of indicators within their ranges that are in favor of it. In other words, the index score attained by country c in model (18) is not worse than any other index score that the country might attain, by adjusting the indicator values in a different way within the limits of the bounded intervals. In fact, such an optimal index score can be obtained from the following model with exact data:
	

	(19)



In model (19), the country under evaluation is set in its best possible position (i.e., the indicator values are all adjusted to their upper bound) while all the other countries in the data set are set in their least favorable position (i.e., the indicator values are contrarily adjusted to their lower bound). It can therefore be defined as a best-case scenario, and we obtain the upper bound of the possible index score that country c might attain in an interval data setting (referred to as ). Likewise, a lower bound of the index score for country c can be obtained as below.
	

	(20)



Model (20) is also a MLDEA-based CI model with exact data. In contrast to model (19), the levels of indicators are now adjusted unfavorably for the evaluated country c (i.e., the indicator values are set to their lower bound) and in favor of the other countries in the data set (i.e., the indicator values are set to their upper bound). Hence, it can be named as a worst-case scenario, and the model results in a lower bound of the possible index score for country c (i.e., ).

Models (19) and (20) constitute the interval MLDEA-based CI model, which provides for each country a bounded interval of its index score , within which the exact one is believed to lie. In addition, the length of the obtained interval reflects the overall uncertainty due to the underlying imperfect nature of the indicator data. 
[bookmark: _Toc324499664]5. APPLICATION AND RESULTS

Using both the mean imputed values and the imputed data intervals, we now apply the proposed models (i.e., the MLDEA-CI model and the interval MLDEA-CI model) to combine all the 32 hierarchical SPIs into a road safety performance index, so that the overall road safety performance of the selected 28 European countries can be evaluated. In doing so, the distance to a reference approach (OECD, 2008) is adopted first for data normalization, and the following weight restrictions are applied so as to guarantee the obtainment of realistic indicator weights. Specifically, the SPIs belonging to the same category of each layer (except the last layer) are treated to be of similar importance, such as the two alcohol indicators (i.e., the percentage of drivers above the legal BAC limit in roadside checks and the percentage of road fatalities attributed to alcohol), the two speed aspects (i.e., the mean speed and the speed limit violations), as well as the three risk factors of road user behavior (i.e., alcohol, speed, and protective systems). With regard to the last layer, i.e., the three main components of the road transport system  road user behavior (R), vehicle (V), and infrastructure (I)  a virtual weight (or share[footnoteRef:2]) restriction is assigned, i.e., , which indicates the importance ordering of these three components in the contribution of road crashes (see also Figure 1). [2: The share is the sum of the products of the indicator values and the corresponding weights, divided by the final index score.] 

Now, we apply the proposed models (both the MLDEA-CI model and the interval MLDEA-CI model) to combine all the normalized indicator values into an overall index score for each country. The optimization modeling software Lingo 15.0 is utilized. Model outputs are illustrated in the following sections, and further translated into road safety enhancing recommendations.
5.1. Index scores and country ranking
Using two types of the complete data set - one is composed of both observed data and mean imputed values, and the other consists of both observed data and imputed data intervals - the MLDEA-CI model and the interval MLDEA-CI model are applied respectively to obtain the overall index scores for each country. The results are presented in Table 4.
------------------------------
Insert Table 4 about here
------------------------------

As can be seen from the index score  calculated based on the MLDEA-CI model, five countries obtain the optimal index score of one, which are Germany, Luxembourg, the Netherlands, Sweden, and Switzerland (listed in alphabetical order). They can therefore be identified as the best-performing countries in terms of road safety. While for the remaining countries, an index score less than one is obtained, implying that they are underperforming. 


Moreover, by taking the missing data uncertainty into account, an imprecise index score in the form of a bounded interval  is obtained for each country based on the interval MLDEA-CI model, within which the index score  is always situated (see also Figure 5). In other words, the interval index score provides us with a more credible representation of a country’s overall road safety performance as it highlights rather than conceals the underlying imperfect nature of the indicator data. Under this circumstance, however, countries cannot be fully ranked. The most we can judge from Table 4 is that the overall road safety performance of Hungary ([0.657, 0.794]) is worse than that of countries like Poland ([0.805, 0.858]), which performs in turn worse than countries like Norway ([0.874, 0.981]), and so on. Moreover, Luxembourg and Sweden are the only two countries with their index score always equal to one, no matter which scenario is taken into account. In other words, the influence of the existence of missing data in the data set on the final index score of these two countries can be ignored, given the pre-specified confidence level. Therefore, other countries cannot dispute that they are the best-performers among these countries, and they can be unambiguously designated as benchmark countries. 



Concerning the remaining countries, based on their best possible index score, i.e., , countries can be further classified into two groups. One includes those countries who can only obtain an optimal index score less than one even when the best case scenario is taken into account. Therefore, countries belonging to this group are definitely underperforming, and they cannot complain about data problems. Some ambiguity, however, is associated with the remaining countries, for which the actual classification as a best performer or not is contingent on the actual imputation of specific indicator values. Nevertheless, as indicated before, the length of the obtained interval for each country reflects the overall uncertainty about its index score due to missing data. The Netherlands, for instance, obtains relatively high index scores in both scenarios with a small difference between them (1-0.978=0.022), indicating that the influence of missing data in the data set on its index score is limited, and it is more tending to be assigned as a best performer (with the real index score of one), and this is verified by its . On the contrary, countries like Slovakia and Bulgaria obtain large interval ranges of their index score, implying that much ambiguity remains about their index score, and they are more likely to be the underperforming countries. The overall classification of the 28 European countries is illustrated in Figure 5. Countries in each classification are ranked by  (pointed out with the crosses).
--------------------------------
Insert Figure 5 about here
--------------------------------

To fully rank all the 28 countries, the index score  is considered, which provides a representative scenario of a country’s overall road safety performance in the context of missing data. Moreover, the cross-index score of these 28 countries is computed to reflect their all round road safety performance. The result is shown in Table 5 in decreasing order. Sweden obtains the highest score (0.996), and is thereby ranked at the top, while Latvia the worst (0.700). Although they both belong to Northern Europe based on the United Nations Statistics Division (http://unstats.un.org/unsd/methods/m49/m49regin.htm#europe), generally speaking, the Western European countries (e.g., the Netherlands and Germany) have a relatively higher index score than the Eastern European countries (e.g., Romania and Hungary), and the Northern European countries, especially those Nordic countries (e.g., Sweden and Norway) are better performing than the Southern European countries (e.g., Greece and Slovenia).
------------------------------
Insert Table 5 about here
------------------------------


In addition, as a relevant point of reference, the overall road safety risk score developed by Shen et al. (2012), which considered the road safety final outcomes (i.e., the number of road fatalities) on the one hand, and the three common measures of exposure, i.e., the number of inhabitants, passenger-kilometres travelled and passenger cars on the other hand, is computed again based on the average values of 2006-2008, and the final score and the ranking of these 28 countries are presented in the last two columns of Table 5. The high consistent degree between these two sets of rankings is verified by their significant correlation coefficient, which is 0.846. Such a result on the one hand justifies the representativeness of the index score  of each country in its possible interval range , and on the other hand, it implies that the derived performance index has a clear link with the road safety final outcome, which can therefore be further used as a potential predictor based on which efficient policy action can be put forward. Therefore, in the following sections, the results from the MLDEA-CI model are further investigated.
[bookmark: _Toc324499671]5.2. Relevant benchmarks
Apart from computing the index scores and comparing them among the countries under study, it is also important from the view of policy makers to understand the process that leads up to such a result, especially the reasons why the underperforming countries are unable to obtain an optimal score of one. In doing so, we further explore the mechanism of the proposed model. 

