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Probabilistic Parameter Threshold Analysis
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Background. Threshold analysis is used to determine the threshold value of an input parameter at which a health care
strategy becomes cost-effective. Typically, it is performed in a deterministic manner, in which inputs are varied one
at a time while the remaining inputs are each fixed at their mean value. This approach will result in incorrect thresh-
old values if the cost-effectiveness model is nonlinear or if inputs are correlated. Objective. To propose a probabilistic
method for performing threshold analysis, which accounts for the joint uncertainty in all input parameters and
makes no assumption about the linearity of the cost-effectiveness model. Methods. Three methods are compared: 1)
deterministic threshold analysis (DTA); 2) a 2-level Monte Carlo approach, which is considered the gold standard;
and 3) a regression-based method using a generalized additive model (GAM), which identifies threshold values
directly from a probabilistic sensitivity analysis sample. Results. We applied the 3 methods to estimate the minimum
probability of hospitalization for typhoid fever at which 3 different vaccination strategies become cost-effective in
Uganda. The threshold probability of hospitalization at which routine vaccination at 9 months with catchup cam-
paign to 5 years becomes cost-effective is estimated to be 0.060 and 0.061 (95% confidence interval [CI], 0.058–
0.064), respectively, for 2-level and GAM. According to DTA, routine vaccination at 9 months with catchup cam-
paign to 5 years would never become cost-effective. The threshold probability at which routine vaccination at 9
months with catchup campaign to 15 years becomes cost-effective is estimated to be 0.092 (DTA), 0.074 (2-level),
and 0.072 (95% CI, 0.069–0.075) (GAM). GAM is 430 times faster than the 2-level approach. Conclusions. When the
cost-effectiveness model is nonlinear, GAM provides similar threshold values to the 2-level Monte Carlo approach
and is computationally more efficient. DTA provides incorrect results and should not be used.
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Background

Health economic evaluations compare 2 or more alterna-
tive courses of action in terms of costs and consequences.
For instance, cost-effectiveness analyses can evaluate if a
new health care strategy is preferred over the existing
strategy (i.e., considering it cost-effective) by comparing
costs and health benefits of the strategies.1 However, the
decisions are often surrounded by considerable uncer-
tainty, which arises from insufficient information about

important aspects of the disease process and the different
health care strategies under study. The assessment of an
uncertain decision involves expressing how confident
we are about the best course of action given current
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information and identifying the most important targets
for information gathering through new research.2

Several methods have been developed to characterize
the sensitivity and uncertainty in health care decisions.1

Traditionally, the impact of parameter uncertainty has
been explored using a deterministic approach. Input
parameter values are varied one at a time, or several at a
time, over plausible ranges to test a model outcome’s
responsiveness to these variations.3 A special case of
deterministic sensitivity analysis is deterministic thresh-
old analysis (DTA), which determines the input para-
meter value at which the preferred health care strategy
changes, and is referred to as ‘‘the parameter threshold
value.’’1,2,4 Threshold analysis is typically used to deter-
mine the price at which a health care strategy becomes
cost-effective, but it can also be used, for instance, to
determine the minimum disease incidence at which a
health care strategy would be cost-effective in a given set-
ting.5 Deterministic threshold analysis is straightforward
for analysts and easily understood by decision makers.
However, one of the major problems with only accounting
for uncertainty in a deterministic way is that the estimated
cost-effectiveness, and its associated threshold values, can
be incorrect in the case of a nonlinear relationship between
the input parameters and the model’s outcomes.1

Probabilistic sensitivity analysis (PSA) can overcome
this limitation.2,3 PSA accounts for the plausible values
of uncertain input parameters as well as how likely each
of these values are. The result of a PSA can be used to
obtain an unbiased estimate of the expected value of the
cost-effectiveness outcome and a quantification of the
uncertainty around this outcome. In addition, the rela-
tionship between the uncertain input parameters and the

corresponding uncertainty around the cost-effectiveness
of a health care strategy can be assessed using a range of
statistical methods, including value of information analy-
sis.6 McCabe et al.7 proposed a probabilistic threshold
analysis based on a 2-level Monte Carlo approach. In
complex health economic evaluations, a 2-level Monte
Carlo simulation can be computationally demanding.

