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Abstract: In this contribution, we consider the problem of finding the minimal Euclidean distance 

between a given converging decreasing one-dimensional array X in (R+)∞ and arrays of the form 

𝐴𝑎 = (𝑎, 𝑎, … , 𝑎⏟      , 0,0, …
𝑎 𝑡𝑖𝑚𝑒𝑠

), with a being a natural number. We find a complete, if not always unique, 

solution. Our contribution illustrates how a formalism derived in the context of research evaluation 

and informetrics can be used to solve a purely mathematical problem. 
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1. Introduction 

Let (R+)∞ be the positive cone of all infinite sequences with non-negative real values. Elements 

in this cone will be referred to as one-dimensional arrays, in short, arrays. We recall that any finite 

sequence with non-negative values can be considered as an element in (R+)∞ by adding infinitely 

many zeros. Let X = (𝑥𝑟)𝑟=1,2… and Y = (𝑦𝑟)𝑟=1,2… be elements of (R+)∞, then X ≤ Y if for all r = 1,2, 

…, xr ≤ yr. Equality only occurs if for all r, xr = yr. In this way, (R+)∞ becomes a cone with a (natural) 

partial order ≤. An array X = (𝑥𝑟)𝑟=1,2… in (R+)∞ is said to be decreasing if for all r = 1,2, …, xr ≥ xr+1. 

We recall the definition of the h-index as introduced by Hirsch [1]. Consider, (𝑐𝑟)𝑟=1,…,𝑅, the 

list of received citations of the articles (co-) authored by scientist S, ranked according to the number 

of citations each of these articles has received. Articles with the same number of citations are given 

different rankings. Then, the h-index of scientist S is h if the first h articles each received at least h 

citations, while the article ranked h+1 received strictly less than h+1 citations. Stated otherwise, 

scientist S’ h-index is h if h is the largest natural number such that the first h publications each 

received at least h citations. 

This index, although having many disadvantages in practical use ([2,3]), has received a lot of 

attention. At this moment [1], it has received already more than 4300 citations in the Web of Science. 

Because of these disadvantages, many alternatives have been proposed, among which the most 

popular is the g-index, introduced and studied by Egghe [4]. This g-index is defined as follows: as 

with the calculation of the h-index, articles are ranked in decreasing order of the number of 

citations received; then, the g-index of this set of articles is defined as the highest rank, g, such that 

the first g articles together received at least 𝑔2 citations. This can be reformulated as follows: the 

g-index of a set of articles is the highest-rank g such that the first g (> 0) articles have an average 

number of citations equal to or higher than g. Indeed, ∑ 𝑐𝑗
𝑔
𝑗=1 ≥ 𝑔2 ⇔ 

1

𝑔
∑ 𝑐𝑗
𝑔
𝑗=1 ≥ 𝑔. For more 

information on the h-index and related indices, we refer to [5,6,7]. 

In [8], we defined the h- and the g-index for infinite sequences as follows: 

Definition 1. The h-index for infinite sequences: 

Let X = (𝑥𝑟)𝑟=1,2… be a decreasing array in (R+)∞. The h-index of X, denoted h(X), is the largest natural 

number h such that the first h coordinates each have at least a value h. If all components of a decreasing array 

, with a being a natural number. We find a complete, if not always unique,
solution. Our contribution illustrates how a formalism derived in the context of research evaluation
and informetrics can be used to solve a purely mathematical problem.
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1. Introduction

Let (R+)∞ be the positive cone of all infinite sequences with non-negative real values. Elements
in this cone will be referred to as one-dimensional arrays, in short, arrays. We recall that any finite
sequence with non-negative values can be considered as an element in (R+)∞ by adding infinitely
many zeros. Let X = (xr)r=1,2... and Y = (yr)r=1,2... be elements of (R+)∞, then X ≤ Y if for all r = 1, 2,
. . . , xr ≤ yr. Equality only occurs if for all r, xr = yr. In this way, (R+)∞ becomes a cone with a (natural)
partial order ≤. An array X = (xr)r=1,2... in (R+)∞ is said to be decreasing if for all r = 1, 2, . . . , xr ≥ xr+1.