No matter whether the MLDEA-CI model or the interval MLDEA-CI model is applied, their mechanism is the same, which is to determine the best possible indicator weights that maximize the index score of a certain country. In this process, if the best possible indicator weights assigned to a country X do not result in an index score of one for this country but cause the weighted score of another country Y to become one, then the model stops. We can thus view country Y as a potential benchmark for country X, because by using the same set of weights, the index score of Y is relatively higher, which means that country Y is characterized with higher road safety performance than country X for at least one risk aspect. Moreover, when more than one benchmark country like Y is identified, a reference set for country X can be established, and the relative importance of a benchmark country within the reference set can be determined based on the dual weights calculated from the dual model (see Shen et al. (2013)), which can be generated in the Lingo software. For example, the best possible indicator weights assigned to Austria based on the MLDEA-CI model only result in its optimal index score of 0.965 (), while four other countries obtain a weighted score of one, which are Luxembourg, the Netherlands, Sweden, and Switzerland. Therefore, Austria is an underperforming country and could take these four best-performing countries as learning examples. Among others, Sweden is identified as the most important benchmark since it obtains the greatest dual weight (see Figure 6(a)). In other words, to improve road safety performance, Austria should learn the most from Sweden. However, the situation is different for different countries. In the case of Belgium, the Netherlands becomes the most important benchmark country for Belgium to learn from (see Figure 6(b)).
--------------------------------
Insert Figure 6 about here
--------------------------------

Table 6 indicates the reference set for each of the 23 underperforming countries identified by their , and the benchmark country with the greatest importance is highlighted. As can be seen, Sweden, which ranks first in terms of road safety performance, appears to be the most important benchmark country for all the underperforming countries, and 15 out of these 23 countries could consider Sweden as the most important benchmark. It in turn verifies the outstanding road safety performance of this country. 
------------------------------
Insert Table 6 about here
------------------------------
[bookmark: _Toc324499673]6.3. Road safety priorities and policy recommendations
Having identifying the specific benchmarks for each underperforming country, we now further explore the indicator weights allocated in each layer of the hierarchy per country. In doing so, valuable insight can be gained with respect to detailed road safety priorities. Specifically, based on the principle of the MLDEA-CI model, if the country performs relatively well on one aspect, the corresponding indicator will be assigned a high weight. On the contrary, a relatively low indicator weight suggests that the corresponding aspect requires more action for improvement. Taking Austria as an example, the weights and shares (in brackets) derived from the MLDEA-CI model are presented in Figure 7.
--------------------------------
Insert Figure 7 about here
--------------------------------
[bookmark: OLE_LINK16][bookmark: OLE_LINK17][bookmark: OLE_LINK11][bookmark: OLE_LINK12]First of all, it can be seen from Figure 7 that the assigned weights (and shares) are in accordance with the imposed restrictions. For example, the indicators located in a particular category of a layer are of similar importance (with a maximum of 20% variability of their average weights), such as the three mean speed indicators (I3, I4, and I5). Also, the share of road user behavior (72%) is more than twice as large than that of infrastructure (21%), which is also more than two times greater than that of vehicle (6%). Moreover, since the importance level of each indicator belonging to a particular category of a layer can be reflected by the allocated weight, more detailed insight with respect to road safety priorities can be gained accordingly. For instance, the assigned weights for the three mean speed indicators imply that Austria should take main road safety policy action to the mean speed on urban roads (I5) since the lowest weight (0.267) is allocated to this indicator. Taking all the eleven indicators related to road user behavior into account using the same principle, we can see that Austria is performing relatively well in the speed aspect (with the highest weight of 0.4), especially the mean speed on rural roads (I4). However, more policy attention is needed to the alcohol aspect (with the lowest weight of 0.267), followed by the risk aspect of protective systems (with a medium weight of 0.333). Based on the same principle, road safety priorities with respect to the other two components (i.e., vehicle and infrastructure) in Austria can be identified as well. They are to reduce the proportion of old passenger cars in the vehicle fleet (I13) and to raise the motorway density (I23), respectively. In Table 7, the layer-specific road safety priorities for all the 28 European countries are summarized, with the number of ‘√’ indicating the importance level of each road safety performance aspect within each risk factor.
------------------------------
Insert Table 7 about here
------------------------------
Based on Table 7, not only the risk aspects that need urgent policy action for each country can be identified, but some specific road safety enhancing recommendations for all the 28 European countries as a whole can be formulated as follow.
· Driving under the influence of alcohol is for most countries the road user behavior risk factor with the highest priority. Although all countries have national policies on drink driving, enforcement remains a critical issue requiring more efforts, especially through increased random breath-testing.
· Speeding is also a major issue for road safety in Europe. Development of effective speed management so as to control the mean speed and the frequency of speed limit violations, especially on urban and rural roads, is of primary importance for the majority of countries.
· With respect to protective systems, more attention should be paid to raise the rear seat belt wearing rates and to improve the monitoring of child restraint system use.
· To improve vehicle active and passive safety performance, countries are first and foremost encouraged to either raise the proportion of new vehicles or reduce the amount of old vehicles in their fleet.
· Relative to vehicle occupant protection and pedestrian protection, improving the safety level on child protection should be an important concern of the vehicle manufacturers. Meanwhile, the installation of seat belt reminders in a vehicle should be greatly advocated in most of the countries.
· In addition, reducing the proportion of powered two-wheelers in the whole vehicle fleet in view of road safety seems to be a more challenging task in Europe compared with the situation of goods vehicles.
· As the most safe type of roads, motorway density is still low in most of the European countries. 
· To improve the quality of post-crash medical treatment, the number of EMS transportation units, such as basic life support units, mobile intensive care units and helicopters, as well as the EMS staff, especially the proportion of physicians and paramedics, have to be focused on in the first place for most countries.
All above are in line with the European road safety policy orientations up to 2020 (European Commission, 2010), which from the other way round justifies the effectiveness of the methodology proposed in this study.
6. DISCUSSION AND CONCLUDING REMARKS
Road safety is an important policy area that can benefit from the implementation of various inter-national benchmarking practices. To make differences with the traditional outcome-oriented benchmarking studies, we demonstrated in this study the implementation of another road safety benchmarking practice, i.e., road safety performance benchmarking, for a selected set of European countries. In doing so, safety performance indicators, which situate on the level of intermediate outcomes linking safety countermeasures with final outcomes, were studied. These indicators allow quicker and more local analyses and monitoring than crash data do and help in detecting the key problem areas in a particular country. In this study, based on the identification of six leading road safety risk factors (i.e., alcohol, speed, protective systems, vehicle, road, and emergency medical services) within the three main road transport components (i.e., road user, vehicle and infrastructure), a comprehensive set of safety performance indicators was developed to represent the entire road safety risk of a country, and various international data sources providing indicator values for a large set of countries were consulted. Totally, 32 hierarchically structured indicators were specified and available data were collected (or calculated) for 28 European countries. 
Although the indicators developed for this study are extensive and comprehensive based on our current knowledge, it is important to note that the selection of appropriate safety performance indicators requires periodic revisions, and the search for additional and up-to-date indicator data is an ongoing process as well. At this moment, indicators developed for most of the risk factors (except road) are representative at the national level. However, reliable indicator data, especially for alcohol, speed, and emergency medical services, are still lacking to a certain extent. With respect to the factor of road, only a few proxy indicators are currently available for benchmarking purposes. Knowledge on the quantitative relations between the road network, road design elements and road safety therefore needs further exploration, and a variety of appropriate indicators corresponding to this aspect call for different kinds of development efforts relating to concepts, methodologies, and data collection procedures. Moreover, other risk factors that have a strong relationship with road safety or a large contribution to road crashes or casualties, such as inattentive driving as a result of mobile technology, aggressive driving, in-vehicle systems, and so on, could also be incorporated in the future and corresponding indicators developed and refined. Furthermore, by collecting the safety performance data at regular intervals, systematic country comparison over time could be conducted so as to evaluate the results of policy interventions and to monitor the progress in road safety performance.
Given the high number of safety performance indicators selected and the large data set collected for this study, some data processing procedures were required to handle a number of data errors. In this study, apart from using the 3-year average of the data for most of the indicators so as to avoid coincidental fluctuation in the data, potential outliers in the data set were examined by means of univariate and multivariate analyses, and missing values were imputed by using multiple imputation. These procedures have proven valuable to identify underlying data errors in this study and to minimize their impact on the following benchmarking analysis. However, the univariate and multivariate analyses only help us to detect potential outliers from the statistics point of view. To determine whether the detected outliers should be removed from the data set, we have to make decision with caution. In general, only if an outlying observation is in fact erroneous, which may adversely lead to incorrect results, such as the survey data on the EMS medical staff per 10,000 citizens in Austria in this study, then the outlying value should be deleted from the analysis. Otherwise, outliers may be due to random variation or may indicate something scientifically interesting. In this case, we may not simply delete the outlying observation but keep it in the data set, such as the annual renewal rate of passenger cars in Luxemburg in this study, as the value actually presented the reality. With respect to the technique of multiple imputation, it not only took the uncertainty of missing data prediction into account, but also provided us with two options of obtaining a complete data set. One was to replace all the missing values by the mean imputed values, and the other was to use an interval within which the true value was believed to lie. Although crisp values are easier to be applied in the following benchmarking analysis, using interval data is more in accordance with our intuition on missing data, and more acceptable to countries and policy makers. It is therefore highly recommended to use this technique for missing data treatment in the future. Nevertheless, the research attention has to be paid to the road safety implication and validation of the results. 
Given the fact that road safety performance of a country is a multi-dimensional concept, the issue arises on how such a plurality of dimensions can be measured and evaluated for policy decisions. In this respect, a composite indicator, which combines individual indicator values into an overall index score, has been receiving considerable attention in practice. However, constructing a composite indicator is technically not an easy task. The underlying construction scheme, especially the weighting scheme plays an important role and to a great extent determines the quality and reliability of the constructed composite indicator. In this study, the technique of data envelopment analysis was employed to construct a road safety performance index for cross-country comparison, which thereby accomplished the most important but meanwhile the most challenging step of the entire benchmarking practice, i.e., examining gaps in performance and their root causes. Different from the traditional methods for composite indicator construction, which normally assign the same indicator weights for all the countries under study, the DEA approach is based on self-appraisal, i.e., each country obtains its own best possible indicator weights. This way, key road safety issues in each country can be detected separately, and policy-makers could not complain about unfair weighting. Such a data-oriented method is therefore justifiable in the context of composite indicators, where there is uncertainty or doubt about the appropriate weighting scheme.
To successfully apply the DEA approach for this study, two model extensions were realized. One was to take the information on the hierarchical structure of the indicators into account, and the second was to model data uncertainty (in the form of interval data). An interval multiple layer DEA-based composite indicator model was therefore proposed. On the one hand, the model resulted in an upper and a lower bound of the index score for each country corresponding to the most favorable and unfavorable option, respectively. The index interval instead of the precise index score for each country highlighted the underlying imperfect nature of the indicator data, and provided us with a more credible representation of a country’s overall road safety performance. On the other hand, by restricting the weight flexibility in a particular category of a layer, the obtainment of realistic and acceptable indicator weights was guaranteed, which provided valuable information to help policy makers better understand the sources of underperformance in each country and the types of public policies needed for improvement.
In the application, the proposed model has proven valuable for the road safety context. Using the complete but imprecise data set consisting of both observed data and imputed data intervals, an imprecise index score in the form of a bounded interval was obtained for each country, and three classifications were identified. Among others, Luxembourg and Sweden were two benchmark countries in this study, as they always obtained an index score of one and the influence of missing data in the data set on their index score could be ignored. While for the class of countries requiring further improvement in their road safety performance, missing indicator values played a certain role in determining their optimal index score, but had no implication in classifying them as underperforming countries. Concerning the remaining countries, the actual classification as a best performer or not was to a great extent determined by the actual imputation of specific indicator values. However, a large interval range around the index score was generally derived for those countries whose missing data uncertainty was relatively high, and such countries were much more likely to be the best performer only by coincidence.
To fully rank all the 28 countries, the index score calculated based on the mean imputed values was considered, which provided a representative scenario of a country’s overall road safety performance in the context of missing data, and they always situated within the bounded interval. The ranking of these countries was deduced by computing their cross-index score. A clear link with the overall road safety risk from the view of the final outcome level was verified, which in turn justified the use of the proposed model for composite indicator construction. Moreover, by taking the characteristics of each country in the data set into account, country-specific benchmarks or reference sets for each underperforming country were determined. Furthermore, areas of underperformance in each country were identified by analyzing the indicator weights allocated in each layer of the hierarchy, which provided policy makers with valuable information on prioritizing their action to improve the road safety situation in their country. Learning about best practices applied in benchmarks is therefore a first next step to take based on these results. Meanwhile, by summarizing the risk aspects that needed urgent policy action for all these countries, some specific road safety enhancing recommendations for this region as a whole were formulated. All of them were in line with the European road safety policy orientations up to 2020 and in a more concrete manner. However, it should be noted here that the above results were derived based on the exact data set, i.e., using the mean imputed values. If the imputed data intervals were considered, the situation would become much complex, because the potential benchmarks for each underperforming country and the best possible weight assigned to each indicator could be different when different indicator values within the interval range were selected. Further investigation in this respect is therefore still needed. In addition, it could be argued that the number of countries considered in this study is still somewhat too large to identify realistic benchmarks for those underperforming countries. For instance, Luxembourg may not be a suitable benchmark country for many other European countries. To solve this problem, one possible way is to perform a clustering analysis first so as to group the countries with inherent similarity in their practices. The same methodology can then be applied to those countries within the same cluster. 
Like any technique, DEA is also characterized by some limitations that need to be kept in mind when interpreting the results. First, as a non-parametric method, DEA does not allow for measurement error or random shocks, thereby inferential statistics and hypothesis testing are not directly applicable. Second, the model only measures the performance of one country with respect to the other countries within the sample and a change in the set of countries may lead to other outcomes. Moreover, the results obtained from the DEA model are also sensitive to indicator specification, hierarchical structure, and chosen weight restrictions. Therefore, as many comparable countries as possible should be considered, appropriate indicators and their structure used, and accepted views from experts adopted to ensure the robustness of the results to an utmost extent. Meanwhile, more research attention should be paid to the sensitivity and stability analysis of DEA. In this respect, statistical tests for DEA, bootstrapping in DEA, and stochastic DEA are all worthwhile to be explored. In addition, it would be interesting to perform in the future an empirical investigation on whether underperforming countries would choose the specific benchmarks indicated in this research as it will help in validating the effectiveness of this methodology. 
To conclude, we demonstrated in this study the implementation of a typical road safety benchmarking practice, i.e., road safety performance benchmarking, for a selected set of European countries. This research has contributed to the literature on using the technique of DEA and its extensions to perform meaningful inter-national benchmarking of road safety based on the developed safety performance indicators, in which both the hierarchical structure of the indicators and the data uncertainty (in the form of interval data) were taken into account. Although it is mathematical in nature, we should say that the theory behind this technique is straightforward and it is currently ready for implementation at the practical level. Furthermore, the added value for road safety policy makers lies in the development of a road safety performance index, instead of merely counting the number of road fatalities, as a facility for each country to assess its own overall road safety performance, and moreover, in the formulation of some important policy recommendations with respect to specific benchmarks and action priorities to improve the level of road safety in their country. Finally, it is necessary to mention here that as a cycle, such a benchmarking practice should be carried out at regular intervals so that the results from policy interventions can be evaluated and the progress on road safety in each country can be monitored over time.
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Table 1(a) Road user behavior related SPIs and raw data
	
