
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Fortune Nets for Fortunettes: Formal, Petri Nets-Based, Engineering of

Feedforward for GUI Widgets

Peer-reviewed author version

Navarre, David; Palanque, Philippe; COPPERS, Sven; LUYTEN, Kris &

VANACKEN, Davy (2020) Fortune Nets for Fortunettes: Formal, Petri Nets-Based,

Engineering of Feedforward for GUI Widgets. In: Sekerinski, Emil; Moreira Nelma;

Oliveira, Jose N. et al (Ed.). Formal Methods FM 2019, Springer, Cham, p. 503 -519.

DOI: 10.1007/978-3-030-54994-7_36

Handle: http://hdl.handle.net/1942/31947

Fortune Nets for Fortunettes: Formal, Petri nets-based,

Engineering of Feedforward for GUI Widgets

David Navarre1[0000-0002-2900-2056], Philippe Palanque1-2[0000-0002-5381-971X], Sven Cop-

pers3[0000-0002-5734-8898], Kris Luyten3[0000-0002-4194-1101] and Davy Vanacken3[0000-0001-8436-

5119]

1 ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France

2 Technical University Eindhoven, Department of Industrial Design, Eindhoven, Netherlands
3 Hasselt University - tUL - Flanders Make, Expertise Centre for Digital Media, Diepenbeek

Belgium
{navarre, palanque}@irit.fr ; firstname.lastname@uhasselt.be

Abstract. Feedback and feedforward are two fundamental mechanisms that sup-

ports users’ activities while interacting with computing devices. While feedback

can be easily solved by providing information to the users following the trigger-

ing of an action, feedforward is much more complex as it must provide infor-

mation before an action is performed. Fortunettes is a generic mechanism provid-

ing a systematic way of designing feedforward addressing both action and

presentation problems. Including a feedforward mechanism significantly in-

creases the complexity of the interactive application hardening developers’ tasks

to detect and correct defects. This paper proposes the use of an existing formal

notation for describing the behavior of interactive applications and how to exploit

that formal model to extend the behavior to offer feedforward. We use a small

login example to demonstrate the process and the results.

Keywords: Feedforward, formal methods, Petri nets, interactive systems engi-

neering.

1 Introduction

Feedback and feedforward are two fundamental mechanisms supporting users’ activi-

ties while interacting with computing devices. While feedback can be easily solved by

providing information to the users following the triggering of an action, feedforward is

much more complex as it must provide information before an action is performed. Au-

tomatic feedforward presents in a systematic way to the users what can be done without

requiring any dedicated action (e.g. greying out an interactive object that is not availa-

ble). Automatic feedforward is often available in well-designed interfaces. User-trig-

gered feedforward provides localized, contextual information to the users related to the

actions that they envision triggering (e.g. painting temporarily a selected object in yel-

low while hovering over the yellow button for painting objects). User-triggered feed-

forward is usually not available in user interface, as it requires computing the future

mailto:palanque%7d@irit.fr

2

state of the application (if a given action is performed) and presenting this future state

on the UI.

In [25], the authors exploit Norman’s activity theory [17] to explain the importance

and the impact of providing users with feedforward in user interfaces, especially in the

action selection phase. In poorly designed systems, that kind of user activity can be

very cumbersome especially in the upper part of the model of the activity theory (also

called semantic distance).

Fig. 1 presents a typical system offering limited feedforward. In that system (Mi-

crosoft Word) some of the commands for changing text graphical attributes do not pro-

pose feedforward (see Fig. 1 b) while others do (see Fig. 1 c)). Fig. 1 a) presents a

snapshot of MS Word software with the word Fortunettes selected and highlighted. In

that version of MS Word, when some text is selected, a contextual pop-up menu appears

next to the selected text. In Fig. 1 a) the cursor has been moved far away from the

selected text and thus no pop-up menu is visible. In Fig. 1 b) the pop-up menu is dis-

played and the mouse cursor hovers over the Bold command to change the presentation

of the text to Bold. However, in that case, no feedforward is presented so it is not pos-

sible to see how the text will be if the Bold command is performed. Surprisingly, Fig.

1 c) highlights the fact that for altering the color of the selecting text, hovering over one

of the colors displayed in the pop-up menu applies directly the hovered over color to

the selected text, thus providing users with feedforward on the color attribute of the

text.

a) b) c)

Fig. 1. Inconsistent availability of feedforward in Microsoft Word (Office 2016)

One of the questions that arises immediately is: why such a sophisticated tool as MS

Word is not offering feedforward mechanisms for all the functions or at least to all the

similar functions (e.g. changing attributes of selected text).