We recall the definition of the h-index as introduced by Hirsch [1]. Consider, (cr)r=1,...,R, the list
of received citations of the articles (co-) authored by scientist S, ranked according to the number of
citations each of these articles has received. Articles with the same number of citations are given
different rankings. Then, the h-index of scientist S is h if the first h articles each received at least h
citations, while the article ranked h + 1 received strictly less than h + 1 citations. Stated otherwise,
scientist S’ h-index is h if h is the largest natural number such that the first h publications each received
at least h citations.

This index, although having many disadvantages in practical use ([2,3]), has received a lot of
attention. At this moment [1], it has received already more than 4300 citations in the Web of Science.
Because of these disadvantages, many alternatives have been proposed, among which the most popular
is the g-index, introduced and studied by Egghe [4]. This g-index is defined as follows: as with the
calculation of the h-index, articles are ranked in decreasing order of the number of citations received;
then, the g-index of this set of articles is defined as the highest rank, g, such that the first g articles
together received at least g2 citations. This can be reformulated as follows: the g-index of a set of
articles is the highest-rank g such that the first g (>0) articles have an average number of citations equal
to or higher than g. Indeed,

∑g
j=1 c j ≥ g2

⇔
1
g
∑g

j=1 c j ≥ g . For more information on the h-index and
related indices, we refer to [5–7].

In [8], we defined the h- and the g-index for infinite sequences as follows:

Definition 1. The h-index for infinite sequences:
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Let X =(xr)r=1,2...be a decreasing array in (R+)∞. The h-index of X, denoted h(X), is the largest natural
number h such that the first h coordinates each have at least a value h. If all components of a decreasing array X
are strictly smaller than 1, then h(X) = 0. We will further consider only arrays X with at least one component
larger than or equal to 1, hence with h(X) ≥ 1.

Note that an h-index is defined here only for decreasing arrays (although a generalization exists,
see [9]). The same remark is valid for the other indices used in this article.

Similarly, a g-index has been defined in [8] as follows:

Definition 2. The g-index for infinite sequences:
Let X =(xr)r=1,2... be a decreasing array in (R+)∞. The g-index of X, denoted gX, is defined as the highest

natural number g such that the sum of the first g coordinates is at least equal to g2 or, equivalently, if the average
of the first g coordinates is at least equal to g.

Notation. We denote by [[a,b]] for a, b natural numbers such that a ≤ b, the intersection of the real-valued
interval [a,b] and N, the set of natural numbers.

2. Introducing the Research Problem

Definition 3. For each natural number a > 0, we define the minimal impact array of level a, denoted as Aa,
as follows:

Aa =

a, a, . . . , a︸    ︷︷    ︸, 0, 0, . . .

a times


It is easy to see that Aa is the smallest array X (for the partial order ≤) for which h(X) = g(X) = a.

We note that the sequence (An)n is increasing for ≤.
We say that an array X is l2-converging if

∑
∞

i=1 x2
i is finite. As we only use this form of convergence,

we will further on omit the specification “l2” and simply say converging.
Next, we formulate the research problem of this contribution.

Research Problem

Given a converging decreasing array X in (R+)∞, find the largest natural number a such that the
Euclidean distance d(X,Aa) is minimal.

We note that the analogous problem for differentiable functions Z(r) and a real number a has
already been studied and solved in [10]. We further note that the requirements to be decreasing and
convergent are independent. Indeed, if a decreasing array is convergent and we add its sum (or a larger
number) to any term, except the first, then the resulting array is still convergent but not decreasing
anymore. Further, the array with terms 1

√
n

is decreasing but not convergent.
Minimizing d(X,Aa) is the same as finding a minimal value for the function

fX : N0 → R : a → fX(a)

where N0 denotes the set of natural number without zero and

fX(a) = d2(X, Aa) =
∑a

i=1
(xi − a)2 +

∑
∞

i=a+1
x2

i =
∑
∞

i=1
x2

i − 2a(
∑a

i=1
xi) + a3. (1)

Equation (1) shows why we need convergent arrays. Note also that a minimal value a depends on
X. Hence, we write it as aX. It is trivial to see that if X = Ab for some natural value b, then b = aX (for
this X) and f(b) = 0. It is clear that arrays X of the form Ab are the only ones for which the corresponding
function fX becomes zero.