	Alcohol
	Speed
	Protective systems

	
	% of drivers above the legal BAC limit in roadside checks
	[bookmark: RANGE!E5]% of fatalities attributed to alcohol
	Mean speed*
	% of speed limit violations
	Seat belts
	Child restraint

	
	
	
	on motorways
	on rural roads
	on urban roads
	on motorways
	on rural roads
	on urban roads
	Daytime seat belt wearing rate in front seats of light vehicles
	Daytime seat belt wearing rate in rear seats of light vehicles
	Daytime usage rate of child restraints

	
	06-08
	06-08
	06-08
	06-08
	06-08
	06-08
	06-08
	06-08
	06-08
	06-08
	06-08

	AT
	7.40%
	7.67%
	0.91
	0.90
	1.03
	21.33%
	19.43%
	53.87%
	88.33%
	57.33%
	82.00%

	BE
	N/A
	5.43%
	1.00
	0.94
	1.08
	N/A
	34.10%
	61.53%
	78.00%
	40.00%
	N/A

	BG
	N/A
	4.15%
	0.93
	N/A
	N/A
	N/A
	N/A
	N/A
	85.00%
	3.00%
	30.00%

	CY
	6.29%
	19.53%
	1.05
	1.10
	0.96
	52.50%
	55.00%
	N/A
	80.00%
	15.00%
	N/A

	CZ
	N/A
	5.26%
	0.83
	0.76
	0.88
	75.00%
	15.10%
	24.30%
	88.67%
	56.00%
	42.00%

	DK
	N/A
	24.78%
	0.94
	1.06
	1.04
	31.50%
	69.77%
	60.00%
	91.00%
	73.33%
	N/A

	EE
	1.00%
	44.44%
	N/A
	1.05
	N/A
	N/A
	24.90%
	N/A
	85.93%
	55.20%
	83.00%

	FI
	1.45%
	26.01%
	0.89
	0.96
	N/A
	39.90%
	43.92%
	N/A
	89.00%
	81.33%
	N/A

	FR
	3.27%
	28.86%
	0.92
	0.89
	0.99
	32.33%
	27.27%
	42.97%
	97.67%
	82.00%
	89.00%

	DE
	N/A
	11.62%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	96.33%
	90.00%
	84.00%

	EL
	3.15%
	8.22%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	68.50%
	23.00%
	N/A