While, as highlighted in [10] and [25], the design of feedforward is an issue. We

would argue that its specification and its implementation are the key problem to solve

when it is considered as a potential function to add to the system. In that case, we would

argue that feedforward is a usability function using the pending concept of security

function [26] or safety function [13]. While a safety function can be defined as a func-

tion added to a system to prevent undesired safety problems, we would define a usabil-

ity function as a function added to an interactive system to prevent undesired usability

problems. Within this context, feedforward can be considered as a function similar to

“undo” and thus requires complex implementation due to its crosscutting nature [13].

3

This paper argues for the use of a formal approach for the specification and the imple-

mentation of feedforward in a systematic way. We present how the expressive power

of high-level Petri nets such as ICOs [16] can describe feedforward and how the result-

ing models are amenable to verification (to identify and check properties on the system

offering feedforward). In a nutshell we propose to produce a Petri net model (called

Fortune Net) in addition to the model describing the behavior of the application. We

also argue that a formal model of the initial application can be extended in a systematic

way to include feedforward functionality, thus reducing development cost of such a

usability function.

This paper is an extension of the work done in [7] to offer feedforward mechanisms

in a more general context. Section 2 presents the foundations, interaction and one de-

sign for the Fortunettes concept for feedforward usability function. Section 3 presents

the illustrative example of a simple widget-based interactive application that is used

throughout the paper. Section 4 presents the Petri nets based modeling approach for

modeling interactive applications and its application to the modelling of Fortunettes

usability function. Section 5 focusses on the formal analysis of the application model

and of the Fortune Nets ones. Section 6 concludes the paper and highlight paths for

future work.

2 Fortunettes: Design, Foundations and Use

The origin of Fortunettes [7] is the need of providing feedforward about the future state

of an application. When including a feedforward usability function in the GUI, the feed-

forward information does not need to be presented permanently (to avoid visual over-

load and cluttering of the UI) but instead we propose this specific information display

to be triggered by the user on demand (when needed). In our approach, exploring the

future may be seen as a four steps process:

• Look at the present, when the user explores visually the user interface elements;

• Peek into the future, when the user is considering performing an action;

• Go to the future, when the user confirms and actually executes the considered ac-

tion;

• Return to the present, when the user is no longer considering the execution of that

action.

The choice has been made of providing such feedforward at widget-level as it makes it

easier to reuse for any widget-based application. Fig. 2 shows an example of this kind

of widget-level feedforward: when the user hovers over the Login button (that is cur-

rently enabled), the button Logout and the text box (that are currently disabled), show

their future state in terms of availability (the button Logout and the textbox will be-

come enabled if the user clicks the button Login, while the button Login will become

disabled). With this information, the user knows that to enable the Logout button, the

Login button me be pressed first.

4

Fig. 2. Illustration of the Fortunettes concept using the case study.

The main idea of Fortunettes is to provide the user with an answer to “What will happen

if I do that?”, by presenting what the result of the user action will be, before the action

is actually performed. It thus requires the widgets to be able to present their future state

in addition to their current state (enabled or disabled).

As presented in [7], the user interface of the application presented in Fig. 2 is the

following:

- The application is composed of four widgets (the three buttons and a textbox),

- The current state of the widgets is displayed on the forefront, the login button is

enabled, “Logout” and “Send and Clear” ones are disabled, and the textbox is

disabled too.

- In order to present the feedforward information, users have to hover over the

widget of interest. In Fig. 2, the “login” button is hovered and the background

display of each widget presents the feedforward information showing the state

of the application if the user clicks on the login button. Current feedforward

display tells the user that “login” button will be disabled, the textbox will be-

come enabled, “logout” will become enabled and “Send and Clear” will remain

disabled. Indeed, as the status of “Send and Clear” will remain the same, no

additional feedforward display is presented. We follow here the parsimony prin-

ciple of user interface designs.

The design choice presented here is one example of the many possible designs of

Fortunettes: every widget is decorated with borders to express its future availability

(full lines for enabled, dashed lines for disabled) and/or its future values.

This design will not be further discussed as the focus of this paper is on formal de-

scription and engineering support. These two aspects are particularly important as the

introduction of Fortunettes increases the complexity of the development of an applica-

tion, and, by consequence its reliability.

3 Illustrative example

We illustrate the use of the Fortunettes approach with a simple application (as illus-

trated by Fig. 3) that behaves as follows: when the user is logged in, a message can be

written in the textbox or the user can log out. To ensure that the message only contains

letters, the edited text is filtered, removing any other characters (numbers, special char-

acters…). If the textbox is not empty, the message can be sent. Sending the message or

logging out clear the textbox.

