
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Non-commutative crepant resolutions for some toric singularities. II

Non Peer-reviewed author version

SPENKO, Spela & VAN DEN BERGH, Michel (2020) Non-commutative crepant

resolutions for some toric singularities. II. In: JOURNAL OF NONCOMMUTATIVE

GEOMETRY,  14 (1) , p. 73 -103.

DOI: 10.4171/JNCG/359

Handle: http://hdl.handle.net/1942/31940



ar
X

iv
:1

70
7.

08
24

5v
3 

 [
m

at
h.

A
G

] 
 2

3 
Ju

l 2
01

8

NON-COMMUTATIVE CREPANT RESOLUTIONS FOR SOME

TORIC SINGULARITIES II

ŠPELA ŠPENKO AND MICHEL VAN DEN BERGH

Abstract. Using the theory of dimer models Broomhead proved that ev-
ery 3-dimensional Gorenstein affine toric variety SpecR admits a toric non-
commutative crepant resolution (NCCR). We give an alternative proof of this
result by constructing a tilting bundle on a (stacky) crepant resolution of
SpecR using standard toric methods. Our proof does not use dimer models.

1. Introduction

Throughout k is an algebraically closed base field of characteristic zero. Let R
be a normal Gorenstein domain. A non-commutative crepant resolution (NCCR)
[DITV15, Leu12, ŠVdB17a, VdB04, Wem16] of R is an R-algebra of finite global
dimension of the form Λ = EndR(M) which in addition is Cohen-Macaulay as
R-module and where M is a non-zero finitely generated reflexive R-module. In
[ŠVdB17a] we studied NCCRs of rings of invariants which are given by modules of
covariants. More precisely, we assumed R = Sym(W )G whereG is a reductive group
and W is a representation of G and M = (U ⊗k Sym(W ))G for a representation
U of G. When G is a product of a torus and a finite abelian group such invariant
rings are coordinate rings of affine toric varieties and in that case NCCRs given by
modules of covariants are called “toric” NCCRs. See e.g. [Boc12].

In loc. cit. we were able to construct toric NCCRs in many cases (e.g. when W is
self-dual). However the following beautiful result of Broomhead remained outside
the scope of our methods.

Theorem 1.1. [Bro12, Theorem 8.6] The coordinate ring of a 3-dimensional Go-
renstein affine toric variety admits a toric NCCR.

Broomhead proves this result by exploiting the close relationship between 3-
dimensional Gorenstein affine toric varieties and so-called “dimer models” (certain
bipartite graphs embedded in a real toric surface). More precisely, it is well-known
that the fan corresponding to a 3-dimensional Gorenstein affine toric variety is a
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cone over a lattice polygon and an algorithm by Gulotta [Gul08] (or an alterna-
tive algorithm by Ishii and Ueda [IU15]) associates to every lattice polygon P a
“consistent” dimer model whose lattice polygon of “perfect matchings” coincides
with P . Any dimer model also possesses an associated superpotential algebra and
this yields the required toric NCCR.

Instead of Broomhead’s algebraic approach one may try to construct the NCCR
as the endomorphism algebra of a tilting bundle on a (stacky) crepant resolution of
singularities. In fact in [ŠVdB17b] we achieved this in a relatively straightforward
way by modifying the main method of [VdB04]. The resulting NCCRs are however
generally non-toric and so we do not obtain a proof of Theorem 1.1 in this way.

If we want to obtain toric NCCRs then the tilting bundle has to be split (= sum
of line bundles). In [IU15] Ishii and Ueda give indeed a proof of Theorem 1.1 by
constructing a (tautological) split tilting bundle on a toric crepant resolution which
is the solution of a suitable moduli problem related to dimer models (see [IU15,
Theorem 1.4], [IU08, Theorem 6.4]).

The purpose of this note is to give a proof of Theorem 1.1 which avoids dimer
models altogether and which uses traditional toric methods instead. In the interest
of full disclosure we mention that our proof still depends on the initial combinatorial
input provided by Gulotta and Ishii-Ueda. A distinguishing feature of our approach
is that we focus on “small” toric resolutions, i.e. those without exceptional divisors.
Except for the most simple cases such resolutions cannot be schemes and must be
Deligne-Mumford stacks. In particular they cannot be realized as moduli spaces of
vector bundles (in contrast to the projective crepant resolutions used by Ishii and
Ueda) as they generally have non-connected stabilizers.

The version of our proof starting from Gulotta’s approach is the least combina-
torially demanding, so we discuss it first. Let SpecR be a 3-dimensional Gorenstein
affine toric variety1 and let P be the lattice polygon corresponding to R (see §3).
Gulotta’s “algorithm” [Gul08] first embeds P into a rectangle P0 and then recon-
structs P from P0 by iteratively removing corner triangles (see Figure 7.1). After
appropriately subdividing the removed triangles we obtain a triangulation of P0−P
and we complete it to a triangulation of P0 by adding diagonals to P . The affine
toric variety SpecR0 corresponding to P0 is a so-called “generalized conifold” and
it has a standard toric NCCR (see Remark 7.2). We show that the latter is in fact
obtained from a split tilting bundle on the stacky crepant resolution Y0 of SpecR0

corresponding to the triangulation of P0 (see Appendix A). The restriction to the
open substack Y of Y0 corresponding to the triangulation of P is then shown to
be a tilting bundle on Y. Note that this is not a formality as being tilting is not a
local property.

Another version of our proof starts with the Ishii-Ueda approach (see §8). In
this case we embed P in a triangle P0 and we reconstruct P from P0 by iteratively
removing corner vertices and taking convex hulls of the remaining lattice points.
See Figure 8.1. This yields again a natural triangulation of P0−P and we continue
in a similar manner as above.

1As in [CLS11] we assume throughout that a normal toric affine variety is of the form
Spec(k[σ∨ ∩ M ]) for a rational strongly convex polyhedral cone in N (see e.g. [CLS11, Remark
1.2.19(1), Theorem 1.3.5]).



NON-COMMUTATIVE CREPANT RESOLUTIONS FOR SOME TORIC SINGULARITIES II 3

Besides the above results we also discuss some side results in Appendices B, C
(Appendix A is devoted to a technical result necessary for the paper).

In Proposition B.3 we give a useful combinatorial criterion for recognizing NC-
CRs of three-dimensional toric Gorenstein singularities.

In Appendix C we elaborate on the relationship between tilting bundles and
NCCRs. In [IU16] it was established by Ishii and Ueda that if X is an arbitrary
projective crepant resolution of SpecR then every NCCR of SpecR is the endo-
morphism ring of some tilting bundle on X . As the proof depends on realizing X
as a GIT moduli space it appears to use the projectivity hypothesis in an essential
way and we do not know if the result is true otherwise. We note however that
there certainly exist particular instances of non-projective crepant resolutions for
which the result remains true. In appendix C we discuss such an example using
our combinatorial techniques.

2. Acknowledgement

The authors thank Seung-Jo Jung, Martin Kalck, Sasha Kuznetsov and Michael
Wemyss for interesting discussions concerning the material in this paper.

3. Preliminaries and notation

Let N = Zn, M = Hom(N,Z) and let 〈 , 〉 the natural pairing between M
and N . Let {ni ∈ N | 1 ≤ i ≤ k} be a set of vectors which generates NR such that

σ = [n1, . . . , nk] = {r1n1 + · · ·+ rknk ∈ NR | ri ≥ 0}

is a rational strongly convex polyhedral cone in NR. We do not assume that
{n1, . . . , nk} is a minimal set of generators of σ. Let

σ∨ = {m ∈ MR | 〈m,ni〉 ≥ 0 for all 1 ≤ i ≤ k}

be the dual cone of σ. We denote by Rσ = k[σ∨ ∩ M ] the associated semigroup
algebra, and set Xσ = SpecRσ.

Let ρ : M →֒ Zk be defined by m 7→ (〈m,n1〉, . . . , 〈m,nk〉). We set G =
Hom(Zk/ρ(M), k∗) ⊆ (k∗)k so that X(G) = Zk/ρ(M).

Let ei be the i-th generator of Zk, and let βi be its image in X(G). Then
M ∼= ρ(M) = {(ai) ∈ Zk |

∑

i aiβi = 0}, and σ∨ ∩M ∼= ρ(σ∨ ∩M) = {(ai) ∈ Nk |
∑

i aiβi = 0}. Thus Rσ
∼= k[x1, . . . , xk]

G where G acts on xi by βi, and Xσ = Y//G

for Y = kk with the G-weights (−βi)
k
i=1.

For b ∈ Zk let

(3.1) Mb = {m ∈ M | 〈m,ni〉 ≥ −bi for all 1 ≤ i ≤ k}, Mb = kMb.

Note that Rσ = M0 = kM0 and b − b′ ∈ ρ(M) implies Mb
∼= Mb′ as modules

over M0. Denote the image of b in X(G) by χb. To m ∈ Mb we associate (ai)i =
(〈m,ni〉+ bi)i ∈ Nk. With this identification we get Mb

∼= ρ(Mb)+ b = {(ai) ∈ Nk |
∑

i aiβi = −χb}. Thus Mb is isomorphic to the module of covariants M(χ−b) =
(k[x1, . . . , xk]⊗ χ−b)

G.