	HU
	3.08%
	12.55%
	0.86
	0.88
	1.01
	45.07%
	30.07%
	59.40%
	71.00%
	41.00%
	N/A

	IE
	3.63%
	29.80%
	0.90
	0.92
	1.14
	16.33%
	31.33%
	61.33%
	88.00%
	75.00%
	N/A

	IT
	N/A
	3.58%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	68.00%
	30.00%
	N/A

	LV
	N/A
	20.24%
	N/A
	1.02
	N/A
	N/A
	50.90%
	N/A
	79.00%
	26.50%
	N/A

	LT
	1.55%
	11.07%
	0.85
	0.98
	1.16
	20.70%
	39.35%
	43.00%
	59.50%
	30.00%
	N/A

	LU
	N/A
	14.29%
	0.88
	N/A
	N/A
	5.00%
	N/A
	N/A
	80.00%
	60.00%
	57.00%

	NL
	N/A
	3.55%
	0.95
	N/A
	N/A
	36.00%
	N/A
	N/A
	93.67%
	73.00%
	72.00%

	NO
	N/A
	22.32%
	1.00
	0.99
	1.05
	51.50%
	44.80%
	N/A
	91.50%
	85.00%
	94.00%

	PL
	9.50%
	8.11%
	N/A
	1.00
	1.28
	N/A
	65.83%
	82.63%
	78.00%
	48.33%
	86.00%

	PT
	6.29%
	5.82%
	1.01
	1.13
	0.90
	54.00%
	74.00%
	38.00%
	86.00%
	47.00%
	N/A

	RO
	N/A
	8.40%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	65.00%
	5.00%
	N/A

	SK
	N/A
	5.85%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	68.00%
	39.00%
	N/A

	SI
	7.04%
	45.64%
	0.88
	0.70
	1.16
	34.00%
	1.00%
	84.00%
	85.33%
	45.17%
	N/A

	ES
	2.16%
	8.82%
	0.95
	N/A
	N/A
	37.93%
	N/A
	N/A
	86.33%
	71.33%
	N/A

	SE
	0.86%
	9.95%
	0.97
	0.98
	0.95
	67.80%
	52.60%
	52.80%
	95.00%
	76.00%
	95.00%

	CH
	N/A
	15.42%
	0.91
	0.93
	0.83
	23.00%
	23.33%
	13.67%
	86.67%
	66.00%
	85.00%

	UK
	16.89%
	15.55%
	0.99
	0.80
	1.01
	51.67%
	10.00%
	49.33%
	92.00%
	85.67%
	93.00%


*The mean speed on each road type is normalized by the corresponding speed limit on that road type to make data comparable between countries.
Source: European Transport Safety Council (2010) and Vis and Eksler (2008)


Table 1(b) Vehicle related SPIs and raw data
	



	Age distribution of the vehicle fleet
	Composition of the vehicle fleet
	Technical scores

	
	
	
	Occupant protection
	Pedestrian protection
	Child protection
	Seat belt reminder

	
	% of new passenger cars: Less than 6 years
	% of old passenger cars: More than 10 years
	Annual renewal rate of passenger cars
	% of goods vehicles in the vehicle fleet
	% of powered two-wheelers in the vehicle fleet
	% of new passenger cars awarded 5 stars for occupant protection
	Average percentage occupant protection score for new cars
	% of new passenger cars awarded 3 stars for pedestrian protection
	Average percentage pedestrian protection score for new cars
	% of new passenger cars awarded 4 stars for child protection
	% of new passenger cars with seat belt reminder

	
	06-08
	06-08
	06-08
	06-08
	06-08
	2008
	2008
	2008
	2008
	2008
	2008

	AT
	39.80%
	29.52%
	7.07%
	7.04%
	12.61%
	52.00%
	89.30%
	21.00%
	36.10%
	47.00%
	70.00%

	BE
	39.51%
	28.58%
	10.47%
	11.27%
	6.10%
	57.00%
	89.90%
	18.00%
	34.20%
	46.00%
	73.00%

	BG
	N/A
	N/A
	1.89%
	10.71%
	3.71%
	34.00%
	83.80%
	16.00%
	34.70%
	35.00%
	53.00%

	CY
	27.96%
	44.47%
	5.67%
	20.72%
	7.28%
	24.00%
	93.70%
	15.00%
	42.80%
	20.00%
	33.00%

	CZ
	17.06%
	57.46%
	4.01%
	9.65%
	15.06%
	29.00%
	85.90%
	14.00%
	39.20%
	37.00%
	56.00%

	DK
	39.90%
	31.42%
	7.50%
	18.78%
	6.98%
	46.00%
	87.20%
	21.00%
	37.80%
	41.00%
	74.00%

	EE
	21.12%
	61.16%
	4.98%
	13.18%
	2.32%
	43.00%
	90.00%
	25.00%
	37.50%
	53.00%
	71.00%

	FI
	28.67%
	44.77%
	5.29%
	11.78%
	11.18%
	60.00%
	92.30%
	22.00%
	38.90%
	60.00%
	76.00%

	FR
	33.84%
	33.59%
	6.54%
	13.62%
	6.70%
	59.00%
	89.60%
	23.00%
	36.10%
	45.00%
	76.00%

	DE
	34.57%
	33.65%
	7.86%
	5.06%
	11.35%
	55.00%
	90.40%
	19.00%
	34.20%
	47.00%
	72.00%

	EL
	N/A
	N/A
	5.68%
	17.05%
	17.60%
	39.00%
	86.30%
	26.00%
	37.80%
	40.00%
	64.00%

	HU
	31.83%
	44.42%
	5.69%
	12.66%
	3.75%
	38.00%
	86.80%
	32.00%
	40.30%
	39.00%
	62.00%

	IE
	42.38%
	16.57%
	9.14%
	14.90%
	1.63%
	62.00%
	92.50%
	23.00%
	38.60%
	56.00%
	77.00%

	IT
	52.50%
	22.97%
	6.52%
	8.96%
	18.73%
	47.00%
	83.30%
	19.00%
	35.30%
	29.00%
	63.00%

	LV
	11.38%
	76.00%
	2.95%
	11.89%
	4.12%
	40.00%
	89.70%
	19.00%
	36.70%
	48.00%
	64.00%

	LT
	5.13%
	85.90%
	1.19%
	7.97%
	1.95%
	43.00%
	88.90%
	20.00%
	36.70%
	52.00%
	65.00%

	LU
	58.39%
	16.19%
	16.01%
	8.23%
	9.99%
	59.00%
	91.30%
	18.00%
	33.30%
	48.00%
	73.00%

	NL
	31.89%
	33.77%
	6.72%
	10.33%
	14.06%
	52.00%
	88.20%
	23.00%
	37.20%
	45.00%
	75.00%

	NO
	27.75%
	44.19%
	5.42%
	17.17%
	9.53%
	62.00%
	93.60%
	23.00%
	39.40%
	61.00%
	81.00%

	PL
	11.71%
	65.83%
	1.93%
	13.91%
	7.34%
	48.00%
	88.40%
	23.00%
	38.30%
	45.00%
	69.00%

	PT
	N/A
	N/A
	4.66%
	21.33%
	8.77%
	59.00%
	90.80%
	28.00%
	36.70%
	51.00%
	77.00%

	RO
	38.27%
	41.84%
	7.59%
	12.69%
	2.43%
	25.00%
	75.10%
	13.00%
	29.40%
	30.00%
	36.00%

	SK
	N/A
	N/A
	4.38%
	12.56%
	3.70%
	32.00%
	85.40%
	23.00%
	40.30%
	35.00%
	56.00%

	SI
	30.33%
	34.17%
	6.57%
	6.64%
	5.90%
	52.00%
	89.20%
	24.00%
	36.10%
	45.00%
	68.00%

	ES
	42.14%
	28.74%
	6.83%
	16.69%
	14.84%
	58.00%
	90.70%
	27.00%
	37.80%
	51.00%
	71.00%

	SE
	35.97%
	32.73%
	6.62%
	9.42%
	9.96%
	64.00%
	92.00%
	14.00%
	36.90%
	56.00%
	78.00%

	CH
	33.35%
	32.83%
	7.11%
	6.51%
	12.58%
	49.00%
	89.30%
	19.00%
	35.60%
	42.00%
	69.00%

	UK
	49.95%
	17.98%
	7.91%
	11.11%
	3.77%
	54.00%
	89.00%
	22.00%
	35.30%
	46.00%
	72.00%


Source: UNECE (2011); European Commission (2011); and European Transport Safety Council (2009)