5

Fig. 3. Screen shots of the illustrative application. On the left, the user is logged out, on the

right, the user is logged in and a message is being edited and ready to be sent.

4 Modelling of Fortunettes behavior

To support the engineering of interactive applications offering a feedforward usability

function based on Fortunettes, we propose an approach based on a formal description

technique called Interactive Cooperative Objects (ICO). We firstly present in this Sec-

tion the formal description technique, then we present how it is possible to derive the

feedforward behavior of the application from the existing model of the application be-

havior.

4.1 ICO formal description technique

The ICO formalism is a formal description technique dedicated to the modeling and the

implementation of event-driven interfaces [16], using a decomposition of communi-

cating objects to model the system, where both behavior of objects and communication

protocol between objects are described by the Petri net dialect called Cooperative Ob-

jects (CO) [4]. In the ICO formalism, an object is an entity featuring four components:

a cooperative object which describes the behavior of the object, a presentation part (i.e.

the graphical interface), and two functions (the activation function and the rendering

function) which connects the cooperative object and the presentation part.

An ICO specification fully describes the potential interactions that users may have

with the application. The specification encompasses both the "input" aspects of the in-

teraction (i.e. how user actions impact the inner state of the application, and which ac-

tions are enabled at any given time) and its "output" aspects (i.e. when and how the

application displays state information that is relevant to the user).

This formal description technique has already been applied in the field of Air Traffic

Control interactive applications [16], space command and control ground systems [20],

or interactive military [3] or civil cockpits [2].

The ICO notation is fully supported by a CASE tool called PetShop [5, 21]. All the

models presented in the two next Sections (4 and 5) have been edited, simulated and

analyzed using PetShop tool.

4.2 Principle of Fortunettes feedforward modelling using ICO

As stated in Section 2, engineering an application with feedforward capabilities requires

to handle extra interaction events (at least three, depending on the widget type). These

events allow the user to peek into the future, to go to the future or to return to the

present, without affecting the standard behavior of the application, as the objective is

6

to enhance the application (with feedforward) and not to change it. This design choice

impacts the modelling of feedforward behavior:

• The feedforward behavior of any application is modelled as an independent object

that embeds the standard behavior (as a copy), making it fully compatible with the

original application behavior. This Petri net model is called the Fortune Net as it

allows users to look into the future of the application.

• For any event handling within the standard behavior, the feedforward behavior em-

beds a pattern described in Petri nets (a set of places and connected transitions) that

models the exploration of the future states. The important aspect in this modelling

principle is that we exploit the behavior of the application to forecast the future states

of the application if the user decides to use feedforward function.

To illustrate these two points, we use an excerpt of the complete behavior presented in

the next Section (4.3) that only concerns the login action on the user interface (as

shown by Fig. 4).

Fig. 4. Excerpt from the Petri net model of the standard behavior of the application: event han-

dling of the login action. In the transition, the text on the left describes the name of the transi-

tion while the text on the right describes the name of the event associated the transition.

In Fig. 4, the login transition is the event handler for an event called loginPer-

formed that represents the use of the button Login. When fired, this transition moves

the token from place LoggedOut () to place LoggedIn, setting the state of the

application to the new state following the execution of the login (code not represented

here).

When introducing the Fortunettes view on this action, the three base actions defined

in Section 2 (peek into the future, go to the future and return to the present) are repre-

sented as three extra event handlers, as shown on Fig. 5, where event handlers

{FloginPerformed, UFloginPerformed, InFloginPerformed} are gen-

erated from the event handler loginPerformed. In this paper, the name of the gen-

erated event handlers for handling Fortunettes mode are built with the name of the cor-

responding event handler, prefixed by F (that represents entering in Fortunettes mode,

e.g. peek into the future), by UF (that represents exiting the Fortunettes mode, e.g. re-

turn to the present) and InF (that represents exiting the Fortunettes mode and go to the

future).

Fig. 5. Extracted from the feedforward behavior of the application: event handling of the login

action and peek into its future.

7

On Fig. 5, transition f1login (event handler for FloginPerformed) represents

the action of peeking into the future of the action login. Basically, it behaves in the

same way as the original action (put a token in place LoggedIn) while the standard

behavior is still in state LoggedOut. It additionally puts a token in place flogin that

represents the entering in feedforward mode (a dedicated rendering may occur).