If [n1, . . . , nk] is a minimal presentation of σ then the action of G on Y is generic
in the sense of [ŠVdB17a, Def.§1.3.4] (see [ŠVdB17a, §11.6.1]). In that case χ−b 7→
M(χ−b) = Mb provides isomorphism X(G) = Cl(Rσ) (see e.g. [CLS11, Section 5.1]
or [ŠVdB17a, Lemma 4.1.3]). In particular Mb is reflexive and

(3.2) HomRσ
(Mb,Mb′) = Mb′−b.
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We will often consider the special case where the (ni)i are the generators of the
1-dimensional cones in a simplicial fan Σ with |Σ| = σ. In that case we will denote
the corresponding stacky fan2 (Σ, (ni)

k
i=1) by Σ (see [BH06]). We denote by XΣ

(resp. XΣ) the corresponding smooth toric DM stack (resp. (possibly) singular
toric variety). As Σ is simplicial, XΣ is an orbifold and XΣ is its coarse moduli
space.

We have that XΣ (resp. XΣ) equals YΣ/G (resp. YΣ//G) for an open subvariety
YΣ ⊂ Y which consists of all points z = (z1, . . . , zk) such that the set of ni for which
zi = 0 is contained in a cone of Σ (see [BH06, Section 2]). In the following diagram
we assemble the varieties/stacks we have defined and we give names to some of the
canonical maps between them.

(3.3) XΣ

πs

��

YΣ/G
µs

∼=
oo

��

�

� θs // Y/G

��
XΣ

τ

66YΣ//G
∼=

µ
oo

θ
// Y//G

∼= // Xσ

Performing the construction b 7→ Mb for each of the cones in Σ we obtain a
reflexive rank 1 OXΣ -module which we denote by MΣ,b. Recall the following result.

Lemma 3.1. Put
MΣ,b = µs,∗(χ−b ⊗OYΣ/G).

Then MΣ,b is a line bundle on XΣ and

Zk 7→ Pic(XΣ) : b 7→ MΣ,b

is a morphism of abelian groups. We have

(3.4) O(Db) = MΣ,b = πs,∗MΣ,b

where Db =
∑k

i=1 biDni
is the equivariant Weil divisor associated to b as in [CLS11,

§4.1]. Moreover

(3.5) Γ(XΣ,MΣ,b) = Mb.

Proof. Since µs is an isomorphism the first two claims are obvious. The first equality
in (3.4) is [CLS11, Proposition 5.3.7]. The last equality in (3.4) is local on XΣ and
can be verified on the open covering given by the maximal cones using Proposition
A.1. Finally (3.5) follows from [CLS11, Proposition 4.3.2]. �

Furthermore, for m ∈ M we have by [CLS11, Theorem 9.1.3]

(3.6) Hp(XΣ,O(Db))m = H̃p−1(VDb,m, k),

where

VDb,m =
⋃

σ∈Σ

conv{v ∈ σ(1) | 〈m, v〉 < −bv}(3.7)

=
⋃

σ∈Σ

conv{v ∈ σ(1) | sbv(m) = −},

2A stacky fan is a simplicial fan together with generators for the one dimensional cones.
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and where we denote

(3.8) sbv(m) = sign of (〈m, v〉 + bv).

Convention 3.2. Except for §5,6 we assume that there is m ∈ M such that
〈m,ni〉 = 1 for all 1 ≤ i ≤ k. In particular Xσ is Gorenstein (see e.g. [CLS11,
Proposition 11.4.12]). Changing bases we may assume m = (0, . . . , 0, 1) and hence
σ is a cone over a convex lattice polyhedron P ⊆ Rn−1 × {1} ⊂ Rn = MR, and we
write σ = σP . We abbreviate RσP

, XσP
as RP , XP , respectively.

3.1. Tilting bundles and NCCRs. Recall that a tilting bundle on an algebraic
stack Y is a vector bundle T such that the following conditions hold:

(T1) T generates DQch(Y);
(T2) ExtiY(T , T ) = 0 for i > 0.

We then have DQch(Y) ∼= D(Λ) where Λ = EndY(T ). If Y is a noetherian Deligne
Mumford stack then we write D(Y) for Db

coh(Y). Similarly if Λ is a noetherian ring
then we write D(Λ) = Db

f (Λ). If Y is a smooth separated DM-stack then DQch(Y)
is compactly generated by D(Y) (see [HR14, Theorem B]) and hence if T is a tilting
bundle on Y then T “classically generates” D(Y) (see [BVdB03]) and moreover if
Λ = EndY(T ) is noetherian then D(Y) ∼= D(Λ). Recall the following

Proposition 3.3. Let P be as in Convention 3.2. Choose a triangulation of P
without extra vertices3 and let Σ be the corresponding fan. Let T be a tilting bundle
on XΣ. Then Λ = EndXΣ

(T ) is an NCCR for RP corresponding to M = Γ(XΣ, T ).
If T is toric of the form T =

⊕

b∈S MΣ,b then Λ = EndRP
(
⊕

b∈S Mb).

Proof. We proceed similarly as in the proof of [ŠVdB17b, Corollary 2.4]. Since XΣ

is smooth and D(XΣ) ∼= D(Λ), gl dimΛ < ∞. It follows from Proposition A.1 (c.f.
proof of Lemma A.2) that πs is identity in codimension 1. Hence (πs)∗ defines a
(monoidal) equivalence between categories of reflexive sheaves on XΣ and XΣ. As
τ does not contract a divisor by the hypothesis on the triangulation, τ∗ defines
a (monoidal) equivalence between categories of reflexive sheaves on XΣ and XP .
Thus, EndXΣ(T ) ∼= EndRP

(Γ(XΣ, T )) as Γ(XP , (τπs)∗T ) = Γ(XΣ, T ).
To show that Λ is Cohen-Macaulay one can proceed as in [ŠVdB17b, Corollary

2.8] thanks to Lemma A.2. The last claim follows from (3.5). �

4. Strategy

As alluded to in the introduction our main steps towards the construction of an
NCCR of RP (for 2-dimensional P ) are the following:

(1) Embed P in a rectangle (resp. lattice triangle) P0, and choose a triangu-
lation of P0 which contains a triangulation of P without extra vertices. To
obtain these triangulations we use Gulotta’s (see §7) (resp. the Ishii-Ueda
(see §8)) inductive procedures.
Let Σ0, Σ be the fans corresponding to the triangulations of P0 and P .

(2) Construct a split tilting bundle T0 on the stacky crepant resolution XΣ0 of
RP0 .

(3) Restrict T0 to XΣ to obtain a tilting bundle T on XΣ (this is not a formal
step as the property of being tilting is not local).

3The existence of such triangulations follows from the theory of secondary fans [GKZ89,
GKZ08]. See [CLS11, Proposition 15.2.9].



6 ŠPELA ŠPENKO AND MICHEL VAN DEN BERGH

(4) Now Λ = EndXΣ
(T ) yields an NCCR of RP by Proposition 3.3.

The vanishing properties (T2) for T0, T in (2)(3) are proved using standard toric
geometry (see Lemmas 7.1, 8.3), while the generation property (T1) for T in (3)
follows formally from the corresponding property of T0 in (2) (generation is com-
patible with restriction). The verification of the latter constitutes the heart of our
proof. We proceed as follows:

(a) We start with a standard NCCR Λ0 of RP0 given by ⊕b∈S0Mb, S0 = {(bv)v∈V ′

0
},

where V ′
0 is the set of the vertices of P0 (V ′

0 yields the minimal presentation of
σP0). Clearly, depending on whether P0 is a rectangle or a triangle, we have
|V ′

0 | = 4 or 3.
(b) Let V0 be the set of vertices in the triangulation in (1) (V0 gives a non-minimal

presentation of σP0). We develop an inductive procedure called compatible
convex induction (see §5) which extends the collection S0 = {(bv)v∈V ′

0
} from

(a) to a collection S = {(b̃v)v∈V0} (thus S0 and S are in bijection via ˜(−)) such
that for b, b′ ∈ S0:

(4.1) Mb = Mb̃ and Mb−b′ = Mb̃−b̃′ .

The construction of b̃ from b is is done inductively and matching the inductive
construction of the triangulation of P0 (see (1)).

(c) We define T0 := ⊕b∈SMΣ0,b and we verify using the standard results on the
cohomology of rank one reflexive sheaves on 3-dimensional toric varieties (see
Lemmas 7.1, 8.3) that T0 satisfies (T2). This verification is done inductively.

(d) We use (4.1) to deduce that Λ0
∼= EndXΣ0

(T0).
(e) We show that D(XΣ0

) has no non-trivial semi-orthogonal decompositions using
the fact that it has trivial relative Serre functor over XP (see Lemma A.3,
Corollary A.5).