This leads us to the following questions:
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1. Does aX exist for each X, converging and decreasing in (R+)∞?
2. Given X, converging and decreasing in (R+)∞, how do we find aX (if it exists)?
3. If aX exists, is it unique?

3. Results

3.1. Characterizing the Minimum of fX

Taking into account that aX is possibly not unique for some X, we want to characterize aX—if it
exists and is strictly larger than 1—as the largest natural number such that

fX(aX − 1) ≥ fX(aX) (2)

Note that if the minimum of fX occurs in two (or more) natural numbers, we choose the largest
one. We still have to show that inequality (2) actually characterizes the minimum we are searching
for. Indeed, theoretically, it may happen that the function fX(a) decreases first to a (local) minimum b,
then increases again, and then decreases to a lower minimum value than the one in b. This might, in
theory, even occur infinitely many times. We will prove that this behavior does not occur. Moreover, if
we want to use inequality (2), we first have to deal with the case aX = 1, as this case is not covered by
inequality (2).

Remark 1. We first note that if hX ≥ 2, then certainly aX > 1. Indeed, if hX ≥ 2, then x1≥ x2 ≥ 2. Then,
fX(1) =

∑
∞

i=1 x2
i − 2x1 + 1 < fX(2) =

∑
∞

i=1 x2
i − 4(x1 + x2) + 8 is equivalent to 1 < 8−2x1 − 4x2 or 2x1 + 4x2 <

7. This inequality never holds; hence, the minimum of fX does not occur in 1. We conclude that aX = 1 can only
occur if hX = 1.

If aX = 1, then fX(1) < fX(2). This inequality is equivalent to −2x1 + 1 < −4(x1 + x2) + 8 or 2x1 + 4x2

< 7 or 2x1 + 4x2 − 7 < 0.
Taken the constraints x1 ≥ 1 and x1 ≥ x2 into account yields the following area (see Figure 1) in

which aX = 1. This is the area R situated within the polygon with vertices (1,0), (1,1), (7/6,7/6), (7/2,0),
where points on the line 2x1 + 4x2 − 7 = 0 are excluded. We note that for all points in this area, hX = 1.
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Definition 4. The generalized discrete h- and g-index [11]: 
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Figure 1. Zone R in (x1,x2)-plane where aX = 1.

When it comes to arrays X for which aX = 1, this set consists of all decreasing convergent arrays
with (x1,x2) in the area R.
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3.2. The Generalized Discrete h- and g-Index

We next show that aX exists for each converging and decreasing X in (R+)∞. For this, we recall the
definitions of the generalized discrete h- and g-index [11].

Definition 4. The generalized discrete h- and g-index [11]:
Given X, a decreasing array in (R+)∞. Let θ > 0, then

(1) z = hθ(X), in short hθ, iff z is the largest index such that xz ≥ θz; if such an index does not exist, namely
when x1 < θ, then we define z = hθ(X) = 0;

(2) z = gθ(X), in short gθ, iff z is the largest index such that
∑z

i=1 xi ≥ θz2
⇔

1
z

∑z
i=1 xi ≥ θ z ; if such an

index does not exist, e.g., when
∑
∝

i=1 xi < θ, then we define z = gθ(X) = 0.

We note that if a and b are natural numbers and X = (xr)r=1,2... is a decreasing array in (R+)∞,
then the property for r ≤ a:

∑r
i=1 xi ≥ θa2 implies that gθ(X) ≥ a; similarly, the property for r > b:∑r

i=1 xi < θb2 implies gθ(X) ≤ b.
We finally also define the discrete f-index, already introduced in [10], for the continuous case.

(3) z = fθ(X), in short fθ, if z is the largest index such that 1
2

(
xz +

1
z

∑z
i=1 xi

)
≥ θ z. Again, if such an index

does not exist, we define z = fθ(X) = 0.

In [10], we found that in the continuous case, the solution of our problem was obtained as f(3/4)(X)
(where f is the continuous analog of the discrete f-index introduced above). We will show further on
that this is not the case for the discrete case studied here.

Proposition 1. The indicators hθ(X), gθ(X), and fθ(X) are each decreasing in θ.