We propose an efficient alternative to DTA, namely, a
generalized additive model (GAM), that gives correct
threshold values in the case of a nonlinear relationship
between inputs and outputs of the health economic
model while accounting for the uncertainty in all other
input parameters. We evaluate the accuracy and compu-
tational efficiency of GAM in estimating threshold values
by comparing it with the 2-level Monte Carlo probabilis-
tic threshold analysis. Our working example is a recent
peer-reviewed health economic evaluation of vaccination
against typhoid fever. In this example, there is a non-
linear relationship between the uncertain input para-
meters and the corresponding cost-effectiveness of the
typhoid vaccination program, which is due in part to the
use of a dynamic transmission model.8

Methods

Net Benefit as Measure for Cost-Effectiveness

A health economic evaluation compares the costs and
health effects (such as deaths or disability-adjusted life-
years [DALYs] averted) of alternative courses of action
(including ‘‘current practice’’). As such, it informs deci-
sion makers about the relative efficiency of a change in
policy (e.g., the adoption of a new policy option). The
relative efficiency of one policy option v. another is usu-
ally expressed as an incremental cost-effectiveness ratio
(ICER) or as an incremental net monetary (or health)
benefit. Throughout this article, we use incremental net
monetary benefit (INB) as the measure of cost-
effectiveness so that the threshold methods we propose
are general applicable. Indeed, when uncertainty is
accounted for in a probabilistic way, the expected ICER
is only interpretable when comparing 2 decision options
(e.g., new strategy v. current strategy) and when all incre-
mental costs and effects are positive.9 The INB is defined
as

INBd ¼ lDEd � DCd

¼ lðEd � Ed0
Þ � ðCd � Cd0

Þ
ð1Þ

where INBd represents the incremental net benefit for
option dðd ¼ 1; . . . ;DÞ, one of D alternative health care
strategies under consideration, relative to the baseline
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strategy, d0; l represents the decision maker’s maximum
willingness to pay (WTP) per unit gain in health; DEd is
the incremental health benefit of option d compared to
the baseline strategy; and DCd is the difference in costs
between strategy d and the baseline strategy. The opti-
mal health care strategy is that which has the highest
INB.1,9,10 The current strategy is typically chosen as the
baseline strategy, but any strategy can be chosen, as long
as the same baseline strategy is chosen for all options
compared.

Usually, there is considerable uncertainty around the
expected values of input parameters due to limited evi-
dence on the expected costs and effects of a health care
strategy d. Therefore, the expected INBd will also be sur-
rounded with uncertainty. We account for this uncer-
tainty by assigning appropriate probability distributions
to the input parameters (u), denoted by pðuÞ.1 We sam-
ple K values from pðuÞ and calculate the K correspond-
ing INBd values. The most cost-effective strategy is the
strategy with the highest expected incremental net bene-
fit. We adapt equation (1):

Eu½INBdðuÞ�’
1

K

XK

k¼1

lðEðkÞd � E
ðkÞ
d0
Þ � ðCðkÞd � C

ðkÞ
d0
Þ

n o
,

ð2Þ

where Eu½INBdðuÞ� denotes the expected INB of health
care strategy d based on distribution of all parameters.

Definition of Threshold Value

The threshold value for a parameter ui is the value u�i , for
which the following 2 conditions hold:

1. We can identify decision options, d0 and d00, where
d0 6¼ d00, which have expected net benefits, condi-
tional on ui, that are equal, that is,

Eu�ijui
½INBd0 ðui; u�iÞ� ¼ Eu�ijui

½INBd00 ðui; u�iÞ�: ð3Þ

2. There must be no decision option with expected net
benefit, conditional on ui, that is greater than that
for d0, that is,

Eu�ijui
½INBd0 ðui; u�iÞ� � Eu�ijui

½INBdðui; u�iÞ� ð4Þ

for all d,

where ui in equations (3) and (4) has an appropriate
probability distribution (pðuiÞ) to characterize its uncer-
tainty. The first condition determines that u�i is a value

for which decision option d0 has the same conditional
expected net benefit as option d00 and is therefore a
threshold value, and the second condition determines
that u�i is a threshold value where the optimal health care
strategy changes. Determining the threshold value, u�i , in
the net benefit framework leads to a dependence between
u�i and the chosen WTP value, l.