(f) Since Perf(Λ0) ∼= Perf(EndXΣ0
(T0)) is fully faithfully embedded in D(XΣ0

) by

(T2) (see (c)), and since gl dimΛ0 < ∞ by (a) we have that Perf(Λ0) = D(Λ0)
and moreover the embedding is admissible by [PVdB15, Lemma 1.1.1]. So it
is a factor in semi-orthogonal decomposition of D(XΣ0

). We now use (e) to
conclude that D(Λ0) ∼= D(XΣ0) and hence T0 satisfies (T1).

Our constructions were inspired by Bocklandt’s result [Boc12, Corollary 4.7]
showing that Cohen-Macaulay modules of covariants are “preserved under projec-
tion”. In fact using Bocklandt’s result we may prove that Λ is Cohen-Macaulay,
without (re)invoking toric geometry (see Appendix B for more details). However
we have been unable to prove directly that Λ is an NCCR.

5. Convex induction

For t = (t1, . . . , tk), 0 ≤ ti ≤ 1,
∑

i ti = 1, we set

(5.1) bt,− = (b1, . . . , bk,

⌊
∑

i

tibi

⌋

), bt,+ = (b1, . . . , bk,

⌈
∑

i

tibi

⌉

),

where ⌊x⌋, ⌈x⌉ denote the largest (resp. the smallest) integer not greater (resp.
smaller) than x.

Lemma 5.1. If σ is presented as [n1, . . . , nk, nk+1], where nk+1 =
∑

i tini ∈ N for
some t = (t1, . . . , tk), 0 ≤ ti ≤ 1,

∑

i ti = 1, then Mb = Mbt,− = Mbt,+ .
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Proof. The inclusions Mbt,− ,Mbt,+ ⊆ Mb are trivial, while for m ∈ Mb we have
〈m,ni〉 ≥ −bi for all i, and thus 〈m,nk+1〉 ≥ −

∑

i tibi ≥ −⌈
∑

i tibi⌉, so m ∈
Mbt,+ , and as 〈m,nk+1〉 ∈ Z we also have 〈m,nk+1〉 ≥ −⌊

∑

i tibi⌋, implying m ∈
Mbt,− . �

If a ∈ R then by convention its “sign” will be + if a ≥ 0 and − otherwise. For
b = (bv)v∈S ∈ Zl, with S ⊂ N , and m ∈ M recall (from (3.8))

(5.2) sbv(m) = sign of (〈m, v〉 + bv).

If we use indexed vectors (vi)i then we also write sbi(m) for sbvi(m).

Remark 5.2. The signs sbv(m) appear often in toric geometry. See e.g. (3.6) and
Proposition B.1 below.

Let notation be as in Lemma 5.1. Applying (5.2) with (v1, . . . , vk, vk+1) =

(n1, . . . , nk, nk+1) we have s
b
i(m) = s

bt,+
i (m) = s

bt,−
i (m) for 1 ≤ i ≤ k since (bt,±)i =

bi for 1 ≤ i ≤ k. We will need the following simple lemma.

Lemma 5.3. We have s
bt,−
k+1(m), s

bt,+
k+1(m) ∈ {sbi(m) | 1 ≤ i ≤ k, ti 6= 0}.

Proof. We may assume that all signs sbi(m) for 1 ≤ i ≤ k, ti 6= 0 are the same,
otherwise there is nothing to prove. Assume that they are all −; i.e. 〈m,ni〉+ bi ≤
−1 for 1 ≤ i ≤ k, ti 6= 0. Then 〈m,nk+1〉+

∑

i tibi ≤ −1. Applying ⌊?⌋, ⌈?⌉ yields
the desired conclusion. The case where all signs are + is similar. �

Definition 5.4. Let k, l ∈ N. An induction datum (t
(i)
j )ij ∈ R is a collection of

vectors t(i) = (t
(i)
j )j ∈ Ri−1 for k < i ≤ k+l, such that 0 ≤ t

(i)
j ≤ 1,

∑i−1
j=1 t

(i)
j = 1.

Definition 5.5. Let [n1, . . . , nk] ∈ Nk. We say that [n1, . . . , nk+l] ∈ Nk+l is

convexly induced from [n1, . . . , nk] ∈ Nk with induction datum (t
(i)
j )i,j if for i > k

ni =

i−1∑

j=1

t
(i)
j nj .

Definition 5.6. Let s ∈ {±}l be a sign sequence. We say that an integer vector

b̃ ∈ Zk+l is convexly induced from b ∈ Zk with sign sequence s and induction datum

(t
(i)
j )i,j if b̃ is obtained from b via b̃i = (b̃≤i−1)t(i),si (see (5.1)) for i > k; i.e.

b̃i =







bi if 1 ≤ i ≤ k,

⌊
∑i−1

j=1 t
(i)
j b̃j⌋ if i > k and si = −,

⌈
∑i−1

j=1 t
(i)
j b̃j⌉ if i > k and si = +.

We say that b̃ is convexly induced from b if it is convexly induced for some sign
sequence (and a given induction datum).

Let K ∈ N. We say that {b̃j | 1 ≤ j ≤ K} ⊂ Zk+l is compatibly convexly induced

from {bj | 1 ≤ j ≤ K} ⊂ Zk if for each j, b̃j is convexly induced from bj for a fixed
sign sequence and a fixed induction datum (i.e. they are both independent of j).

Below we will assume the induction datum is specified once and for all and we
will usually not mention it afterwards.

Corollary 5.7. If b̃ is convexly induced from b and I is a subsequence of 1, . . . , k+l
containing 1, . . . , k then Mb = Mb′ for b′ = (b̃i)i∈I .
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Proof. Repeated application of Lemma 5.1 yields Mb̃ = Mb. This implies Mb =
Mb̃ ⊂ Mb′ ⊂ Mb which gives the desired conclusion. �

Lemma 5.8. If {b̃1, b̃2} is compatibly convexly induced from {b, b′} then b̃1 − b̃2 is
convexly induced from b− b′ (for the same induction datum and a possibly different
sign sequence). In consequence, Mb′1−b′2

= Mb1−b2 with b′1, b
′
2 like b′ in Corollary

5.7.

Proof. By definition b̃1, b̃2 are convexly induced from b1, b2, respectively, with the
same sign sequence. Let ∗ be a sign. We do not necessarily have (b̃1,≤i−1)t(i),∗ −

(b̃2,≤i−1)t(i),∗ = ((b̃1 − b̃2)≤i−1)t(i),∗. However, as4 ⌊x⌋ − ⌊y⌋, ⌈x⌉ − ⌈y⌉ ∈ {⌊x −

y⌋, ⌈x−y⌉} for any x, y ∈ R, we still have (b̃1,≤i−1)t(i),∗−(b̃2,≤i−1)t(i),∗ = (b̃1,≤i−1−

b̃2,≤i−1)t(i),∗′ for a possibly different sign ∗′. This is sufficient by Corollary 5.7. �

5.1. Interval convex induction. A simple version of convex induction consists of
lattice points on an interval with the induction datum only referring to the nearest
neighbours.

Definition 5.9. Let n0, nr+1 ∈ N be end points of an interval I. Let {n1, . . . , nr} ∈
N ∩I be such that n0, n1, . . . , nr, nr+1 are consecutive distinct points in I. Assume
furthermore we are given another ordering of these points

(5.3) n′
1, . . . , n

′
r+2 = n0, nr+1, ni1 . . . , nir .

Then for any 3 ≤ j ≤ r + 2 there exist unique j′, j′′ < j such that ]n′
j′ , n

′
j′′ [∩

{n′
1, . . . , n

′
j} = {n′

j}. In particular have

(5.4) n′
j = (1− t)n′

j′ + tn′
j′′

for some t ∈]0, 1[. The interval induction datum t associated to the ordering (5.3)
is the induction datum obtained from (5.4).

We say that (bn0 , bnr+1 , bn1 . . . , bnr
) ∈ Zr+2 is obtained by interval convex induc-

tion from (bn0 , bnr+1) ∈ Z2 if it is obtained by convex induction from (bn0 , bnr+1)
for an interval induction datum (associated to some ordering of (ni)i=0,...,r+1 as in
(5.3)) and an arbitrary sign sequence.

Lemma 5.10. Let (ni)i be as above. Assume (bn0 , bnr+1 , bn1 . . . , bnr
) ∈ Zr+2 is

obtained by interval convex induction from (bn0 , bnr+1) ∈ Z2. Then for all m ∈ M

the signs sbnj
(m), j = 0, . . . , r+1, follow the pattern + · · ·+− · · ·− (possibly reflected

and perhaps with no + or − present).

Proof. This follows by repeated application of Lemma 5.3. �

6. Triangle convex induction

In this section we analyze a type of the convex induction that we will use for
constructing a tilting bundle on a stacky resolution via the Ishii-Ueda approach. It
is similar in spirit, but considerably more involved, than interval convex induction
and it will be used only in §8.

4This innocent looking formula is in fact the key ingredient of our proofs!
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Definition 6.1. Let v−1, v0, vr+1 ∈ N be vertices of a solid triangle T such that
]v−1, v0[, ]v−1, vr+1[ contain no lattice points and let C be the convex hull of N ∩
(T \ {v−1}). Put {v1, . . . , vr} = N ∩ ∂C ∩ intT such that v0, v1, . . . , vr, vr+1 are
consecutive boundary points of C.