Proof of Proposition 1. Let θ1 > θ2. If z1 = hθ1(X) and z2 = hθ2(X), then xz1 ≥ θ1z1 > θ2z1. As z2 is
the largest index such that xz2 > θ2z2, it follows that z1 = hθ1 (X) ≤ z2 = hθ2 (X). Consequently, θ1 > θ2

implies hθ1 (X) ≤ hθ2 (X), showing that hθ(X) is decreasing in θ.

Similarly, if θ1 > θ2, z1 = gθ1(X), and z2 = gθ2(X), then 1
z1

∑z1
i=1 xi ≥ θ1 z1 > θ2 z1. As z2 is the

largest index such that 1
z2

∑z2
i=1 xi > θ2z2, it follows, like in the case for the generalized discrete h-index,

that gθ(X) is decreasing in θ. Finally, it also follows that fθ(X) is decreasing in θ. �

Theorem 1. For all X, decreasing in (R+)∞ and all θ > 0, hθ(X) ≤ fθ(X) ≤ gθ(X). Hence, fθ(X) ∈ [[hθ(X),
gθ(X)]].

Proof of Theorem 1. Let a = fθ(X), then, by the definition of fθ(X),

1
2
(xa+1 + xa+1) ≤

1
2

xa+1 +
1

a + 1

a+1∑
i=1

xi

 < θ(a + 1)

Hence, xa+1 < θ(a + 1) and thus a+1 > hθ(X), leading to a = fθ(X) ≥ hθ(X). Now, for a = fθ(X), we
further have 1

a
∑a

i=1 xi ≥
1
2

(
xa +

1
a
∑a

i=1 xi

)
≥ θa, hence a ≤ gθ(X). This proves Theorem 1. �

3.3. Excluding the Theoretical Case of Infinitely Many Minima

Next, we need two lemmas.

Lemma 1. If X is decreasing, then
=
X with

(=
X
)

i
= 1

i
∑i

j=1 x j is also decreasing. This decrease is strict if x1 > x2.

Proof of Lemma 1. The easy proof is left to the reader. �
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As for given X and n > 0, xn = θn, for θ = xn
n , it is clear that

{
hθ(X), θ > 0

}
= N (where n = 0 is

reached for θ > x1). Now, we prove a similar result for gθ(X).

Lemma 2. For given X, decreasing and convergent,
{
gθ(X), θ > 0

}
= N

Proof of Lemma 2. It is clear that
{
gθ(X), θ > 0

}
⊂ N (recall that gθ(X) = 0 if θ >

∑
∞

j=1 x j). Next, we
consider the opposite relation.

The value n = 0 results from all θ >
∑
∞

j=1 x j. If n , 0, we define θ = 1
n2

∑n
j=1 x j > 0. Then, we have,

using Lemma 1, for all i ≤ n, 1
i
∑i

j=1 x j ≥
1
n
∑n

j=1 x j = θn. Consequently,

i∑
j=1

x j ≥ θni ≥ θi2 (3)

Now, for all i > n, using Lemma 1 again, 1
i
∑i

j=1 x j ≤
1
n
∑n

j=1 x j = θ n < θi and hence

i∑
j=1

x j < θ i2 (4)

It follows from (3) and (4) and the definition of gθ that n = gθ. This shows that
{
gθ(X), θ > 0

}
= N.

�

Theorem 2. Given X is decreasing and convergent and a > g(0.5)(X), then fX(x) is strictly increasing for x > a.

Proof of Theorem 2. From Lemma 2, it follows that there exists θ0 < 0.5 such that a = gθ0(X). Indeed,
gθ(X) is a decreasing function of θ and a > g(0.5)(X). Hence∑a

i=1 xi ≥ θ0a2 and
∑a+1

i=1 xi < θ0(a + 1)2. From this inequality, we derive that a3
−

2a
∑a

i=1 xi ≤ a3
− 2aθ0a2 = a3(1− 2θ0) and (a + 1)3

− 2(a + 1)
∑a+1

i=1 xi > (a + 1)3
− 2(a + 1)θ0(a + 1)2 =

(a + 1)3(1− 2θ0). Consequently, (a + 1)3
− 2(a + 1)

∑a+1
i=1 xi > a3

− 2a
∑a

i=1 xi, which shows that fX(x) is
strictly increasing for x > g(0.5)(X). �

It follows from Theorem 2 that if aX exists, it belongs to [[1, g(0.5)(X)]], which excludes the theoretical
case of infinitely many minima.