Table 1(c) Infrastructure related SPIs and raw data
	
	Road
	EMS

	
	Motorway density (km/1000km2)
	Share of motorways and national roads in total road length
	EMS stations
	EMS staff
	EMS transportation units
	EMS response time

	
	
	
	EMS stations per 1000 km2
	% of EMS stations with at least one physician
	EMS medical staff per 10.000 citizens
	% of physi-cians and para-medics
	EMS transpor-tation units per 100 km of road length
	% of high-equipped transpor-tation units*
	average response time (min)
	% of EMS response meeting the demand

	
	06-08
	06-08
	2006
	2006
	2006
	2006
	2006
	2006
	2006
	2006

	AT
	20.15
	11.22%
	50.55
	29.00%
	51.32
	29.40%
	23.01
	100.00%
	N/A
	95.00%

	BE
	57.75
	9.38%
	49.46
	26.50%
	8.90
	15.00%
	0.30
	100.00%
	6.00
	100.00%

	BG
	3.69
	3.33%
	19.82
	10.00%
	9.55
	22.40%
	0.55
	86.60%
	15.00
	N/A

	CY
	27.78
	30.48%
	19.46
	10.00%
	4.19
	19.00%
	10.39
	100.00%
	N/A
	100.00%

	CZ
	8.37
	5.28%
	24.22
	N/A
	3.60
	15.10%
	0.49
	100.00%
	7.83
	89.20%

	DK
	25.30
	4.28%
	32.48
	N/A
	3.60
	5.60%
	0.65
	100.00%
	8.00
	100.00%

	EE
	2.20
	5.51%
	11.72
	54.70%
	9.94
	18.40%
	0.16
	100.00%
	23.00
	64.00%

	FI
	2.11
	17.03%
	0.74
	2.40%
	1.05
	28.10%
	0.52
	100.00%
	N/A
	N/A

	FR
	20.13
	2.04%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	DE
	35.26
	8.23%
	51.30
	39.40%
	6.43
	73.60%
	11.79
	85.20%
	8.10
	91.50%

	EL
	8.24
	9.58%
	0.09
	N/A
	1.93
	N/A
	0.65
	99.10%
	15.00
	N/A

	HU
	10.45
	4.04%
	23.22
	N/A
	0.96
	13.10%
	0.52
	100.00%
	16.00
	72.00%

	IE
	4.56
	5.63%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	IT
	21.87
	5.41%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	LV
	0.00
	2.35%
	0.65
	10.00%
	7.34
	17.20%
	0.35
	10.00%
	17.00
	88.00%

	LT
	4.73
	6.37%
	0.93
	10.00%
	4.75
	18.80%
	0.53
	10.00%
	N/A
	N/A

	LU
	56.84
	34.15%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	NL
	62.80
	3.76%
	12.28
	N/A
	1.62
	N/A
	0.48
	100.00%
	N/A
	N/A

	NO
	0.79
	28.77%
	0.62
	N/A
	N/A
	N/A
	0.72
	92.70%
	N/A
	90.00%

	PL
	2.14
	7.06%
	0.67
	10.00%
	2.10
	N/A
	0.69
	100.00%
	N/A
	90.00%

	PT
	28.16
	11.05%
	52.12
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	RO
	1.10
	20.08%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	SK
	7.32
	8.56%
	69.54
	10.00%
	7.09
	21.40%
	0.86
	53.20%
	N/A
	N/A

	SI
	30.48
	4.06%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	ES
	25.43
	3.85%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	SE
	4.00
	4.78%
	0.61
	N/A
	4.41
	0.20%
	0.12
	100.00%
	12.55
	90.00%

	CH
	33.32
	2.47%
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	UK
	14.90
	12.50%
	40.15
	N/A
	4.65
	64.20%
	0.15
	21.40%
	N/A
	100.00%


*The high-equipped transportation units include Basic Life Support Units, Mobile Intensive Care Units and helicopters/planes.
Source: European Commission (2011); European Union Road Federation (2010); and Gitelman et al. (2008)
[bookmark: _Toc319675192][bookmark: _Toc324499650]Table 2 Five univariate outliers
	Country
	Indicator
	z-score

	AT
	EMS medical staff per 10,000 citizens
	3.88

	AT
	EMS transportation units per 100 km of road length
	3.39

	LU
	Annual renewal rate of passenger cars
	3.41

	RO
	Average percentage occupant protection score for new cars
	-3.61

	UK
	% of high-equipped transportation units
	-3.45
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Table 3 Original and imputed data for the indicator of mean speed on motorways for the 28 European countries
	
	Mean speed on motorways

	
	Original value
	Imputed mean
	Imputed interval

	AT
	0.910
	0.910
	0.910

	BE
	1.009
	1.009
	1.009

	BG
	0.932
	0.932
	0.932

	CY
	1.050
	1.050
	1.050

	CZ
	0.835
	0.835
	0.835

	DK
	0.936
	0.936
	0.936

	EE
	N/A
	0.983
	[0.946, 1.020]

	FI
	0.886
	0.886
	0.886

	FR
	0.915
	0.915
	0.915

	DE
	N/A
	0.943
	[0.918, 0.969]

	EL
	N/A
	0.916
	[0.843, 0.990]

	HU
	0.858
	0.858
	0.858

	IE
	0.903
	0.903
	0.903

	IT
	N/A
	1.012
	[0.910, 1.115]

	LV
	N/A
	0.951
	[0.939, 0.963]

	LT
	0.854
	0.854
	0.854

	LU
	0.885
	0.885
	0.885

	NL
	0.950
	0.950
	0.950

	NO
	1.000
	1.000
	1.000

	PL
	N/A
	1.059
	[1.029, 1.089]

	PT
	1.008
	1.008
	1.008

	RO
	N/A
	0.941
	[0.817, 1.064]

	SK
	N/A
	0.977
	[0.940, 1.015]

	SI
	0.885
	0.885
	0.885

	ES
	0.953
	0.953
	0.953

	SE
	0.966
	0.966
	0.966

	CH
	0.906
	0.906
	0.906

	UK
	0.994
	0.994
	0.994
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Table 4 Index scores derived from exact and interval data
	
	

	
[,
	
]

	AT
	0.965
	[0.883,
	1.000]

	BE
	0.958
	[0.847,
	1.000]

	BG
	0.869
	[0.730,
	1.000]

	CY
	0.834
	[0.680,
	0.928]

	CZ
	0.912
	[0.845,
	0.960]

	DK
	0.884
	[0.760,
	1.000]

	EE
	0.928
	[0.857,
	1.000]

	FI
	0.906
	[0.816,
	0.966]

	FR
	0.944
	[0.866,
	1.000]

	DE
	1.000
	[0.909,
	1.000]

	EL
	0.749
	[0.601,
	0.885]

	HU
	0.751
	[0.657,
	0.794]

	IE
	0.905
	[0.773,
	0.987]

	IT
	0.967
	[0.809,
	1.000]

	LV
	0.746
	[0.647,
	0.863]

	LT
	0.805
	[0.687,
	0.844]

	LU
	1.000
	[1.000,
	1.000]

	NL
	1.000
	[0.978,
	1.000]

	NO
	0.941
	[0.874,
	0.981]

	PL
	0.845
	[0.805,
	0.858]

	PT
	0.903
	[0.766,
	1.000]

	RO
	0.766
	[0.547,
	0.988]

	SK
	0.877
	[0.692,
	1.000]

	SI
	0.913
	[0.761,
	1.000]

	ES
	0.961
	[0.857,
	1.000]

	SE
	1.000
	[1.000,
	1.000]

	CH
	1.000
	[0.902,
	1.000]

	UK
	0.971
	[0.906,
	0.986]
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Table 5 Cross-index score and risk score of the 28 European countries
	
	Cross-index score
	Ranking
	Road safety risk score
	Ranking

	SE
	0.996
	1
	0.940
	3

	NL
	0.984
	2
	0.985
	1

	LU
	0.983
	3
	0.675
	8

	CH
	0.973
	4
	0.950
	2

	DE
	0.960
	5
	0.773
	6

	ES
	0.931
	6
	0.503
	14

	AT
	0.924
	7
	0.514
	13

	UK
	0.911
	8
	0.930
	4

	BE
	0.908
	9
	0.463
	15

	IT
	0.904
	10
	0.577
	12

	FR
	0.902
	11
	0.644
	9

	NO
	0.885
	12
	0.897
	5

	EE
	0.884
	13
	0.298
	21

	PT
	0.864
	14
	0.455
	16

	IE
	0.862
	15
	0.588
	11

	FI
	0.858
	16
	0.704
	7

	CZ
	0.851
	17
	0.357
	19

	DK
	0.840
	18
	0.609
	10

	SI
	0.836
	19
	0.372
	18

	SK
	0.822
	20
	0.301
	20

	PL
	0.791
	21
	0.262
	24

	CY
	0.779
	22
	0.373
	17

	BG
	0.776
	23
	0.249
	25

	LT
	0.757
	24
	0.234
	26

	RO
	0.709
	25
	0.218
	28

	HU
	0.707
	26
	0.281
	23

	EL
	0.702
	27
	0.286
	22

	LV
	0.700
	28
	0.227
	27
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Table 6 Benchmarks for the underperforming countries
	