For j = 1, . . . , r, vj is in the convex hull of v−1, vj−1, vr+1. In other words there
exist unique pj , qj , rj ∈ [0, 1] such that pj + qj + rj = 1 and

(6.1) vj = pjv−1 + qjvj−1 + rjvr+1.

The triangle induction datum t is the induction datum obtained from (6.1).
We say that (b−1, b0, br+1, b1, . . . , br) ∈ Zr+3 is obtained by triangle convex in-

duction from (b−1, b0, br+1) if it is obtained by convex induction from (b−1, b0, br+1)
for t and a sign sequence corresponding entirely of −’s; i.e., for 1 ≤ j ≤ r

(6.2) bj = bvj = ⌊pjb−1 + qjbj−1 + rjbr+1⌋.

The following is our main result concerning triangle convex induction. It will
play a similar role as Lemma 5.10.

Proposition 6.2 (see §6.3). Let m ∈ M and let b, b′ be obtained by triangle convex
induction from (b−1, b0, br+1), (b

′
−1, b

′
0, b

′
r+1). Put c = b′−b. Then the possible sign

patterns for scv−1
(m), scv0(m), . . . , scvr+1

(m) are

−+ · · ·+
︸ ︷︷ ︸

p

− · · ·−
︸ ︷︷ ︸

q

+ · · ·+
︸ ︷︷ ︸

r

or +− · · ·−
︸ ︷︷ ︸

p

+ · · ·+
︸ ︷︷ ︸

q

− · · ·−
︸ ︷︷ ︸

r

where p, q and r may be equal to zero.

6.1. An explicit expression for the triangle induction datum.

6.1.1. Generalities. Assume (al)l∈Z ∈ R. Below we will consider solutions (xl)l ∈ R

to the second order recursion relation

(6.3) xl+1 = alxl − xl−1.

The following result follows easily from (6.3).

Lemma 6.3. Assume (xl)l, (yl)l ∈ R are solutions to (6.3). Then
∣
∣
∣
∣

xl xl+1

yl yl+1

∣
∣
∣
∣

is independent of l.

We define (qs,t)s,t∈Z in such a way that for all s, (qs,t)t is a solution to (6.3)
with initial conditions qs,s = 0, qs,s+1 = 1. Note that qs,s−1 = −1, qs,s+2 = as+1.
The following equation shows that (qs,t)s is also a solution to (6.3) and hence the
indices s, t of qs,t play symmetric roles:

(6.4) qs+1,t = asqs,t − qs−1,t.

Indeed: both sides of (6.4) are solutions to (6.3) and they are equal for t = s, s+1
(using qs−1,s+1 = as). For (xt)t a solution to (6.3) we get

(6.5) xt = qs,txs+1 − qs+1,txs

by a similar argument. Both sides of this equation are solutions to (6.3) and
moreover they agree for t = s, s + 1. Applying (6.5) with (xt)t = (qs,t)t (and the
index s replaced by k) we get

(6.6) qs,t = qs,k+1qk,t − qs,kqk+1,t.
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6.1.2. Continued fractions. Put ui := vi − v−1. After choosing a suitable basis
for the plane spanned by u0, ur+1 and performing a translation we may assume
N = Z2 and

(6.7) v−1 = (0, 0), v0 = (0, 1), vr+1 = (n,−q)

where n > 0, 0 ≤ q < n and gcd(n, q) = 1 (see e.g. [CLS11, Proposition 10.1.1]).
We will assume n > q > 0, since otherwise r = 0, and Proposition 6.2 holds trivially.
Let

n

q
= [a1, . . . , ar] := a1 −

1

a2 −
1

· · · −
1

ar
be the Hirzebruch-Jung continued fraction expansion of n/q where ai ≥ 2. The aj ,
j ≥ 1, may be computed by an Euclidean style algorithm starting from i0 = n,
i1 = q, and inductively determining aj , ij+1 via division with remainder:

(6.8) ij−1 = ajij − ij+1, 0 < ij+1 < ij ,

until we obtain ir = 1. Then we set ar = ir−1 and ir+1 = 0.
The vectors u0, u1, . . . , ur+1 are related by the equations

(6.9) ajuj = uj−1 + uj+1,

1 ≤ j ≤ r, (see [CLS11, Theorem 10.2.8(b), Theorem 10.2.5]).
Below we extend [a1, . . . , ar] to a doubly infinite sequence (ai)i∈Z by putting

ai = 0 for i 6∈ {1, . . . , r}. We let qs,t be as in §6.1.1.

Remark 6.4. By (6.8), (6.9) xl = il, xl = ul are solutions to (6.3). We silently ex-
tend them to doubly infinite solutions to avoid having to keep track of cumbersome
restrictions on indices in some formulas.

Remark 6.5. The qs,t, for suitable s, t, appear frequently in combinatorics of Hirze-
bruch-Jung continued fractions. In [CLS11, Proposition 10.2.2], q0,t+1, q1,t+1 are
denoted by Pt, Qt, respectively, for 0 ≤ t ≤ r. For example, they provide ex-
pressions for the truncated Hirzebruch-Jung continued fractions: [bs, . . . , bt] =
qs−1,s+t/qs,s+t for 1 ≤ s ≤ t ≤ r. The formula is proved in loc. cit. for right
truncations, i.e. for s = 1, and it is not difficult to see that it holds also for general
truncations.

6.1.3. Application.

Lemma 6.6. Assume 0 ≤ s ≤ s′ ≤ t′ ≤ t ≤ r + 1 and (s′, t′) 6= (s, t). Then

(6.10) 0 ≤ qs′,t′ < qs,t.

Proof. This follows easily by induction on s, t using the fact that ai ≥ 2 for i =
1, . . . , r. �

Lemma 6.7. We have

(6.11) uj =
qj,l

qj−1,l
uj−1 +

1

qj−1,l
ul

for 1 ≤ j ≤ l ≤ r + 1.

Proof. By Remark 6.4 and Lemma 6.3, Cl := qj−1,luj − qj,luj−1 does not depend
on j. Specializing to j = l we see that Cl = ul. �
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Substituting uj = vj − v−1 in (6.11) we obtain

(6.12) vj =
qj−1,l − qj,l − 1

qj−1,l
v−1 +

qj,l
qj−1,l

vj−1 +
1

qj−1,l
vl,

which gives a concrete expression for the coefficients in (6.1) (and also for the
induction datum in Proposition 6.10 below). Note that we have

(6.13) it = qt,r+1

as both sides satisfy (6.3) by Remark 6.4 and are equal for t = r, r+1. Substituting
this in (6.14) we obtain

(6.14) vj =
ij−1 − ij − 1

ij−1
v−1 +

ij
ij−1

vj−1 +
1

ij−1
vr+1,

and hence by (6.2)

(6.15) bj =

⌊
ij−1 − ij − 1

ij−1
b−1 +

ij
ij−1

bj−1 +
1

ij−1
br+1

⌋

.

6.2. An expression for b. We give an explicit expression for the solutions to
(6.15) in case (b−1, b0, br+1) = (0, 0, d), 0 ≤ d < n (see Lemma 6.9 below with
l = r + 1). Since i1 > · · · > ir = 1 successive division with remainder yields a
unique representation

d =

r∑

t=1

itdt

with dt ∈ N and

(6.16)

r∑

t=k+1

itdt < ik for any 0 ≤ k ≤ r

(for k = 0 this formula becomes d < n which is true by hypothesis).
For 0 ≤ j ≤ r + 1 put

(6.17) cj =

j−1
∑

t=1

qt,jdt.

Using (6.13) and interpreting an empty sum as zero we have in particular

(6.18) c0 = 0, cr+1 = d.

There is bound for the tail sums in (6.17) similar to (6.16).

Lemma 6.8. We have for 0 ≤ k ≤ j − 1 ≤ r

(6.19)

j−1
∑

t=k+1

qt,jdt < qk,j .

Proof. For k = j − 1 there is nothing to prove so we assume k < j − 1. According
to [IU15, Lemma 3.5] dt has the following properties

(i) 0 ≤ dt ≤ at − 1.
(ii) If ds = as − 1, dt = at − 1 for s < t then there is s < l < t such that

dl = al − 3.
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By (6.10) the sequence (qt,j)t is descending. Using this it is easy to see that
among the sequences (dt)t which satisfy (i), (ii) the one that gives the maximum

value for
∑j−1

t=k+1 qt,jdt is given by dk+1 = ak+1 − 1, dk+2 = ak+2 − 2,. . . ,dj−1 =
aj−1 − 2. Hence the left-hand side of (6.19) is bounded by

qk+1,j +

j−1
∑

t=k+1

qt,j(at − 2).