3.4. Excluding the Case of More Than One Minimum

Next, to exclude the case of a local maximum, following a first local minimum, we continue
as follows.

Theorem 3. For all X, decreasing and convergent in (R+)∞ and for all a ∈ N0, we have the following property:

fX(a + 1) > fX(a) implies that fX(a + 2) > fX(a + 1).
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Proof of Theorem 3.

fx(a + 1) > fx(a)

⇔

∞∑
i=1

x2
i − 2(a + 1)

a+1∑
i=1

xi

+ (a + 1)3 >
∞∑

i=1

x2
i − 2a

 a∑
i=1

xi

+ a3

⇔ 2(a + 1)

a+1∑
i=1

xi

− 2a

a+1∑
i=1

xi − xa+1

 < (a + 1)3
− a3 = 3a2 + 3a + 1

⇔ 2

a+1∑
i=1

xi

+ 2axa+1 < 3a2 + 3a + 1

(5)

From (5), we also note that (2(a+1)+2a)xa+1 = (4a+2) xa+1 < 3a2 + 3a + 1, or xa+1 < a+1.
Now, we have to show that

fx(a + 2) > fx(a + 1)

⇔

∞∑
i=1

x2
i − 2(a + 2)

a+2∑
i=1

xi

+ (a + 2)3 >
∞∑

i=1

x2
i − 2(a + 1)

a+1∑
i=1

xi

+ (a + 1)3

⇔ 2

(a + 2)

a+2∑
i=1

xi

− (a + 1)

a+1∑
i=1

xi


 < (a + 2)3

− (a + 1)3 = 3a2 + 9a + 7

⇔ 2

(a + 2)

a+1∑
i=1

xi + xa+2

− (a + 1)

a+1∑
i=1

xi


 < 3a2 + 9a + 7

⇔ 2

a+1∑
i=1

xi

+ 2(a + 2)xa+2 < 3a2 + 9a + 7

We rewrite the left-hand side of this inequality as2
a+1∑
i=1

xi + 2axa+1

− 2axa+1 + 4xa+2 + 2axa+2

Because of (5), we know that this expression is smaller than(
3a2 + 3a + 1

)
+ (2axa+2 − 2axa+1) + 4xa+2 (6)

As X is decreasing and hence 2axa+1 ≥ 2axa+2, the expression (6) is smaller than or equal to(
3a2 + 3a + 1

)
+ 4xa+1 (7)

Finally, because the note after inequality (5), expression (7) is smaller than(
3a2 + 3a + 1

)
+ 4(a + 1) = 3a2 + 7a + 5 (8)

Finally, we see that
3a2 + 7a + 5 < 3a2 + 9a + 7 (9)

which proves this theorem. �

Theorem 3 shows that a minimum for fX(x) exists and that aX is uniquely defined. We note,
however, that the minimum of fX is not always unique. Indeed, the following example gives a case
where there are two minima.
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Let X = (5, 4.5). Then, fX(1) = 45.25 − 10 + 1 = 36.25; fX(2) = 45.25 − 38 + 8 = 15.25; fX(3) = 45.25 −
57 + 27 = 15.25; fX(4) = 45.25 − 76 + 64 = 33.25. Hence, aX = 3.

From the previous proof, we know that fX(a+1) > fX(a) implies xa+1 < a + 1. Hence, a + 1 >

h(X). Hence, fX(a) is decreasing on [[1, . . . , h(X)]]. The next proposition shows that this is actually a
strict decrease.

Proposition 2. If h(X) > 1, then fX(a) is strictly decreasing for a in [[1, . . . , h(X)]].

Note that the requirement h(X) > 1 implies that aX > 1.

Proof of Proposition 2. For any natural number a, such that a+1 ≤ h(X), we have x1 ≥ . . . xa ≥ xa+1 ≥ a
+ 1. Consequently, for all j = 1, . . . , a + 1, xj − a − 1 ≥ 0.