	DE
	LU
	NL
	SE
	CH

	AT
	
	0.280
	0.009
	0.547
	0.129

	BE
	
	0.123
	0.711
	0.110
	0.014

	BG
	
	
	0.777
	0.092
	

	CY
	
	0.067
	0.043
	0.723
	

	CZ
	
	
	0.711
	0.200
	

	DK
	
	0.064
	0.236
	0.584
	

	EE
	
	
	
	0.928
	

	FI
	
	0.068
	0.027
	0.810
	

	FR
	0.159
	0.089
	0.146
	0.551
	

	EL
	
	
	0.400
	0.349
	

	HU
	
	0.237
	0.185
	0.329
	

	IE
	0.044
	0.207
	
	0.654
	

	IT
	
	
	0.942
	0.025
	

	LV
	
	0.167
	
	0.579
	

	LT
	
	
	0.151
	0.654
	

	NO
	
	
	
	0.941
	

	PL
	
	
	0.032
	0.813
	

	PT
	
	0.275
	0.483
	0.085
	0.060

	RO
	
	0.139
	0.428
	0.127
	0.072

	SK
	
	0.178
	0.307
	0.365
	0.027

	SI
	
	0.373
	
	0.221
	0.319

	ES
	
	0.072
	0.330
	0.508
	0.051

	UK
	0.253
	
	
	0.718
	



Table 7 Road safety priorities in each of the 28 European countries
	
	Alcohol 
	Speed
	Protective systems

	
	% of drivers above legal BAC limit in roadside checks
	% of fatalities attributed to alcohol
	Mean speed
	% of speed limit violations
	Seat belts
	Child restraint

	
	
	
	on motorways
	on rural roads
	on urban roads
	on motorways
	on rural roads
	on urban roads
	
	

	
	
	
	
	
	
	
	
	
	Daytime seatbelt wearing rate in front seats 
	Daytime seatbelt wearing rate in rear seats
	Daytime usage rate of child restraints

	AT
	√√√√
	
	
	
	√
	√√
	
	
	
	√√√
	

	BE
	√√√√
	
	
	
	√
	
	
	√√
	
	√√√
	

	BG
	√√√
	
	
	√
	
	√√
	
	
	
	
	√√√√

	CY
	√√√√
	
	
	√
	
	√√
	
	
	
	√√√
	

	CZ
	√√√
	
	
	
	√
	√√
	
	
	
	
	√√√√

	DK
	√√√√
	
	
	
	√√
	
	√√√
	
	
	
	√

	EE
	
	√√√√
	
	√
	
	
	√√
	
	
	√√√
	

	FI
	√√√√
	
	
	√
	
	
	√√
	
	
	
	√√√

	FR
	√√√√
	
	
	
	√√
	
	√√√
	
	
	
	√

	DE
	√√√√
	
	
	
	√√
	
	
	√√√
	
	
	√

	EL
	√√√
	
	
	√
	
	
	√√
	
	
	
	√√√√

	HU
	√√√√
	
	
	
	√
	√√
	
	
	
	
	√√√

	IE
	√√√√
	
	
	
	√√
	
	
	√√√
	
	√
	

	IT
	√√√
	
	
	
	√√
	
	√
	
	
	√√√√
	

	LV
	√√√√
	
	
	
	√
	
	
	√√
	
	√√√
	

	LT
	√√√
	
	
	
	√
	
	√√
	
	
	
	√√√√

	LU
	
	√√√√
	
	√√
	
	
	
	√
	
	
	√√√

	NL
	√
	
	√√√√
	
	
	
	
	√√√
	
	
	√√√

	NO
	√√√√
	
	
	
	√√
	
	√√√
	
	√
	
	

	PL
	√√√√
	
	
	
	√√
	
	
	√√√
	
	√
	

	PT
	√√√√
	
	
	√
	
	√√
	
	
	
	
	√√√

	RO
	√√√√
	
	
	√
	
	√√
	
	
	
	√√√
	

	SK
	√√√√
	
	
	√
	
	
	√√
	
	
	√√√
	

	SI
	√√√√
	
	
	
	√√
	√
	
	
	
	
	√√√

	ES
	√√√√
	
	
	√√
	
	
	
	√√√
	√
	
	

	SE
	
	√
	√√√√
	
	
	
	
	√√√
	√√
	
	

	CH
	
	√√√√
	
	√√
	
	
	√
	
	√√√
	
	

	UK
	√√√√
	
	
	
	√√
	
	
	√√√
	√
	
	



	
	Vehicle

	
	Age distribution of the vehicle fleet
	Composition of the vehicle fleet
	Technical scores

	
	
	
	Occupant protection
	Pedestrian protection
	Child protection
	SBR

	
	% of new passenger cars: Less than 6 years
	% of old passenger cars: More than 10 years
	Annual renewal rate of passenger cars
	% of goods vehicles in vehicle fleet
	% of powered two-wheelers in vehicle fleet
	% of new passenger cars awarded 5 stars for occupant protection
	Average percentage occupant protection score for new cars
	% of new passenger cars awarded 3 stars for pedestrian protection
	Average percentage pedestrian protection score for new cars
	% of new passenger cars awarded 4 stars for child protection
	% of new passenger cars with SBR

	AT
	
	√√√√
	
	
	√√
	√√√
	
	
	
	√√√
	

	BE
	
	√√
	
	
	√√√
	
	
	√√√√
	
	
	√√√√

	BG
	
	√√√√
	
	
	√√
	
	
	
	
	√√√
	√√√

	CY
	√√√√
	
	
	
	√√√
	
	
	
	
	√√
	√√

	CZ
	√√√√
	
	
	
	√√
	
	
	
	
	√√√
	√√√

	DK
	
	√√√
	
	√√√√
	
	√√
	
	
	
	√√
	

	EE
	
	√√√√
	
	√√
	
	√√√
	
	
	
	
	√√√

	FI
	√√√√
	
	
	
	√√√
	√√
	
	
	
	
	√√

	FR
	√√√√
	
	
	√√√
	
	
	
	
	
	√√
	√√

	DE
	√√√√
	
	
	
	√√
	
	
	
	
	√√√
	√√√

	EL
	
	√√√
	
	
	√√√√
	
	
	
	
	√√
	√√

	HU
	
	√√√√
	
	
	√√√
	
	
	
	
	√√
	√√

	IE
	√√√√
	
	
	√√
	
	
	
	
	
	√√√
	√√√

	IT
	
	
	√√√
	
	√√
	
	
	
	
	√√√√
	√√√√

	LV
	√√√√
	
	
	√√√
	
	√√
	
	
	
	
	√√

	LT
	
	√√√√
	
	
	√√
	
	
	
	
	√√√
	√√√

	LU
	√√√√
	
	
	
	√√
	
	
	
	
	√√√
	√√√

	NL
	
	√√√√
	
	
	√√√
	
	
	
	
	√√
	√√

	NO
	√√√√
	
	
	
	√√√
	
	
	
	
	√√
	√√

	PL
	√√√√
	
	
	
	√√√
	
	
	
	
	√√
	√√

	PT
	
	√√√√
	
	√√√
	
	
	
	
	
	√√
	√√

	RO
	
	√√√√
	
	√√
	
	
	
	
	
	√√√
	√√√

	SK
	
	
	√√√√
	√√
	
	
	
	
	
	√√√
	√√√

	SI
	√√√√
	
	
	
	√√
	
	
	
	
	√√√
	√√√

	ES
	
	
	√√√√
	√√√
	
	
	
	
	
	√√
	√√

	SE
	
	√√√
	
	
	√√√√
	
	
	√√
	
	
	√√

	CH
	√√√√
	
	
	
	√√
	
	
	
	
	√√√
	√√√

	UK
	
	
	√√√√
	√√
	
	
	
	
	
	√√√
	√√√



	
	Road
	EMS

	
	Motorway density
	% of motorways and national roads in total road length
	EMS stations
	EMS staff
	EMS transportation units
	EMS response time

	
	