We compute

qk+1,j +

j−1
∑

t=k+1

qt,j(at − 2) = qk+1,j +

j−1
∑

t=k+1

(qt−1,j − qt,j + qt+1,j − qt,j) (6.4)

= qk+1,j + qk,j − qj−1,j − qk+1,j + qj,j

= qk,j − 1

which implies (6.19). �

Lemma 6.9. We have for 1 ≤ j ≤ l ≤ r + 1

cj =

⌊
qj,l

qj−1,l
cj−1 +

1

qj−1,l
cl

⌋

.(6.20)

Proof. We compute the right-hand side of (6.20). We have

qj,l
qj−1,l

cj−1 +
1

qj−1,l
cl =

qj,l
qj−1,l

j−2
∑

t=1

qt,j−1dt +
1

qj−1,l

l−1∑

t=1

qt,ldt (6.17)

=

j−2
∑

t=1

qj,lqt,j−1 + qt,l
qj−1,l

dt + dj−1 +
1

qj−1,l

l−1∑

t=j

qt,ldt

=

j−1
∑

t=1

qt,jdt +
1

qj−1,l

l−1∑

t=j

qt,ldt (6.6).

Using (6.17), (6.19) we see that the right-hand side of (6.20) equals cj . �

6.3. Proof of Proposition 6.2. Assume b = (b−1, b0, br+1, b1, . . . , br) is obtained
by triangle convex induction from (b−1, b0, br+1). Then it is trivially true that for
0 ≤ l ≤ r, (b−1, bl, br+1, bl+1, . . . , br) is obtained by triangle convex induction from
(b−1, bl, br+1).

The following result shows that this is also true when we “truncate” b on the
right. This is a combinatorial fact for which we have no conceptual explanation.

Proposition 6.10. For 1 ≤ l ≤ r + 1, (b−1, b0, bl, b1, . . . , bl−1) is obtained by
triangle convex induction from (b−1, b0, bl).

Proof. In view of (6.12) we have to prove for 1 ≤ j < l ≤ r + 1

bj =

⌊
qj−1,l − qj,l − 1

qj−1,l
b−1 +

qj,l
qj−1,l

bj−1 +
1

qj−1,l
bl

⌋

.(6.21)

To prove (6.21) we may add to b an affine function of the form 〈m,−〉+k form ∈ M
and k ∈ Z as such an altered b still satisfies the recursion (6.15). Using (6.7) it is
therefore easy to see that we may assume (b−1, b0, br+1) = (0, 0, d) for 0 ≤ d < n.
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Comparing (6.15) (and (6.13)) with (6.20) for l = r + 1 together with (6.18) we
find that the normalized b satisfy bj = cj . Then (6.21) follows by invoking (6.20)
for arbitrary l. �

Remark 6.11. It is clear that in the proof of Proposition 6.10 we made essential use
of the fact that in (6.15) we used ⌊−⌋, rather than ⌈−⌉.

Proof of Proposition 6.2. It is enough to prove that scv−1
(m) = scvj−1

(m) = scvl(m)

6= scvj (m), 1 ≤ j < l, cannot occur. This follows from Lemmas 5.3, 5.8 (using

Proposition 6.10). �

7. A tilting bundle on a stacky resolution using Gulotta’s approach

From now on we assume that n = 3. We fix a triangulation of P without extra
vertices and we let Σ be the corresponding fan. In this section we will construct a
tilting bundle on XΣ. This yields an NCCR for RP by Proposition 3.3.

To start we embed P in a (minimal) rectangle P0 = [0, c] × [0, d] × {1}. Then
P0 − intP is the union of at most four (non-convex) polygons {Qi}, one polygon
for every corner vertex in P0 not occurring in P . Each of these polygons can be
divided into triangles by successively cutting off “corner triangles” of maximal size
whose internal edge has slope determined by the Farey tree, traversed row by row
(see [Gul08, Figure 15]). E.g. if Q ∈ {Qi} is the polygon in the upper left or lower
right corner then we use the slope sequence5

1
1

✐✐✐
✐✐✐

✐✐✐
✐✐✐

❯❯❯
❯❯❯

❯❯❯
❯❯❯

1
2

tt
tt
tt

❏❏
❏❏

❏❏
2
1

tt
tt
tt

❏❏
❏❏

❏❏

1
3

✞✞ ✼✼
2
3

✞✞ ✼✼
3
2

✞✞ ✼✼
3
1

✞✞ ✼✼

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

· · ·

If Q ∈ {Qi} is the polygon in the upper right or lower left corner then we use the
corresponding negative slopes. See Figure 7.1 for an example.

P0

P

Figure 7.1. N corner triangles, �extra diagonal

5The slopes 0/1 and 1/0 which are sometimes considered part of the Farey tree are missing as
they correspond to the vertical and horizontal boundary of Q.
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Let Pi be the polygon that we obtain after removing i triangles from P0 and let
Pl = P . As explained above Pi is obtained by “sawing off” a corner from Pi−1.
The thus created edge in Pi will be called the cutting edge. Remarkably, because
of the clever slope choices during the cutting, all Pi are lattice polygons (cf. proof
of [Gul08, Theorem 6.1]).

We add extra diagonals to the triangle Pi−1 − Pi connecting the unique vertex
of Pi−1 not in Pi to the points on the cutting edge in Pi which are vertices of Pj

for j ≥ i.6 Combining the resulting triangulation of Pi − P with the one of P we
obtain compatible triangulations of P0 ⊃ P1 ⊃ · · · ⊃ Pl = P where Pi−1 − Pi is a
subdivided triangle. Let V0 ⊃ V1 ⊃ · · · ⊃ Vl be the corresponding sets of vertices.
Note that |Vi−1 − Vi| = 1 and moreover Vi is the union of the vertices of Pj for
j ≥ i.

Let n1 = (0, 0, 1), n2 = (c, 0, 1), n3 = (c, d, 1), n4 = (0, d, 1) be the vertices of P0

and let V ′
i be the union of the vertices of Pj for 0 ≤ j ≤ i. For each i, V ′

i − V ′
i−1

consists of endpoints of the cutting edge in Pi. More precisely V ′
i − V ′

i−1 consists
of 0, 1 or 2 elements of ∂Pi−1 (depending on how many of the endpoints of the
cutting edge are already vertices of Pi−1). If v is one of those elements then

(7.1) v = (1 − t)v′ + tv′′

for t ∈]0, 1[ and v′, v′′ vertices of Pi−1. We use this to order V0 = V ′
l = [n1, . . . , n4+l′ ]

in such a way that it is convexly induced from [n1, n2, n3, n4] in the sense of Defini-

tion 5.5, with the induction datum t = (t
(i)
j )i,j being obtained from the expressions

(7.1).

We now fix b0 ∈ Z4. We also fix a sign sequence and we let (bv)v∈V0 := b̃ be
convexly induced from b0 with respect to this sign sequence (and the induction
datum t). In down to earth terms this means that whenever v, v′, v′′ are as in (7.1)
then bv = ⌊(1 − t)bv′ + tbv′′⌋ or bv = ⌈(1 − t)bv′ + tbv′′⌉ depending on the chosen
sign sequence.

Let Σi be the fan on the cone over Pi corresponding to its triangulation. The
elements of Vi are the minimal generators of the one-dimensional cones in Σi and
we let Σi = (Σi, Vi) be the corresponding stacky fan as in §3. Let b̃i = (bv)v∈Vi

.

Lemma 7.1. We have

(7.2) Γ(XΣ0 ,MΣ0,b̃
) = Mb0 .

If b0 ∈ Z4 moreover satisfies

(7.3) ∀m ∈ M : [sb01 (m), sb02 (m), sb03 (m), sb04 (m)] 6∈ {[+−+−], [−+−+]}

(cfr. (5.2) for notation) then Hj(XΣi
,M

Σi,b̃i
) = 0 for j > 0 and i = 0, . . . , l.

Proof. We start with the first claim. By Lemma 3.1 we have

Γ(XΣ0 ,MΣ0,b̃
) = Mb̃.

Since b̃ is convexly induced from b0, the conclusion follows from Corollary 5.7.
Now we discuss the last claim. As πs : XΣi

→ XΣi
is finite we have by Lemma

3.1
Hj(XΣi

,M
Σi,b̃i

) = Hj(XΣi
,MΣi,b̃i

) = Hj(XΣi
,O(Db̃i

)).

6The extra diagonals are necessary to obtain a triangulation of P0 in the sense of algebraic
topology, i.e. a homeomorphism |K| ∼= P0 where K is a combinatorial simplicial complex.
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We will prove that VD
b̃i
,m (see (3.6), (3.7)) is either empty or contractible.7 This

implies what we want.

Step 1. Let u0, u1, . . . , ur+1 ∈ Vi be the vertices on an edge in Pi (ordered in an
arbitrary direction). We claim that the signs sbui

(m) follow the pattern + · · · +
− · · ·− (possibly reflected and perhaps with no + or − present). This follows from

the easy observation that (b̃u0 , b̃ur+1 , b̃u1 , . . . , b̃ur
) is obtained by interval convex

induction from (b̃u0 , b̃ur+1) together with Lemma 5.10.

Step 2. Let w1, w2, . . . be the elements of ∂Pi ∩ Vi (ordered in an arbitrary di-
rection). We claim that the signs sbwi

(m) follow the pattern + · · ·+ − · · ·− (up to
cyclic permutation and possibly with no + or − present).

By Step 1 it is sufficient to prove this for w1, w2, . . . being the vertices of Pi. We
note that it is true for P0 by (7.3). An easy case by case analysis using Lemma 5.3
for removing a single triangle then proves the claim by induction.