Hence, (xj − a) > (xj − a − 1) ≥ 0 and thus (xj − a)2 > (xj − a − 1)2.
Now, fX(a+1) =

∑a+1
i=1 (xi − a− 1)2 +

∑
∞

i=a+2 x2
i <

∑a+1
i=1 (xi − a)2 +

∑
∞

i=a+2 x2
i =

∑a
i=1(xi − a)2 +

(xa+1 − a)2 +
∑
∞

i=a+1 x2
i − x2

a+1 <
∑a

i=1(xi − a)2 +
∑
∞

i=a+1 x2
i = fX(a). Indeed, (xa+1 − a)2

− (xa+1)2 =

−2axa+1 + a2 = a(a – 2xa+1) < 0, as 2xa+1 ≥ xa+1 ≥ a + 1 > a. �

As h(X) ≤ g(X) ≤ g(0.5)(X), this result shows that aX ∈ ~h(X), g(0.5)(X)�.
We next reformulate inequality (2), leading to a refinement of the previous observation.

Theorem 4. Given an array X, converging and decreasing in (R+)∞, then aX (,1) is characterized as the largest
natural number that satisfies the following inequality:

xaX +
1

aX − 1

aX∑
i=1

xi ≥
3aX

2
+

1
2(aX − 1)

Proof of Theorem 4. From Equations (1) and (2), we have

−2(aX − 1)(
∑aX−1

i=1
xi) + (aX − 1)3

≥ −2aX(
∑aX

i=1
xi)aX

3

<=> −2(aX − 1)(
∑aX−1

i=1
xi) + (aX − 1)3

≥ −2(aX − 1)(
∑aX−1

i=1
xi) − 2(

∑aX

i=1
xi) − 2(aX − 1)aX + aX

3

<=> (aX − 1)3) ≥ −2(
∑aX

i=1
xi) − 2(aX − 1)aX + aX

3

<=> 2(
∑aX

i=1
xi) + 2(aX − 1)Xa ≥ 3aX(aX − 1) + 1

<=> xaX +
1

aX − 1

∑aX

i=1
xi ≥

3aX

2
+

1
2(aX − 1)

�

Theorem 5. If f(3/4)(X) > 1, then, f(3/4)(X) ≤ aX and hence aX ∈ ~ f( 3
4 )
(X), g(0.5)(X)�.

Proof of Theorem 5. If a = f(3/4)(X), then

1
2

(
xa +

1
a− 1

∑a

i=1
xi

)
=

xa

2
+

1
2a

∑a

i=1
xi +

(
1

2(a− 1)
−

1
2a

)∑a

i=1
xi≥

3a
4

+
1
2

1
a(a− 1)

∑a

i=1
xi. (10)

As a = f(3/4)(X) ≤ g(3/4)(X), we have 1
a
∑a

i=1 xi ≥
3a
4 .

Consequently, by Theorem 4, we find that
(10) ≥ 3a

4 + 1
2(a−1)

3a
4 ≥

3a
4 + 3

8(a−1) >
3a
4 + 1

4(a−1) .
As aX is the largest natural number with this property, this ends the proof of Theorem 5. �
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3.5. Examples

Example 1. We provide an example such that the following strict inequalities hold: h(3/4)(X) < f(3/4)(X) < aX <

g(0.5)(X).
Let X = (6,1,1). Then, h(3/4)(X) = 1 < f(3/4)(X) = 2 < aX = 3 < g(0.5)(X) = 4.

This example shows that, contrary to the continuous case, f(3/4)(X) is not always the solution of the
minimization problem. Stated otherwise, in general, f(3/4)(X) , aX. Yet, one may say that f(3/4)(X) is a
(close) under limit.

As g(3/4)(X) ≥ f(3/4)(X), it was an upper limit for aX in the continuous case. One may wonder if, in
the discrete case, g(3/4)(X) is either an under or an upper limit for aX. Yet, none of these two alternatives
are correct. In the case of X = (6,1,1), g(3/4)(X) = 3 = aX. However, for X = (8,1), h(3/4)(X) = 1 < f(3/4)(X)
= 2 = aX < g(3/4)(X) = 3 < g(0.5)(X) = 4, while for X = (2, 0.9), h(3/4)(X) = 1 = f(3/4)(X) = g(3/4)(X) < aX =

g(0.5)(X) = 2.
We already observed that g(3/4)(X) can be smaller than, equal to, and larger than aX. We next show

that aX ≤ g(3/4)(X) +1.