There are then two possibilities:

• The user decides to really perform the login action (using the login button),

producing two events: loginPerformed handled by the standard behavior (mak-

ing it going to the state LoggedIn) and InFloginPerformed handled by the

feedforward behavior (discarding the token in place flogin, while the token in

place LoggedIn does not move, placing it in the same state as the standard behav-

ior).

• The user decides to not perform the login action producing an event UFloginPer-

formed. The standard behavior remains in the same state while in the feedforward

behavior, the tokens from places LoggedIn and flogin are removed and a token

goes back to the place LoggedOut, making it return to its previous state (leaving

the feedforward mode).

This pattern is particularly efficient when describing a feedforward behavior for events

that do not handle values or when the widgets are simple such as button. For more

complex events, or when the underlying widgets are more complicated, this pattern has

to be modified/extended:

• When values are handled by the action of the widget, it is not always possible to

peek into the future of these values. One possible improvement is to proceed in two

steps. When entering the feedforward mode, an envisioned value must be produced

(decided at design time for instance) and when the user really performs the action, a

substitution must be done between the envisioned value and the real value. In the

feedforward behavior, this can be done by moving tokens (if it was the case in the

login example, the first token put in place LoggedIn by transition f1login would

have a design time envisioned value, and when f3login would be fired, this token

would have been removed and replaced by one holding the correct value).

• When the widget is more complex (in our case, the complexity is related to the event

production), extra event handlers may be introduced. For instance, when using a

classical textbox, one may be interested by the end of the text edition (validation)

and not by the whole process of typing in the text. In this case, in the standard be-

havior of the application, the only handled event would be the last one (for instance,

the event actionPerformed of the JTextField in Java Swing). On the feed-

forward behavior side, any text change may be relevant to allow the rendering of

text filtering.

Fortunettes requires enhancing widgets with extra means to allow rendering feedfor-

ward states and to trigger dedicated events. In our implementation using Java Swing

widgets, we embed them within a specialized decorator, but there are many other im-

plementation options at widget level or at application level.

8

4.3 Application of the modeling principle to the illustrative example

This Section presents the ICO models for both the standard application and its For-

tunettes enhancement. For each model, we present the behavioral part and the two user

interface description functions: the activation part and the rendering part.

Standard behavior.

Fig. 6 presents the entire behavior of the illustrative example. It may be divided into

two parts: the upper part is dedicated to login actions and the lower part is dedicated to

the message handling.

Fig. 6. Behavior of the Login example using the ICO formal description technique.

The upper part of Fig. 6 models what has been explained in the beginning of the Section

(see Fig. 4) to introduce Fortunettes and the modelling approach, including the com-

plete behavior of the application i.e. its functional code (inside the transitions). Another

difference is the way back from place LoggedIn to place LoggedOut when logging

out that clears the edited message (modification of the value of the token held by place

MessageToBeSent).

The lower part of Fig. 6 is dedicated to the message editing and to send it. Sending

it (transition sendAndClear) can only occur if the message is not empty (precondition

!message.isEmpty()). When it occurs, the token held by place Mes-

sageToBeSent is destroyed and a new token (with an empty string) is set to that

place. The message editing is represented by the transition editMessage that re-

ceives an event called edit, and this event holds a string value called sourceMes-

sage. This sourceMessage is then filtered resulting in a string message that only

9

contains characters that belongs to [a-z] and [A-Z] (For instance “a1b2c3” will

be transformed into “abc”) by the execution of the function replaceAll.

Table 1 represents the activation function of the application. It relates the event pro-

duction from the application and event handlers described using ICO. When the event

occurs, the corresponding transition is fired. If the transition is not available, the corre-

sponding event source must be disabled. This part of the functioning is assumed by the

activation rendering method (last column of Table 1) that is provided by the applica-

tion: for instance, setLoginEnabled changes the enabling of the button Login.

Table 1. Activation function for the ICO model of the Login example.

User Event Event handler Activation Rendering

Edit editMessage setEditEnabled

Login login setLoginEnabled
Logout logout setLogoutEnabled

Send sendAndClear setSendEnabled

Table 2 represents the rendering function of the application. It relates any state

change within the application behavior to rendering methods call. For instance, when a

token enters place MessageToBeSent, the string of this message is set in the text

box widget by calling the method showMessage.

Table 2. Rendering function for the ICO model of the Login example.

ObCS node name ObCS event Rendering method

MessageToBeSent marking_reset showMessage

MessageToBeSent token_enter showInitialMessage

Feedforward behavior.

Fig. 7 illustrates how feedforward information can be displayed using Fortunettes.