Step 3. VD
b̃l
,m is either empty or contractible. This follows from Step 2 applied

with i = l. We leave the verification as an exercise to the reader.

Step 4. If the sign pattern in Step 2 is + · · ·+ then VD
b̃i
,m = ∅. Indeed, it

follows from the inductive construction and repeated application of Lemma 5.3
that sbv(m) = + for all v ∈ Vi in this case.

Step 5. Again by a case by case analysis of the same nature as in Step 2 one
shows that the following possibilities can occur for the relation between VD

b̃i
,m and

VD
b̃i−1,m

.

(1) They are the same.
(2) VD

b̃i
,m = ∅ and VD

b̃i−1 ,m
is a single point (this needs in particular Step 4).

(3) VD
b̃i−1 ,m

is obtained from VD
b̃i
,m by gluing an interval at an end point.

(4) VD
b̃i−1 ,m

is obtained from VD
b̃i
,m by gluing a triangle at one of its edges.

In each of the cases the property of being empty or contractible is preserved, fin-
ishing the proof. �

We set

S0 = {(0, i, i+j, j) | 0 ≤ i < c, 0 ≤ j < d}∪{(0, i, i+j+1, j) | 0 ≤ i < c, 0 ≤ j < d}.

Remark 7.2. Note that XP0 = Y//G where Y = (k⊕4)∨ and G = k∗ × Zc ×Zd acts
on k⊕4 with weights χ1ξ

−1
c ξ−1

d , χ−1ξc, χ1, χ−1ξd (see §3). Furthermore this action
is generic in the sense of [ŠVdB17a, Def.§1.3.4]. Since S0 can be naturally identified
with {0, 1} × Zc × Zd = ((1/2)[−2, 2]ǫ ∩X(k∗)) ×X(Zc × Zd) for ǫ > 0, it follows
by [ŠVdB17a, Theorem 1.6.2] combined with [ŠVdB17a, Lemma 4.5.1] (see also
[VdB04, §7]) that Λ0 := EndRP0

(
⊕

b∈S0
Mb) is a (well-known) NCCR of RP0 .

For each vertex in V0 we choose a sign and we compatibly convexly induce the
elements S0 = {(bv)v∈V ′

0
} using those signs to obtain a set S = Sl = {(bv)v∈V0} (Sl

and S0 are in bijection).

Let S
i

l ⊂
∏

v∈Vi
Z be the image of Sl under the projection

∏

v∈V0
Z →

∏

v∈Vi
Z.

Put Ti =
⊕

b∈S
i

l

MΣi,b (see (3.3) for notation). This is a vector bundle on the toric

DM-stack XΣi
.

7Note that the distinction is relevant as contractible spaces have no reduced cohomology but
H̃−1(∅, k) = k.
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Corollary 7.3. Ti has no higher self-extensions.

Proof. It is easy to verify that b− b′ for b, b′ ∈ S0 satisfy (7.3). As Sl is compatibly
convexly induced from S0, Lemma 5.8 enables us to apply Lemma 7.1. �

Lemma 7.4. T0 is a classical generator (see [BVdB03]) of D(XΣ0
).

Proof. By (7.2), Lemma 5.8 and Remark 7.2 (combined with (3.2)) we obtain Λ̃0 :=
EndXΣ0

(T0) ∼= Λ0.
Since Λ0 is an NCCR for RP0 by Remark 7.2, we have in particular gl dimΛ0 <

∞, and hence the same is true for Λ̃0. By Corollary 7.3 we have a full and faithful
embedding of Perf(Λ̃0) in D(XΣ0

). As gl dim Λ̃0 < ∞, we have Perf(Λ̃0) = D(Λ̃0)

and moreover D(Λ̃0) is admissible in D(XΣ0
). Since D(XΣ0

) does not have a

nontrivial semi-orthogonal decomposition by Corollary A.5, we have D(Λ̃0) ∼=
D(XΣ0

). �

Theorem 7.5. Ti is a tilting bundle on XΣi
.

Proof. By Corollary 7.3 it suffices to show that Ti is a classical generator of D(XΣi
).

Since XΣi
is isomorphic to an open substack of XΣ0 and Ti is a restriction of T0 to

XΣi
this follows by Lemma 7.4. �

8. Tilting bundle on a stacky resolution using the Ishii-Ueda

approach

We start in exactly the same way as in §7. In this section we will construct a
tilting bundle on XΣ using a procedure inspired by [IU15]. This will yield again an
NCCR of RP using Proposition 3.3.

Now we embed P in a triangle P0 with vertices (0, 0, 1), (0, c, 1), (d, 0, 1). To
obtain Pi, i > 0, from Pi−1 one removes a (corner) vertex of Pi−1 and takes the
convex hull of the remaining lattice points in Pi−1. Let l be such that Pl = P . We
triangulate P0 as in §7 by first triangulating P (without extra vertices) and then
triangulating Pi−1 − Pi by adding edges from the unique vertex in Pi−1 which is
not on Pi to the vertices of Pj , j ≥ i which are not on ∂Pi−1. See Figure 8.1.

P0

P

Figure 8.1. • corner vertices
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The objects Σi, Σi, Vi, V
′
i are defined in the same way as in §7. We set

S0 = {(i, j, 1) | 0 ≤ i < c, 0 ≤ j < d}.

Note that XP0
∼= Y//G, where Y = k3, G = Zc × Zd acts on k3 with weights

ξ−1
c ξ−1

d , ξc, ξd (see §3). This action is generic. Since G is a finite abelian group and
S0

∼= X(G), it is classical (see e.g. [Aus86], [Leu12, §J], [ŠVdB17a, §1.2], [Wem14,
§1.4]) that Λ0 = EndRP0

(
⊕

b∈S0
Mb) is an NCCR of RP0 .

Below we will inductively extend Si−1 = {(bi)i∈V ′

i−1
} to Si = {(bi)i∈V ′

i
} using

compatible convex induction so that the required tilting bundle will be obtained
from Sl = {(bi)i∈V0} (note V ′

l = V0). However here the induction process appears
to be more delicate and in particular our proof depends on the choice of a specific
sign sequence (see §5) in order to obtain an analogue for Lemma 7.1. See Remark
6.11.

8.1. Definition of Si. Let v−1 ∈ V ′
i−1 be the vertex of Pi−1 that we remove to

construct Pi, and let v0, vr+1 ∈ ∂Pi−1 ∩ ∂Pi ∩ ∂(Pi−1 \ Pi). Let v1, . . . , vr be the
other lattice points on ∂(Pi−1 \ Pi) such that v0, v1, . . . , vr, vr+1 are consecutive.

Remark 8.1. Note that V ′
i−1∪{v0, v1, . . . , vr+1} may be strictly larger than V ′

i since
some of the vj may not be vertices of Pi (they will of course be elements of ∂Pi).
For a simple example how this can happen look at [CLS11, Figure 10.3].

Let b ∈ Si−1. We describe how to induce b to V ′
i . This will be done for all

b ∈ Si−1 in a compatible way.

(i) We first convexly induce b to V ′
i−1 ∪ {v0, vr+1} for a fixed sign sequence. We

keep denoting the result by b.
(ii) We induce up b to V ′

i−1 ∪{v0, . . . , vr+1} by triangle convex induction (see §6),

and set b(i) = (bv)v∈V ′

i
. We let Si be the collection of b(i) so obtained.

We also adopt the notation S
i

l from §7. We can now state the following analogue
of Theorem 7.5.

Theorem 8.2. Put T △
i :=

⊕

b∈S
i

l

MΣi,b. Then T △
i is a tilting bundle on XΣi

.

This is proved using Proposition 8.3 below, which allows us to suitably adapt
the proof of Corollary 7.3, in exactly the same way as Theorem 7.5.

Proposition 8.3. Let b̃i = b − b′ for b, b′ ∈ S
i

l. Then Hj(XΣi
,O(Db̃i

)) = 0 for
j = 1, 2.

Proof. With the aid of Proposition 6.2 the proof follows similar lines as the proof
of Lemma 7.1, therefore we only point out the necessary adjustment. Note that
Step 1 is relevant because of (i). In Step 2 we need to additionally use Proposition
6.2, in Step 5 (4) a polygon is glued at a (contractible) string of edges. �

9. Example

As a sanity check we have verified our procedures for constructing toric NCCR’s
for 3-dimensional toric singularities on an explicit moderately complex example.
Let P be as in Figure 7.1. We have G = G2

m and RP
∼= (SymW )G, where G acts

on W with weights (−1, 0), (3,−1), (−2, 3), (−2,−3), (2, 1) (see Figure 9.1). The
Cohen-Macaulay modules of covariants can be deduced by [VdB93] or by [Boc12]
(see Proposition B.1 below).
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If we follow Gulotta’s (resp. the Ishii-Ueda) procedure as shown in Figure 7.1
(resp. 8.1) for a sign sequence s = (−)i we get a module of covariants M corre-
sponding to the grey weights in the left (resp. right) Figure 9.1. We observe the
following comforting facts.