Proposition 3. Given an array X, converging and decreasing in (R+)∞, then aX ≤ g(3/4)(X) +1.

Proof of Proposition 3. We show that if a = g(3/4)(X) +1, then fX(a+1) > fX(a). This inequality is
equivalent to

−2(a + 1)

a+1∑
i=1

xi

+ (a + 1)3 > −2a

 a∑
i=1

xi

+ a3

⇔ −2axa+1 − 2

a+1∑
i=1

xi

+ (a + 1)3 > a3

⇔ axa+1 +

a+1∑
i=1

xi

 < 1
2

(
3a2 + 3a + 1

)
=

3
2

a(a + 1) +
1
2

Now, a = g(3/4)(X) +1 > g(3/4)(X) ≥ h(3/4)(X) and hence xa+1 ≤ xa < (3/4)a.
Moreover,

∑a+1
i=1 xi =

∑a
i=1 xi + xa+1 ≤

∑a
i=1 xi + xa < 3

4 a2 + 3
4 a.

Consequently, axa+1 +
(∑a+1

i=1 xi
)
< 3

4 a2 + 3
4 a2 + 3

4 a = 3
2 a2 + 3

4 a < 3
2 a(a + 1) + 1

2 , which proves
Proposition 3. �

Example 2. If X = (2,2,2), then aX = 3 and g(3/4)(X) = 2, providing an example where there is an equality for
the expression aX ≤ g(3/4)(X) +1.

3.6. An Upper Bound for aX

We already know that g(3/4)(X) is not an upper bound for aX and that g(0.5)(X) is. Hence, we
wonder if there a number strictly between 0.5 and 0.75 that leads to an upper bound for all X.

Theorem 6. An upper bound for aX is provided by g(7/12)(X).

Proof of Theorem 6. Take a ≥ gs(X), with s being any real number strictly smaller than 0.75.
Hence, a+1 > gs(X) ≥ hs(X). From these inequalities, we derive

xa+1 < s(a + 1)
a+1∑
i=1

xi < s(a + 1)2
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Multiplying the first inequality by a and adding the two resulting inequalities yields

axa+1 +
a+1∑
i=1

xi < sa(a + 1) + s(a + 1)2

Now, from Proposition 3, we know that fX(a+1) > fX(a), hence a ≥ aX if

axa+1 +

a+1∑
i=1

xi

 ≤ 3
2

a(a + 1) +
1
2

From this inequality, we find that s must satisfy the following inequality:

sa(a + 1) + s(a + 1)2 = s
(
2a2 + 3a + 1

)
≤

1
2

(
3a2 + 3a + 1

)
leading to

s ≤
3a2 + 3a + 1

2(2a2 + 3a + 1)
(11)

This inequality must hold for any natural number a different from zero. As the right-hand side is
increasing in a, we consider the inequality for a = 1, leading to s ≤ 7/12. �

Corollary 1. Given an array X, converging and decreasing in (R+)∞, then aX ∈ ~ f( 3
4 )
(X), g( 7

12 )
(X)�.

We already observed that if aX = 1, then h(X) = 1. What about the converse? The next proposition
answers this question.

Proposition 4. If h(X) = 1, then ax can be larger than any natural number b.

Proof of Proposition 4. Consider X = (z, 1, 0, . . . ) and we want to find z such that aX ≥ b. If aX ≥ b,
then fX(b) ≥ fX(b + 1), or (with b > 2): 2(z + 1) ≥ 3b2 + 3b + 1. Hence, it suffices to take z > (3b2 + 3b −
1)/2. �

An example: Suppose that we want aX ≥ 18. Taking z = 512 leads to X = (512, 1, 0, . . . ) and aX =

18. If, however, we want aX ≥ 19, then z = 570, leading to X = (570, 1, 0, . . . ) with aX = 20.

4. Applications

First, we give a new characterization of the classical h-index [1], i.e., the case θ = 1.