	
	EMS stations per 1000 km2
	% of EMS stations with at least one physician
	EMS medical staff per 10.000 citizens
	% of physicians and paramedics
	EMS transportation units per 100 km of road length
	% of high-equipped transportation units
	average response time
	% of EMS response meeting the demand

	AT
	√√√√
	
	
	√√√
	
	
	
	
	
	

	BE
	
	√√√√
	
	
	
	√√√
	√√√
	
	
	

	BG
	√√√√
	
	
	
	
	
	√√√
	
	√√√
	

	CY
	√√√√
	
	
	
	
	√√√
	
	
	√√√
	

	CZ
	√√√√
	
	
	
	
	√√√
	√√√
	
	
	

	DK
	
	√√√√
	
	
	
	√√√
	
	√√√
	
	

	EE
	√√√√
	
	
	√√√
	
	
	
	
	
	√√√

	FI
	√√√√
	
	
	√√√
	
	
	
	
	
	

	FR
	
	√√√√
	
	
	
	
	
	
	√√√
	

	DE
	
	√√√√
	
	√√√
	
	
	√√√
	
	
	

	EL
	√√√√
	
	√√√
	
	
	
	
	
	
	

	HU
	√√√√
	
	
	
	√√√
	
	
	
	
	

	IE
	√√√√
	
	
	√√√
	
	
	
	
	
	

	IT
	√√√√
	
	
	√√√
	
	
	√√√
	
	
	

	LV
	√√√√
	
	
	
	
	
	√√√
	
	√√√
	

	LT
	√√√√
	
	
	
	
	
	√√√
	
	√√√
	

	LU
	
	√√√
	
	√√√√
	
	
	√√√√
	
	
	

	NL
	
	√√√√
	
	√√√
	
	√√√
	
	
	
	

	NO
	√√√√
	
	√√√
	
	
	
	√√√
	
	
	

	PL
	√√√√
	
	
	
	√√√
	
	
	
	
	√√√

	PT
	√√√√
	
	
	
	
	√√√
	
	√√√
	
	

	RO
	√√√√
	
	
	
	
	√√√
	
	
	
	

	SK
	√√√√
	
	
	
	
	
	
	√√√
	
	

	SI
	
	√√√√
	
	
	√√√
	
	√√√
	
	
	

	ES
	
	√√√√
	
	
	
	√√√
	
	
	
	

	SE
	√√√√
	
	√√√
	
	
	√√√
	
	
	
	

	CH
	
	√√√√
	
	
	
	
	
	√√√
	
	√√√

	UK
	√√√√
	
	
	
	
	
	√√√
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[bookmark: _Toc324499636][bookmark: _Toc319675178]Figure 1 Venn diagram on crash factors (Source: Rumar, 1985)



Figure 2 Hierarchical framework of the developed safety performance indicators
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Figure 3 Overall summary of missing values







Figure 4 A hierarchical structure of indicators
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Figure 5 Country classification based on the interval MLDEA-CI model






(a) (b)    
Figure 6 The benchmarks for Austria and Belgium, respectively



[bookmark: _Toc319675216][bookmark: _Toc324499674]Figure 7 Assigned weights (and shares) in each layer of the hierarchy for Austria
Note: R: Road user behavior; V: Vehicle; I: Infrastructure; Al: Alcohol; S: Speed; P: Protective systems; Ag: Age distribution of the vehicle fleet; C: Composition of the vehicle fleet; T: Technical scores; Ro: Road; E: Emergency medical services.
AT: 0.965
AT: 0.965	
LU 	NL 	SE 	CH	0.28032820000000935	8.8858020000003955E-3	0.54662180000001781	0.12924959999999999	


BE: 0.958	
LU 	NL 	SE 	CH	0.12289630000000012	0.71110050000000002	0.11010209999999998	1.4105309999999999E-2	

image41.wmf
LU

[,]

ijij

yy


oleObject48.bin

image42.wmf
LUL

(),1,,,1,,,01

ijijijijijij

yytyyimjnt

=+-==££

LL


oleObject49.bin

image43.wmf
ˆ

icij

wy


oleObject50.bin

image44.wmf
LUL

ˆ

ˆ

()

icijicijijij

wywtyy

+-


oleObject51.bin

image45.wmf
ˆ

ijicij

qwt

=


oleObject52.bin

image46.wmf
ˆ

0,,

ijic

qwij

££"


oleObject53.bin

image47.wmf
()(1)

(1)

1

1

LUL

1

LUL

1

()()

ˆ

max()

ˆ

..()1,1,,

ˆ

ˆ

Θ

,1,,,1,,1

ˆ

0,1,,,1,,

ˆ

0,1,,

k

kk

k

k

ii

i

kk

k

m

cicicicicic

i

m

icijijijij

i

kk

icicik

iAiA

iA

ijic

ic

CIwyqyy

stwyqyyjn

wwpimkK

qwimjn

wim

+

+

+

+

=

=

ÎÎ

Î

=+-

+-£=

=Î==-

-£==

³=

å

å

åå

L

LL

LL

L


oleObject54.bin

image48.wmf
()(1)

(1)

1

1

U

1

U

1

L

1

()()

ˆ

max

ˆ

..1,

ˆ

1,1,,,

ˆ

ˆ

Θ

,1,,,1,,1

ˆ

0,1,,

k

kk

k

k

ii

i

kk

k

m

cicic

i

m

icic

i

m

icij

i

kk

icicik

iAiA

iA

ic

CIwy

stwy

wyjnjc

wwpimkK

wim

+

+

+

+

=

=

=

ÎÎ

Î

=

£

£=¹

=Î==-

³=

å

å

å

åå

L

LL

L


oleObject55.bin

image49.wmf
upper

c

CI


oleObject56.bin

image50.wmf
()(1)

(1)

1

1

L

1

L

1

U

1

()()

ˆ

max

ˆ

..1,

ˆ

1,1,,,

ˆ

ˆ

Θ

,1,,,1,,1

ˆ

0,1,,

k

kk

k

k

ii

i

kk

k

m

cicic

i

m

icic

i

m

icij

i

kk

icicik

iAiA

iA

ic

CIwy

stwy

wyjnjc

wwpimkK

wim

+

+

+

+

=

=

=

ÎÎ

Î

=

£

£=¹

=Î==-

³=

å

å

å

åå

L

LL

L


oleObject57.bin

image51.wmf
lower

c

CI


oleObject58.bin

image52.wmf
[,]

lowerupper

cc

CICI


oleObject59.bin

image53.wmf
2420%

RIV

ShareShareShare

>>>


oleObject60.bin

image54.wmf
*

c

CI


oleObject61.bin

oleObject62.bin

oleObject63.bin

image1.wmf
k

GG

L

1

,,


oleObject64.bin

oleObject65.bin

oleObject66.bin

oleObject67.bin

oleObject68.bin

oleObject69.bin

oleObject70.bin

oleObject71.bin

oleObject1.bin

oleObject72.bin

oleObject73.bin

oleObject74.bin

image55.png
ROADWAY
34%

13%
VEHICLE




image56.emf
Protective  

systems

Alcohol

Speed

Mean speed of vehicles on motorways, 

normalized by speed limit

Mean speed of vehicles on rural roads, 

normalized by speed limit

Road user 

behavior

Mean speed

% of drivers above legal BAC limit in roadside checks

% of fatalities attributed to alcohol

% of vehicles exceeding the speed limit 

on motorways

% of vehicles exceeding the speed limit 

on rural roads

% of vehicles exceeding the speed limit 

on urban roads

Mean speed of vehicles on urban roads, 

normalized by speed limit

Speed limit 

violations

Seat belt

Child 

restraint

Daytime seatbelt wearing rate in front 

seats of light vehicles (%)

Daytime seatbelt wearing rate in rear 

seats of light vehicles (%) 

Daytime usage rate of child restraints 

(%)

Technical 

scores

Age distribution of 

the vehicle fleet

Composition of the 

vehicle fleet

% of goods vehicles in the vehicle fleet

% of powered two-wheelers in the vehicle fleet

Vehicle

% of new (less than 6 years) passenger cars

% of old (more than 10 years) passenger cars

Annual renewal rate of passenger cars (%)