Fig. 8, Table 3 and Table 4 fully describe the feedforward part of the application. The

behavior presented by Fig. 8 is structured similarly to the standard behavior, the upper

part being dedicated to the login actions and the lower part, to the message editing.

Fig. 7. Illustration of the text filtering while typing in feedforward mode

This Fortune Net behaves according to the pattern explained in the previous Section

with the particularity of the filtering of the text while it is being typed in and not only

at the end of the interaction with the text box (transition f4editMessage in the lower

10

part of Fig. 8). This allows to present to the user what will happen to the edited value

if it is validated (e.g. press ENTER), as illustrated by Fig. 7.

Fig. 8. The Fortune Net describing the feedforward behavior of the Login example using the

ICO formal description technique.

Table 3 presents the activation of the feedforward behavior of the application. The in-

teresting part of this function is that the activation rendering is not related to the imme-

diate availability of the events, but to their availability in the future. Therefore, it does

not directly impact the application widgets but only calls functions that have been added

to render their Fortunettes appearance. For instance, on Fig. 7, if the edited text is val-

idated (e.g. pressing ENTER), the button “Send and Clear” will become available (rep-

resented by the rectangle around it, in the background).

11

Table 3. Activation function for the ICO model of the feedforward behavior of the example.

User Event Event handler Activation Rendering
Edit editMessage setFortunettesEditEnabled
Login login setFortunettesLoginEnabled
Logout logout setFortunettesLogoutEnabled
Send sendAndClear setFortunettesSendEnabled

Table 4 presents the rendering function of the feedforward behavior of the application.

This function first aims at making the application entering in feedforward mode (a to-

ken enters any of the places prefixed f) or at exiting the feedforward mode (a token

exits any of the paces prefixed by f). This function ensures too that when a new mes-

sage is under editing, it is rendered on the feedforward part of the interface (each time

a token enters the place MessageToBeSent, showFortunettesMessage is

called modifying what is rendered in the ENTER rectangle of the text box as illustrated

on Fig. 7)

Table 4. Rendering function for the ICO model of the feedforward behavior of the example.

ObCS node name ObCS event Rendering method
MessageToBeSent marking_reset showFortunettesMessage
MessageToBeSent token_enter showFortunettesInitialMessage

fEditMessage token_enter startRenderFortunettes

fEditMessage token_exit stopRenderFortunettes

fLogin token_enter startRenderFortunettes
fLogin token_exit stopRenderFortunettes

fLogout token_enter startRenderFortunettes

fLogout token_exit stopRenderFortunettes
fSendAndClear token_enter startRenderFortunettes

fSendAndClear token_exit stopRenderFortunettes

This interesting joint behavior between the standard behavior of the application and

its Fortunettes ones is highlighted on Fig. 7. Indeed, when the user types some text in,

it is rendered directly in the text box while the Fortunettes rendering displays the text,

as it will appear if the validation key is pressed. In the case of the login application, we

see that all the non-textual characters will be removed and the current text “He43llo”

will appear as “Hello” in the future.

5 Formal Analysis on the illustrative example

This Section is dedicated to the formal analysis of the models presented above. The fact

that we produce two different models for the same application (the standard application

model and the Fortune Net) has multiple implications. First, the standard application

models must exhibit some properties and it is important to check that they are true.

Second, the Fortune Net also needs to exhibit some properties (e.g. each time the user

triggers the “peek into the future” there must be two actions available: one to go into

that peeked future and one to come back to the current present. Third, the Fortune Nets

must implement a “similar” behavior as the standard application and thus we must

demonstrate their compatibility. For instance, it is important to demonstrate that all the

12

actions available in the models of the standard application are available in the Fortune

Net. This is only an example of the generic properties that have to be checked when a

feedforward usability function is added to an application.

With ICOs, as detailed in [24] and [19], there are two different techniques:

- The analysis of the underlying Petri net using results from Petri nets theory. This

analysis can be performed using methods and algorithms from the Petri nets

community such as the ones presented in [15].

- The analysis of the high-level Petri net (ICO) but this requires manual demon-

strations as some of the properties are undecidable [9].

Due to space constraints, we only present here properties that are based on the un-

derlying Petri net model. Some interesting results demonstrate that the high-level nature

of the Petri nets with objects only reduce the availability of transitions (for instance

when they feature pre-conditions) and thus in order for the high-level Petri net to be

live, the underlying Petri net must be live [4].