Proposition 5. Given X decreasing and convergent, then h(X) = max{a ∈ N; Aa ≤ X}.

Proof of Proposition 5. Writing h(X) simply as h, we see that Ah ≤ X because for Ah and j ≤ h, xj ≥ h,
while for all j > h, xj ≥ 0. This shows that h ≤max{a ∈ N; Aa ≤ X}.

Now, let am = max{a ∈N; Aa ≤ X}. Then, we see that for all j ≤ am, xj ≥ am, while for all j > am, xj

≥ 0. As h is defined as the largest number with this property, we see that h ≥ am = max{a ∈ N; Aa ≤ X}.
This proves this proposition. �

Before continuing with the next proposition, we recall the definition of the majorization partial
order for finite sequences.

Definition 5. The majorization order [12]:



Mathematics 2020, 8, 811 10 of 11

Let X, Y ∈ (R+)k, where k is any finite number in N0 = {1, 2, 3, . . . }. The array X is majorized by Y, or X
is smaller than or equal to Y in the majorization order, denoted as X -< Y if for all i = 1, . . . ,N:

N∑
i=1

xi =
N∑

i=1
yi and

i∑
j=1

x j ≤
i∑

j=1
y j; ∀ i = 1, . . . , N.

Proposition 6. If X is finite with length N and 1
N

∑N
j=1 x j = x is a natural number, then Aa -< X⇔ a = x,

where -< denotes the majorization partial order.

Proof of Proposition 6. If Aa -< X, then, for all j = 1, . . . , N, ja ≤
∑ j

k=1 xk and Na =
∑N

k=1 xk.
Consequently, a = x.

Conversely, if a = x (and hence x must be a natural number), we have

Aa =

x, x, . . . , x︸     ︷︷     ︸, 0, 0, . . .

x times


and hence for all j ≤ N, jx ≤

∑ j
k=1 xk and for j = N, Nx =

∑N
k=1 xk. This shows that Aa -< X. �

Finally, we show that aX is increasing in X.

Theorem 7. If X < Y, then aX ≤ aY.

Proof of Theorem 7. We know that aX is the largest index such that

∞∑
i=1

x2
i − 2(aX − 1)

aX−1∑
i=1

xi

+ (aX − 1)3
≥

∞∑
i=1

x2
i − 2aX

 aX∑
i=1

xi

+ (aX)
3

⇔ 2

aX−1∑
i=1

xi

+ (aX − 1)3
≥ −2aXxaX + (aX)

3

Now, we also know that for all i≥ 1, yi ≥ xi. Hence,
(∑aX−1

i=1 yi
)
≥

(∑aX−1
i=1 xi

)
and−2aXyaX ≤ −2aXxaX .

This leads to

2

aX−1∑
i=1

yi

+ (aX − 1)3
≥ −2aXyaX + (aX)

3

Hence, also

∞∑
i=1

y2
i − 2aX

aX−1∑
i=1

yi

+ 2

aX−1∑
i=1

yi

+ (aX − 1)3
≥

∞∑
i=1

y2
i − 2aX

 aX∑
i=1

yi

+ (aX)
3

This can be written as

∞∑
i=1

y2
i − 2(aX − 1)

aX−1∑
i=1

yi

+ (aX − 1)3
≥

∞∑
i=1

y2
i − 2aX

 aX∑
i=1

yi

+ (aX)
3 (12)

As aY is the largest index with property (12), this shows that aX ≤ aY. �
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Remark 2. If X < Y (strict), then it is possible that aX = aY. An example is given by X = (6,1,1) < Y = (6,2,1),
for which aX = aY = 3.

5. Conclusions

In this article, we studied the following problem:
Given a converging decreasing array X in (R+)∞, find the largest natural number a such that the

Euclidean distance d(X,Aa) is minimal.
We have shown that this problem has a solution, which is always situated in the interval

~h( 3
4 )
(X), g( 7

12 )
(X)�. Yet, the solution is not necessarily unique. It was shown that a discrete and an

analogous continuous problem have related but not the same solutions. Our contribution illustrates
how a formalism derived in the context of research evaluation and informetrics [1] can be used to solve
a purely mathematical problem.
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