• Both sets of grey weights do indeed contain the same number of elements
(16).

• The endomorphism rings of the corresponding modules of covariants are
Cohen-Macaulay.

• The number 16 is also equal to 2Vol(P), and so me may use Proposition
B.3 below to double check that the endomorphism rings are indeed NCCRs.

Figure 9.1. • G-weights, • CM weights, © Gulotta (left), Ishii-Ueda (right)

Appendix A. Toric DM stacks and semi-orthogonal decompositions

As usual we assume M = N = Zn. In this appendix we show that the derived
category of a smooth toric DM stack XΣ (see [BH06]) for Σ = (Σ, (ni)

k
i=1), where

|Σ| is a (rational strongly convex) polyhedral cone over a convex lattice polyhedron
P × {1} ⊂ Rn and ni ∈ P × {1} are generators of 1-dimensional cones in Σ, does
not admit any nontrivial semi-orthogonal decomposition.

We first recall a result from [BCS05]. Here Σmax denotes the set of maximal
cones in Σ.

Proposition A.1. [BCS05, Proposition 4.3 and its proof] Let σ be a maximal
cone in Σ. If σ = [ni1 , . . . , nin ], then Xσ, σ = (σ, (nij )

n
j=1), corresponds to an

open substack of XΣ and XΣ =
⋃

σ∈Σmax
Xσ. Moreover Xσ

∼= kn/Gσ for a finite
subgroup Gσ ⊂ G (with G is as in §3) such that the action of Gσ on kn is unimodular
and faithful.

Recall that we denote XP = Spec(RσP
).

Lemma A.2. Let πs : XΣ → XΣ be the canonical map. Then

OXΣ

∼= ωXΣ

∼= π∗
sωXΣ

∼= π∗
sOXΣ .

Proof. Let σ ∈ Σmax. By Proposition A.1 the smooth points in Xσ correspond
exactly to Gσ-orbits of points in kn with trivial stabilizer. Indeed, since Gσ is uni-
modular the stabilizer groups cannot contain pseudo-reflections, and therefore the
corresponding quotient (of the Gσ-orbit of a point in kn with nontrivial stabilizer)
cannot be regular by the Chevalley-Shephard-Todd theorem.

Thus, as both ωXΣ
and ωXΣ are reflexive and πs : XΣ → XΣ is the identity

on the smooth locus of XΣ (whose complement has codimension ≥ 2 as XΣ is a
normal variety) we have π∗

sωXΣ = ωXΣ
. Moreover, τ : XΣ → XP is crepant; i.e.,
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τ∗ωXP
= ωXΣ (see e.g. [CLS11, Example 11.2.6]) and asXP is Gorenstein it follows

ωXΣ

∼= OXΣ
. �

Lemma A.3. The relative Serre functor8 of D(XΣ) with respect to D(XP ) is the
identity; i.e. for all F ,G ∈ D(XΣ) we have

(A.1) RHomXΣ
(F ,G) ∼= RHomRP

(RHomXΣ
(G,F), RP ).

Proof. Since π∗
sωXΣ = ωXΣ

by Lemma A.2, it follows from [Abu16, Theorem 3.0.17]
and its proof that the relative Serre functor of D(XΣ) with respect to D(XΣ) is
the identity. It is easy to check that it is thus enough to show that the identity is
a relative Serre functor of D(XΣ) with respect to D(XP ). Since θ : XΣ → XP is
crepant (see proof of Lemma A.2) and XΣ, XP are Gorenstein, this follows by the
same proof as in [IW14b, Lemma 4.13]. �

Lemma A.4. D(XΣ) is indecomposable.

Proof. Let σ be a maximal cone in Σ. Then Xσ
∼= kn/Gσ for a finite group Gσ,

which acts faithfully on kn by Proposition A.1. Thus, D(Xσ) is indecomposable
by [BKR01, Lemma 4.2]. Assume that we have an orthogonal decomposition D =
D(XΣ) = 〈D1,D2〉, Hom(D1,D2) = Hom(D2,D1) = 0. Since D(Xσ) is a Verdier
quotient of D(XΣ) (as XΣ is a noetherian stack by [LMB99, Prop. 15.4]) and
if C = C1 ⊕ C2, Ci ∈ Di, has support in XΣ \ UΣ, the same is true for C1, C2,
the orthogonal decomposition is preserved when passing to an open substack. For
σ ∈ Σmax we thus have j∗σD1 = 0 or j∗σD2 = 0 (where jσ : Xσ →֒ XΣ). Choose a
point x in XΣ which is in the intersection of the Xσ and also in the locus where
πs is an isomorphism. Then we can view Ox as an object in D. Since Ox is
indecomposable we can assume that Ox ∈ D1. Since the restriction of Ox to Xσ is
nonzero for every σ ∈ Σmax, we get that j

∗
σD2 = 0 for every σ ∈ Σmax, which easily

implies that D2 = 0. �

Corollary A.5. D(XΣ) does not admit any nontrivial semi-orthogonal decompo-
sitions.

Proof. It follows by (A.1) that RHomXΣ
(G,F) = 0 implies RHomXΣ

(F ,G) = 0.
Thus, if D(XΣ) has a non-trivial semi-orthogonal decomposition then it is decom-
posable. This contradicts Lemma A.4. �

Appendix B. Cohen-Macaulay modules

In this section we show how one can extend a useful criterion of Bocklandt
[Boc12] for recognising Cohen-Macaulay modules of covariants in dimension 3. It
can be used to give a direct proof of the Cohen-Macaulayness of the endomorphism
algebra Λ = EndRP

(
⊕

b∈S
i

l

Mb) in §7. Moreover, we will explain that Theorem 1.1

could be deduced from this fact provided we knew that |S
i

l| = 2Vol(P ).
Recall the following result.9

8See [Kuz08].
9The result may also be deduced from (3.6) by calculating the cohomology of Mb restricted to

the punctured spectrum of SpecRP . The latter is the toric variety associated to the fan spanned
by ∂P .
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Proposition B.1. [Boc12, Lemma 4.5] Let σ = [n1, . . . , nk], with n1, . . . , nk ori-
ented counter-clockwise, be a minimal presentation of σ, and let b ∈ Zk. The
RP -module Mb is Cohen-Macaulay if and only for every m ∈ M the signs sbi(m)
follow the pattern + · · ·+− · · ·− (up to cyclic permutation and possibly with no +
or − present).

Let P ⊂ R2 × 1 be a lattice polygon with vertices n1, . . . , nk and let P ′ denote a
lattice polygon obtained from P by removing a triangle with vertex nk. We denote
the other vertices of the triangle by nk+1, nk+2. They lie on the boundary of P (and
may, or may not, be vertices). Then [n1, . . . , nk, nk+1, nk+2] is convexly induced

from [n1, . . . , nk] with an induction datum t = (t(k+1), t(k+2)), where t
(k+1)
j = 0 for

j 6= k − 1, k, t
(k+2)
j = 0 for j 6= 1, k. For b ∈ Zk and s ∈ {+,−}2 we let bs be

convexly induced from b with the sign sequence s (and the induction datum t). By

bs we denote the projection of bs to Zk+1 omitting the k-th component.
Using the above criterion one can use a simplified version of Step 2 in the proof

of Lemma 7.1 (with {w1, w2, . . .} = {n1, . . . , nk+2}) to obtain Corollary B.2 below.
This is a generalization of [Boc12, Corollary 4.7] relaxing the assumption that

{nk+1, nk+2} ⊂ {n1, . . . , nk−1} (in the latter case bs is just the projection of b and
in particular the sign sequence s is irrelevant).

Corollary B.2. If Mb is a Cohen-Macaulay RP -module then Mbs
is a Cohen-

Macaulay RP ′-module. Moreover, if EndRP
(⊕b∈SMb) is a Cohen-Macaulay RP -

module then the RP ′-module EndRP ′
(⊕b∈SMbs

) is also Cohen-Macaulay.

If we could prove that using the Gulotta “cutting” procedure combined with
Corollary B.2 one gets a Cohen Macaulay RP -module M such that EndRP

(M) is
Cohen-Macaulay and such that M has precisely 2Vol(P ) non-isomorphic indecom-
posable summands then one obtains by the following proposition (see also [Boc12,
proof of Theorem 7.1]) a proof of Theorem 1.1 which does not require the construc-
tion of a tilting bundle on a resolution. Unfortunately we have not been able to
solve this purely combinatorial problem.

Proposition B.3. Let M be a graded RP -module (for some connected grading on
RP ) such that M contains at least 2Vol(P ) non-isomorphic graded indecomposable
summands and let Λ = EndRP

(M). If Λ is a Cohen-Macaulay RP -module, then Λ
is an NCCR of RP .

Proof. Since RP has an NCCR A by [ŠVdB17b, Proposition 1.1, Corollary 3.2],
it has a CCR which is derived equivalent to A by [VdB04, Theorem 6.3.1]. By
[Bri02], all crepant resolutions of RP are derived equivalent. There is a crepant
resolution of RP given by XΣ corresponding to a triangulation of P with triangles
of area 1/2. By [BH06] (see [ŠVdB17b, Theorem A.1]), rankK(XΣ) = 2Vol(P ),
thus rankK0(A) = 2Vol(P ).