5.1 Formal analysis of the model of the standard behavior (Fig. 6)

Table 5 presents the list of traps and siphons of the model in Fig. 61. In a Petri net a

siphon is a set of places that never gain tokens whatever transition is fired while a trap

is a set of places that never lose tokens [8]. The fact that all the places in the model are

both traps and siphons demonstrate that the number of tokens in the model will remain

the same as the one in the initial state i.e. two tokens (see Fig. 6).

Table 5. Siphons and Traps from the standard behavior of the application.

Siphons Traps
MessageToBeSent MessageToBeSent

LoggedIn, LoggedOut LoggedIn, LoggedOut

Table 6 analysis is based on the calculation of transition invariants and place invariants.

As can be seen all the places in the model belong to a place invariant which means that

the total number of tokens in the places of the models will remain the same. One inter-

esting piece of information is that place MessageToBeSent is a single place in a P-

invariant. This means that whatever transition is fired the number of tokens in that place

will always be the same as the one of the initial marking. In the current example, this

means that the place MessageToBeSent will always be marked by a single token.

Table 6. Transitions and Place Invariants from the standard behavior of the application.

T-Invariants P-Invariants

1 sendAndClear 1 LoggedIn, 1 LoggedOut

1 editMessage 1 MessageToBeSent

1 login, 1 logout

1 The computing of the results in those tables was done using Petshop tool and are not presented

due to space constraints. How to make such computing is presented in [8].

13

In terms of behavior, transitions login and transition logout belong to the same t-

invariant which means that, if they can be made available from the initial state, there

always exists a sequence of transitions in the Petri net to make them available. Their

connection with the P-invariant {1 LoggedIn, 1 LoggedOut} (with a bounded value of

one token) demonstrates that always one of the two transition will be available and they

will never be available at the same time.

5.2 Formal analysis of the Fortune Net (Fig. 8)

We will not detail the analysis of the Fortune Net, but it is important to check that the

properties true in the application model are still holding in the Fortune Net.

If we take as example the property of the mutual exclusion of login and logout tran-

sitions, we can easily see in Table 7 and Table 8 that the places and the transitions

belong are also listed in siphons, traps, P-invariants and T-invariants.

Table 7. Siphons and Traps from the feedforward behavior of the application.

Siphons Traps
MessageToBeSent MessageToBeSent

LoggedIn, LoggedOut LoggedIn, LoggedOut

Of course, the Fortune Net is more complex and should also exhibit specific properties

related to its own semantics. A very simple but important one is that whenever the user

triggers a transition to peek into the future (name starting with f1) immediately after a

transition to come back to present (name starting with f2) and a transition to go into the

future (name starting with f3) will be available. The analysis results in Table 8 demon-

strate that a Fortune Net always verifies this fundamental property (any of such transi-

tions is always in a T-Invariant with each other).

Table 8. Transitions and Place Invariants from the feedforward behavior of the application.

T-Invariants P-Invariants

1 f4editMessage 1 LoggedIn, 1 LoggedOut

1 f1logout, 1 f3logout, 1 login 1 MessageToBeSent

1 f1login, 1 f2login

1 editMessage

1 f1editMessage, 1 f2editMessage

1 f1sendAndClear, 1 f3sendAndClear

1 f1sendAndClear, 1 f2sendAndClear

1 f1logout, 1 f2logout

1 login, 1 logout

1 f1login, 1 f3login, 1 logout

1 f1login, 1 f1logout, 1 f3login, 1 f3logout

1 sendAndClear

14

1 f1editMessage, 1 f3editMessage

1 f1login, 1 f1logout, 1 f2login, 1 f3logout, 1 login

1 f1login, 1 f2login, 1 login, 1 logout

6 Related work

As highlighted in [22] many formal approaches to support the design, specification and

verification of interactive systems have been proposed. That book chapter highlights

four criteria to compare those approaches: 1) Modeling coverage (how much of the

interactive systems can the notation describe); 2) Properties (and their type) supported;

3) Application of the methods in which domain; 4) Scalability (is the notation able to

deal with large scale interactive systems).

With respect to the modelling need of Fortunettes, the expressive power of the nota-

tion to be used heavily depends on the interactive application itself and does not require

specific modelling power. With that respect, if the interactive application does not fea-

ture concurrent behavior, dynamic instantiation of objects and does not exhibit quanti-

tative time behavior, automata would be adequate for describing Fortunettes behavior

as demonstrated in [7]. If more complex behaviors need to be represented, more ex-

pression power will be required. The table 1 from the book chapter [22] would be then

of great help to select the modeling notation.