Occupant 

protection

Pedestrian 

protection

% of new passenger cars awarded 

5 stars for occupant protection

 Average percentage occupant 

protection score for new cars

% of new passenger cars with seat 

belt reminder

Child 

protection

Seat belt 

reminder

% of new passenger cars awarded 

3 stars for pedestrian protection

Average percentage pedestrian 

protection score for new cars

% of new passenger cars awarded 

4 stars for child protection

EMS

Road

Infrastructure

EMS stations

EMS staff

EMS stations per 1000 km

2

% of EMS stations with at least 

one physician

% of EMS response meeting the 

demand

EMS 

transportation 

units

EMS 

response time

EMS medical staff per 10,000 

citizens

% of physicians and paramedics

EMS transportation units per 100 

km of road length

% of motorways and national roads in total road length

Motorway density 

% of high-equipped transportation 

units

average response time

Road safety 

performance 

index


oleObject75.bin
Protective  systems


Alcohol�

Speed�

Mean speed of vehicles on motorways, normalized by speed limit


Mean speed of vehicles on rural roads, normalized by speed limit�

Road user behavior�

Mean speed�

% of drivers above legal BAC limit in roadside checks�

% of fatalities attributed to alcohol


% of vehicles exceeding the speed limit on motorways�

% of vehicles exceeding the speed limit on rural roads�

% of vehicles exceeding the speed limit on urban roads�

Mean speed of vehicles on urban roads, normalized by speed limit


Speed limit violations


Seat belt�

Child restraint�

Daytime seatbelt wearing rate in front seats of light vehicles (%)�

Daytime seatbelt wearing rate in rear seats of light vehicles (%) 


Daytime usage rate of child restraints (%)


Technical scores


Age distribution of the vehicle fleet�

Composition of the vehicle fleet�

% of goods vehicles in the vehicle fleet


% of powered two-wheelers in the vehicle fleet�

Vehicle�

% of new (less than 6 years) passenger cars�

% of old (more than 10 years) passenger cars


Annual renewal rate of passenger cars (%)


Occupant protection�

Pedestrian protection�

% of new passenger cars awarded 5 stars for occupant protection�

 Average percentage occupant protection score for new cars


% of new passenger cars with seat belt reminder


Child protection�

Seat belt reminder�

% of new passenger cars awarded 3 stars for pedestrian protection�

Average percentage pedestrian protection score for new cars


% of new passenger cars awarded 4 stars for child protection


EMS


Road�

Infrastructure�

EMS stations�

EMS staff�

EMS stations per 1000 km2�

% of EMS stations with at least one physician


% of EMS response meeting the demand


EMS 
transportation units�

EMS 
response time�

EMS medical staff per 10,000 citizens�

% of physicians and paramedics


EMS transportation units per 100 km of road length


% of motorways and national roads in total road length�

Motorway density 


% of high-equipped transportation units


average response time


Road safety performance index�


image57.png
Overall Summary of Missing Values

I Conplete Data
Bincompiete Data

2%
00%)
2
24

Variables Cases Values




image2.wmf
(,)

N

μ

σ

2


image58.emf












DMU







(2)

(2)

m

y

(1)

m

y

(1)

1

y

(1)

2

y

(2)

1

y

(2)

2

y

()

1

K y

()

2

K

y

()

()

K

K

m

y

K layers


oleObject76.bin
DMU


K layers



image59.png




image60.emf
AT

0.965

R

I2

S P

I1

I9

Al

I11

1.207

(72.35%)

0.333

0.6 0.4

0.6

0.40.6

0.4 0.267

V

I14

C

T

I15

Ag

0.333

0.33 0.6 0.20.3

0.4 0.267

I18 I17

0.6 0.4

I19 I20

0.60.4

I

I23

E Ro

0.4

0.4 0.6

I24

0.6

0.098

(6.45%)

0.375

(21.20%)

0.60.4

I3 I5 I4

0.330.40.27

I6 I8 I7

0.280.40.32

I10

0.4

I12 I13

0.40.27

I16

0.4

I21 I22

0.20.3

0.20.23

I26

0.4 0.6

I27 I28

0.60.4

0.30.27

I25 I30

0.4 0.6

I31 I32

0.40.6

I29


oleObject77.bin
AT
0.965


R


I2


S


P


I1


I9


Al


I11


1.207
(72.35%)


0.333


0.6


0.4


0.6


0.4


0.6


0.4


0.267


V


I14


C


T


I15


Ag


0.333


0.33


0.6


0.2


0.3


0.4


0.267


I18


I17


0.6


0.4


I19


I20


0.6


0.4


I


I23


E


Ro


0.4


0.4


0.6


I24


0.6


0.6


0.4


I3


I5


I4


0.098
(6.45%)


0.375
(21.20%)


0.33


0.4


0.27


I6


I8


I7


0.28


0.4


0.32


I10


0.4


I12


I13


0.4


0.27


I16


0.4


I21


I22


0.2


0.3


0.2


0.23


I26


0.4


0.6


I27


I28


0.6


0.4


0.3


0.27


I25


I30


0.4


0.6


I31


I32


0.4


0.6


I29



oleObject2.bin

image3.wmf
,01

α

α

<<


oleObject3.bin

image4.wmf
α


oleObject4.bin

oleObject5.bin

image5.wmf
{

}

2

1/2

(,,):

α

outlier

α

μ

σ

xx

μ

z

σ

-

=->


oleObject6.bin

oleObject7.bin

image6.wmf
2

(,,)

xoutlier

α

μ

σ

Î


oleObject8.bin

image7.wmf
i

i

xx

z

sd

-

=


oleObject9.bin

image8.wmf
x


oleObject10.bin

image9.wmf
x

n


oleObject11.bin

image10.wmf
1

1

()()

1

n

T

ninin

i

xxxx

n

=

=--

-

å

V


oleObject12.bin

image11.wmf
2

i

D


oleObject13.bin

image12.wmf
21

1

()()

n

T

iinnin

i

Dxxxx

-

=

=--

å

V


oleObject14.bin

oleObject15.bin

oleObject16.bin

oleObject17.bin

image13.wmf
1,2,,

jN

=

L


oleObject18.bin

image14.wmf
1

1

ˆ

N

i

i

YY

N

=

=

å


oleObject19.bin

image15.wmf
Y


oleObject20.bin

image16.wmf
V


oleObject21.bin

image17.wmf
ˆ

i

V


oleObject22.bin

image18.wmf
1

1

ˆ

N

i

i

VV

N

=

=

å


oleObject23.bin

image19.wmf
2

1

1

ˆ

()

1

N

i

i

BYY

N

=

=-

-

å


oleObject24.bin

oleObject25.bin

image20.wmf
1

(1)

TVB

N

=++


oleObject26.bin

image21.wmf
1/2

()

YYT

-

-


oleObject27.bin

image22.wmf
2

1

(1)(1)

dfN

r

=-+


oleObject28.bin

image23.wmf
1

(1)

B

r

N

V

=+


oleObject29.bin

image24.wmf
1

m

jiij

i

CIwy

=

=

å


oleObject30.bin

image25.wmf
1

1

m

i

i

w

=

=

å


oleObject31.bin

image26.wmf
1

max

ic

m

cicic

w

i

CIwy

=

=

å


oleObject32.bin

image27.wmf
1

1,1,,

m

icij

i

wyjn

=

£=

å

L


oleObject33.bin

image28.wmf
,1,,

ic

wim

³=

L

e


oleObject34.bin

image29.wmf
e


oleObject35.bin

image30.wmf
()

1211

()(1)(3)(2)

121

132

()(1)()(2)(1)

1

max(((())))

K

KKk

Kk

K

Kk

iiii

Kk

m

KKk

ciiiiiic

i

iAiAiAiA

CIwwwwwy

-

+

-

+

-

=

ÎÎÎÎ

=

ååååå

LL


oleObject36.bin

image31.wmf
()

k

k

i

w


oleObject37.bin

image32.wmf
()

1,,

k

k

im

=

L


oleObject38.bin

image33.wmf
()

k

k

i

A


oleObject39.bin

image34.wmf
(1)

1

1

()()

1

ˆ

kK

k

k

f

k

K

kK

iii

k

iA

www

+

+

-

=

Î

=Õ


oleObject40.bin

image35.wmf
()(1)

(1)

1

1

ˆ

1

1

()()

ˆ

max

ˆ

..1,1,,

ˆ

ˆ

,1,,,1,,1

ˆ

,1,,

ic

k

kk

k

k

ii

i

kk

k

m

cicic

w

i

m

icij

i

kk

icicik

iAiA

iA

ic

CIwy

stwyjn

wwpimkK

wim

+

+

+

+

=

=

ÎÎ

Î

=

£=

=ÎQ==-

³=

å

å

åå

L

LL

L

e


oleObject41.bin

image36.wmf
ˆ

ic

w


oleObject42.bin

image37.wmf
()

k

k

i

p


oleObject43.bin

image38.wmf
Q


oleObject44.bin

oleObject45.bin

image39.wmf
1

ˆ

ˆ

cmc

ww

K


oleObject46.bin

image40.wmf
ij

y


oleObject47.bin