Since M is a modifying module, it is a direct summand of a graded10 “maximal
modifying module” M ⊕M ′ by [IW14a, Proposition 1.19] and we may assume that
M and M ′ have no common indecomposable summands. Since RP has an NCCR,
the “maximal modification algebra” Λ′ := EndRP

(M ⊕ M ′) is also an NCCR by
[IW14a, Proposition 1.13]. As all NCCRs of RP are derived equivalent by [IW13,
Theorem 1.5], rankK0(Λ

′) = rankK0(A) = 2Vol(P ). Let m, m′ be the number

10The results of [IW14a] are valid in the graded context.
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of non-isomorphic indecomposable summands of M , M ′. By Lemma B.4 below
applied to Λ′ we now have 2Vol(P ) = rankK0(Λ

′) ≥ m + m′ ≥ m ≥ 2Vol(P )
(the last inequality by the hypotheses) and hence m′ = 0. Therefore M ′ = 0 and
Λ′ = Λ. Hence Λ is an NCCR of RP . �

We have used the following lemma.

Lemma B.4. Let R be a commutative finitely generated connected graded ring and
let M be be a finitely generated graded R-module with m non-isomorphic indecom-
posable summands. Put Λ = EndR(M). Then rankK0(Λ) ≥ m.

Proof. Let radΛ be the graded radical of Λ. Then the morphism between Grothen-
dieck groups K0(Λ) → K0(Λ/ radΛ) is surjective (by lifting of idempotents) and
moreover rankK0(Λ/ radΛ) = m, finishing the proof. �

Appendix C. Tilting bundles vs NCCRs

In dimension 3 (split) tilting bundles on crepant resolutions and (toric) NC-
CRs are intimately connected. The following theorem summarizes the relation.
While the first part (see [VdB04]) of the theorem is standard, the converse (see
[IU16]) is quite involved and requires a deep study of the delicate interplay between
crepant resolutions, dimer models, and moduli spaces of representations of the cor-
responding quivers, and moreover NCCRs (see [Boc12]). Since such moduli spaces
are projective over affine, the converse in addition requires that the resolution is
projective.

Theorem C.1. [VdB04], [IU16, Corollary 1.2], [Boc12, Theorem 7.1.-7.3] Let R
be the coordinate ring of a 3-dimensional Gorenstein affine toric variety and let
π : X → SpecR be a crepant resolution. If T is a tilting bundle on X then
EndX(T ) is an NCCR of R. Moreover, if π is projective and Λ is a toric NCCR
of R, then there exists a split tilting bundle T on X such that Λ ∼= EndX(T ).

Currently the full generality of this result seems out of reach of the methods
used in this paper. This being said, the convex induction approach makes it often
possible to find the tilting bundles whose existence is asserted in Theorem C.1 in a
rather direct way. Interestingly, as we show below, convex induction is sometimes
able to provide tilting bundles even if the resolution is not projective. This situation
is not covered by Theorem C.1.

We list some examples where the convex induction method yields split tilting
bundles on a crepant resolution of an affine toric variety for any toric NCCR. Note
that any such crepant resolution is toric and is obtained from the fan associated to
a lattice triangulation with triangles of area 1/2 of the polygon P corresponding to
R (see [DHZ01, Proposition 2.4], such a triangulation is called “unimodular”).

(1) One way to triangulate P is by using the Ishii-Ueda method (successively
removing corner vertices and taking the convex hull of the remaining lattice
points). For this type of triangulation we can induce the b’s defined on
the vertices of P , corresponding to the toric NCCR, to the vertices of
the triangulation using triangle convex induction as in §8, and define the
corresponding split tilting bundle.

(2) Convex induction may still work even if the triangulation is not as in (1).
For example, the star triangulation of a (minimal) regular lattice hexagon
(see Figure C.1) is not of the above form, but one may use convex induction
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to find a split tilting bundle. Let Λ = EndR(⊕b∈SMb) be a toric NCCR. Let
n1, . . . , n6 be vertices of the polygon and let n7 be the middle point. We fix

some induction datum (t
(7)
j )j (e.g. t

(7)
j = 1/6 for j = 1, . . . , 6) and let S̃ be

compatibly convexly induced from S. We claim that ⊕b̃∈S̃O(Db̃) is a tilting

bundle on X . We need to show (see (3.1), (3.7)) that H̃≥0(VD
b̃−b̃′

,m, k) =

0 for b̃, b̃′ ∈ S̃ and m ∈ M . It follows from the fact that Λ is Cohen-
Macaulay (see Proposition B.1) that any sign sequence on the boundary of
the polygon will be of the form +, . . . ,+,−, . . . ,− (with possibly no + or −
appearing), therefore VD

b̃−b̃′
,m would not be empty or contractible only if

the sign pattern on the boundary is −, . . . ,− and there is + in the middle.
However, this is impossible by the convex induction (using Lemma 5.8).

45

6

1 2

3
7

Figure C.1. A crepant resolution of a hexagon.

The combinatorial argument used in the last example can be used in more general
situations via the following lemma.

Lemma C.2. Let (ni)i∈I be the vertices of a unimodular triangulation of P and
assume that the (ni)i are obtained by convex induction from the vertices of P for
a chosen induction datum. Assume that every set of signs (si)i∈I ∈ {±}I com-
patible with Lemma 5.3 whose the restriction to the vertices of P is of the form
+, . . . ,+,−, . . . ,− (possibly reflected and with at least one + and one −), has the
property that every ni is connected with a constant sign path to ∂P . Then R satisfies
the converse of Theorem C.1 for the (not necessarily projective) crepant resolution
of SpecR given by the triangulation.

Proof. Let (nj)j∈J be the vertices of P and let let S = {(bj)j∈J} be a collection of

b’s defining an NCCR of R and let S̃ = {(b̃i)i∈I} be obtained from S by compatible
convex induction for an arbitrary sign sequence and the given induction datum.
Let b̃ = b̃′ − b̃′′ for some b̃′, b̃′′ ∈ S̃. Then b̃ is obtained by convex induction from
b := b′ − b′′ by Lemma 5.8.

For m ∈ M put si = sb̃i(m). Then (si)i∈I is compatible with Lemma 5.3. We
will show that VD

b̃
,m is either empty or contractible.

Since S defines an NCCR the restriction of (si)i∈I to the vertices of P will be of
the form +, . . . ,+,−, . . . ,− (with possibly no + or − appearing) (see Proposition
B.1). By Lemma 5.3 the same will be true for the restriction to the vertices of the
triangulation in ∂P .

If the sequence restricted to ∂P is +, . . . ,+ then by Lemma 5.3: Vb̃,m = ∅. If

the sequence is −, . . . ,− then VD
b̃
,m = P .
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Assume now that the restricted sequence is +, . . . ,+,−, . . . ,−. Since every ni

has a constant sign path to the boundary the set of −’s is connected and moreover
no cycle of −’s can surround a +. It now suffices to apply Lemma C.3 below. �

Lemma C.3. Assume we are given a triangulation of P with vertices (ni)i∈I . Let
b ∈ ZI , m ∈ M and assume in addition that (sbi(m))i is such that the set of −’s
is connected and furthermore that no cycle of −’s surrounds a +. Then VDb,m is
either empty or contractible.

Proof. Put V = VDb,m. Assume V 6= ∅. Then the hypotheses imply |πiV | = 1
for i = 0, 1. Furthermore as V is planar, Zastrow’s theorem [Zas98, Theorem A]
asserts that |πiV | = 1 for i ≥ 2. Since V is a CW-complex this implies that V is
contractible by Whitehead’s theorem. �

(3) Projective crepant resolutions correspond to regular triangulation of P (see
e.g. [CLS11, Definition 15.2.8]). However, there are also non-regular tri-
angulations for which the convex induction method works. As an example
(see Figure C.2) we take the triangulation [Log08, §5.2] refining the iconic
(minimal) example of a non-regular triangulation [San06, Example 1.4].

1 4 2

3

56

7

8 9

10

Figure C.2. A non-regular triangulation

We induce [n1, n2, n3, n4, . . . , n10] from [n1, n2, n3] with the induction

datum (t
(i)
j )ij satisfying t

(4)
1 = t

(4)
2 = t

(5)
2 = t

(5)
3 = t

(6)
1 = t

(6)
3 = 1/2,

t
(7)
1 = t

(7)
2 = t

(7)
3 = 1/3, t

(8)
1 = t

(8)
7 = t

(9)
2 = t

(9)
7 = t

(10)
3 = t

(10)
7 = 1/2,

and t
(i)
j = 0 otherwise. We now use Lemma C.2. Let (si)i be as in the

lemma; thus in particular {s1, s2, s3} = {±}. We have to verify that every
nj in the interior of the triangle has a constant sign path to the boundary.
Indeed, n7 is connected to the nj for j = 1, 2, 3 if sj = s7 and n8 is
also connected to a boundary point as otherwise s1 = s6 = s3 6= s8, and
therefore s8 = s7 = s2 = s9, a contradiction which establishes the claim by
symmetry.
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