As Fortunettes feedforward concept is meant to be applied in a systematic way to all

the interactions in an interactive system, Fortune Nets need to cover all the aspects of

the interactive (from the low-level interaction technique to the functional core accord-

ing to the MIODMIT architecture [14]. We have only presented here Fortunettes at the

application level, but all the layers of the architectures should be taken into account.

7 Conclusion and perspectives

While research in the field of HCI focuses on adding more functionalities to the user

interface, the interaction techniques and the interactive applications to improve usabil-

ity and user experience, very little work is spent on transferring these improved inter-

actions to the developers of interactive systems. For instance, papers proposing bubble

cursor for improving target acquisition [11] or marking menus [12] to improve com-

mand selection do not present means for engineering these interaction techniques in a

reliable and systematic way.

This paper has proposed an engineering method based on formal methods to support

the systematic integration of Fortunettes concepts to provide interactive application

with feedforward mechanisms. While the graphical and interaction design of For-

tunettes might be improved and could be subject of future research, we have demon-

strated that the use of a Petri nets-based approach limits the complexity of adding For-

tunettes behavior to an existing application. We have also demonstrated that a formal

approach can provide benefits in ensuring that the application with the additional feed-

forward behavior remains behaviorally compatible with the initial application.

15

The work presented in the present paper leads to extensions that should be addressed

in future work. First, the current design of Fortunettes only deals with WIMP interac-

tion techniques based on a set of identified widgets. While this can be seen as a strong

limitation for current user interfaces targeting at better user experience, it is important

to note that many applications are still widget-based. In some critical domains it is even

not possible to embed other types of interfaces as required by the ARINC 661 specifi-

cation standard [1] for user interfaces of cockpits of large civil aircrafts. We have pre-

viously worked on the formal description of User Application, user interface widgets

and servers using Petri net based description [2] and that early work can directly benefit

from the work presented in the paper. This means that adding the feedforward usability

function to those user applications will result in very limited work (as the Fortune Net

is built upon the original behavior and is described with the same language) and would

come with assurance means to guarantee their correct behavior.

Second, the current behavior of Fortunettes is to offer the possibility to the user to

look only one step into the future. The model-based behavior presented in the paper

could be exploited further to look into several step or even to look at the eventual end

of the execution, as introduced in [19]. For instance it would be possible to identify a

widget (via formal analysis) that would become unavailable forever in five steps from

the current state of the application .While graphical design and interaction will be

clearly a difficult challenge, the engineering of such applications could be reachable

via the analysis of the formal models.

References

1. ARINC 661. Cockpit Display System Interfaces to User Systems. ARINC Specifica-

tion 661-5. AEEC, 2013

2. Barboni E., Conversy S., Navarre D. & Palanque P. Model-Based Engineering of Widgets,

User Applications and Servers Compliant with ARINC 661 Specification. 13th conf. on De-

sign Spec. and Verif. of Interactive Systems (DSVIS 2006), LNCS Springer Verlag. p25-38

3. Bastide R., Navarre D., Palanque P., Schyn A. & Dragicevic P. A Model-Based Approach

for Real-Time Embedded Multimodal Systems in Military Aircrafts. Sixth International

Conference on Multimodal Interfaces (ICMI'04) October 14-15, 2004, USA, ACM Press.

4. Bastide R., Sibertin-Blanc C., Palanque P. Cooperative objects: A concurrent, petri-net

based, object-oriented language. IEEE Systems Man and Cybernetics Conference-SMC

1993, 286-291

5. Bastide, R., Navarre, D., Palanque, P.: A Model-based Tool for Interactive Prototyping of

Highly Interactive Applications. CHI ’02 Extended Abstracts on Human Factors in Compu-

ting Systems. pp. 516–517. ACM, , USA (2002).

6. Canfora G. and Luigi Cerulo. 2005. How Crosscutting Concerns Evolve in JHotDraw. In

Proceedings of the 13th IEEE International Workshop on Software Technology and Engi-

neering Practice (STEP '05). IEEE Computer Society, Washington, DC, USA, 65-73.

7. Coppers, S., Luyten, K., Vanacken, D., Navarre, D., Palanque, P., Gris, C. Fortunettes: Feed-

forward about the Future State of GUI Widgets. Proceedings of the ACM on Human-Com-

puter Interaction vol:3. ACM SIGCHI.

8. David R., Alla H. Petri nets and grafcet - tools for modelling discrete event systems. Prentice

Hall 1992, ISBN 978-0-13-327537-7, pp. I-XII, 1-339

javascript:void(0)
javascript:void(0)
https://dblp.uni-trier.de/pers/hd/a/Alla:Hassane

16

9. Dietze R., Kudlek M., Kummer O. Decidability Problems of a Basic Class of Object Nets.

Fundam. Inform. 79(3-4): 295-302 (2007)

10. Djajadiningrat T., Kees Overbeeke, and Stephan Wensveen. 2002. But how, Donald, tell us

how?: on the creation of meaning in interaction design through feedforward and inherent

feedback. Conference on Designing interactive systems: processes, practices, methods, and

techniques (DIS '02). ACM, New York, NY, USA, 285-291.

11. Grossman T. and Balakrishnan R. 2005. The bubble cursor: enhancing target acquisition by

dynamic resizing of the cursor's activation area. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI '05). ACM, DL, 281-290.

12. Kurtenbach G. and Buxton W. 1994. User learning and performance with marking menus.

Conference on Human Factors in Computing Systems (CHI '94). ACM DL, 258-264.

13. Lee S. & Yamada Y. (2010) Strategy on Safety Function Implementation: Case Study In-

volving Risk Assessment and Functional Safety Analysis for a Power Assist System, Ad-

vanced Robotics, 24:13, 1791-1811

14. Martin Cronel, Bruno Dumas, Philippe A. Palanque, Alexandre Canny. 2018. MIODMIT:

A Generic Architecture for Dynamic Multimodal Interactive Systems. In Proc. of IFIP

TC13.2 Conference on Human Centered Software Engineering, HCSE 2018, 109--129.

15. Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE (Vol-

ume: 77 , Issue: 4 , Apr 1989)

16. Navarre D., Palanque P., Ladry J-F. & Barboni E. ICOs: A model-based user interface de-

scription technique dedicated to interactive systems addressing usability, reliability and

scalability. ACM Trans. Comput.-Hum. Interact., 16(4), 18:1–18:56. 2009.

17. Norman, D. A. The Psychology Of Everyday Things. Basic Books, New York, USA, June

1988

18. Palanque P., Bastide R., Dourte L.Contextual Help for Free with Formal Dialogue Design.

In Proceedings of HCI International (2) 1993: 615-620

19. Palanque P., Bastide R., Sengès V. Validating interactive system design through the verifi-

cation of formal task and system models. IFIP WG 2.7, working conference Engineering

HCI, 1995, Springer,189-212

20. Palanque P., Bernhaupt R., Navarre D., Ould M. & Winckler M. Supporting Usability Eval-

uation of Multimodal Man-Machine Interfaces for Space Ground Segment Applications Us-

ing Petri net Based Formal Specification. Ninth Int. Conference on Space Operations, Italy,

June 18-22, 2006.

21. Palanque P., Ladry J-F, Navarre D. & Barboni E. High-Fidelity Prototyping of Interactive

Systems can be Formal too 13th Int. Conf. on Human-Computer Interaction (HCI Interna-

tional 2009) LNCS, Springer.

22. Raquel Oliveira Prates, Philippe A. Palanque, Benjamin Weyers, Judy Bowen, Alan J. Dix.

State of the Art on Formal Methods for Interactive Systems. Handbook of Formal Methods

in Human-Computer Interaction 2017: 3-55

23. Sadasivan S., Joel S. Greenstein, Anand K. Gramopadhye, and Andrew T. Duchowski. 2005.

Use of eye movements as feedforward training for a synthetic aircraft inspection task. Con-

ference on Human Factors in Computing Systems (CHI '05). ACM, 141-149.

24. Silva J-L, Fayollas C., Hamon A., Palanque P., Martinie C., Barboni E. Analysis of WIMP

and Post WIMP Interactive Systems based on Formal Specification. ECEASST 69 (2013)

25. Vermeulen J., Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing the

bridge over Norman's Gulf of Execution: revealing feedforward's true identity. SIGCHI

Conference on Human Factors in Computing Systems (CHI '13). ACM, USA, 1931-1940

26. Yoon C., Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin, and Zonghua Zhang.

2015. Enabling security functions with SDN. Comput. Netw. 85, C (July 2015), 19-35.

https://dblp.uni-trier.de/pers/hd/d/Dietze:Roxana
https://dblp.uni-trier.de/pers/hd/k/Kudlek:Manfred
https://dblp.uni-trier.de/db/journals/fuin/fuin79.html#DietzeKK07
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=911
https://dblp.uni-trier.de/pers/hd/b/Bastide:R=eacute=mi
https://dblp.uni-trier.de/pers/hd/d/Dourte:Louis
https://dblp.uni-trier.de/db/conf/hci/hci1993-2.html#PalanqueBD93