Deterministic Threshold Analysis

Deterministic threshold analysis seeks to identify the
value of a parameter for which the optimal health care
strategy changes while keeping all other input parameters
constant. More formally, the deterministic parameter
threshold value (u�i ) must satisfy 2 conditions:

1. ui is the parameter for which we can identify policy
options, d0 and d00, where d0 6¼ d00, which have INB,
conditional on ui, that are equal, that is,

INBd0 ðui;E½u�i�Þ ¼ INBd00 ðui;E½u�i�Þ: ð5Þ

2. There must be no decision option with net benefit
(conditional on ui) greater than that for d0, that is,

INBd0 ðui;E½u�i�Þ � INBd00 ðui;E½u�i�Þ ð6Þ

for all d,

where ui in equations (5) and (6) refers to point estimates.
The first condition determines that u�i is a parameter
value where decision option d0 has the same INB (evalu-
ated at the mean values of u�i) as option d00, and the sec-
ond condition determines that u�i is a threshold value,
where the optimal health care strategy changes to d0.
Again, the threshold value, u�i , depends on the chosen
WTP value, l, in the net benefit framework.

The analysis proceeds as follows11,12:

1. Define the uncertain parameter of interest, ui.
2. Fix remaining input parameters u�iði 6¼ �iÞ at their

expected values.
3. The threshold value u�i can be obtained in the follow-

ing ways:
(a) Graphically: Vary the values ui (generally 5–10

different values) and assess the impact on the
cost-effectiveness (e.g., plot INBd for each
health care strategy d relative to a baseline
option d ¼ 0 as a function of the different val-
ues of the uncertain parameter of interest); the
point at which any of the top 2 lines cross is u�i .
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(b) Algebraically: Solve the linear system composed
of 2 health economic models, one for d0 and the
other for d00, to find u�i satisfying equations (5)
and (6). Solve the linear system for any combi-
nation of d0 and d00. Make sure that u�i is
obtained within the range of plausible values of
ui.

(c) Numerically:
i Vary over K (k ¼ 1; . . . ;K) values of ui and

record the corresponding INB d, for each d.
ii Sort the values of INBd , for each d, accord-

ing to ascending ui values.
iii Set INB

ðkÞ
d ¼ 0 for the ‘‘baseline’’ decision

option d = 0.
iv Determine the health care strategy with the

highest INBd for u
ðkÞ
i , dðkÞ ¼ argmaxdINB

ðkÞ
d .

v Determine any value, k�, such that dðk
�Þ 6¼

dðk
�+ 1Þ.

vi Each k� will define a threshold value u�i that

lies in the interval u
ðk�Þ
i \u�i \u

ðk�+ 1Þ
i (see

note).
Note: There may be no values of k�, in which
case, there are no threshold values, and the opti-
mal health care strategy does not depend on the
value of the input parameter ui considered. Or
there may be a single value of k�, in which case
there is a single threshold value, u�i . Since the

closest we can get to u�i is u
ðk�Þ
i or u

ðk�+ 1Þ
i , we

approximate u�i by the midpoint of the interval.

If the cost-effectiveness measure (INBd) has a nonlinear
relationship with the input parameters u�i, then

Eu�ijui
½INBdðui; u�iÞ� 6¼ INB dðui;E½u�i�Þ: ð7Þ

Consequently, a deterministic threshold analysis will
result in an incorrect estimate of the threshold value u�i .

13

Probabilistic Parameter Threshold Analysis

When a deterministic threshold analysis results in incor-
rect estimates for u�i , one can rely on a probabilistic
parameter threshold analysis. The advantage of a prob-
abilistic parameter threshold analysis is that it incorpo-
rates the joint uncertainty in all parameters, resulting in
the correct estimation of u�i even when nonlinear rela-
tionships exist between INB d and u�i. The key to find-
ing the value u�i that satisfies the conditions (3) and (4)
lies in finding a way to estimate Eu�ijui

½INBdðui; u�iÞ�.
The most obvious way to do this is via Monte Carlo
sampling, but this leads to a ‘‘nested’’ 2-level scheme in

which values of ui are sampled in an outer loop, and con-
ditional on this, values of u�i are sampled in an inner
loop. The existing 2-level Monte Carlo approach is com-
putationally costly; therefore, we propose an alternative
method to estimate Eu�ijui

½INBdðui; u�iÞ� using a non-
parametric regression-based method, called a GAM, first
proposed by Strong et al.14

Two-Level Monte Carlo Approach

We can estimate the term Eu�ijui
½INBdðui; u�iÞ� in equa-

tions (3) and (4) using a 2-level Monte Carlo approach.
A detailed overview of the approach is given in
Algorithm 1.
This approach is very computationally intensive for all
models except for very simple models due to the need to

Algorithm 1 Two-Level Monte Carlo Scheme for Estimating
Threshold Value u�i for Parameter ui

1 Sample K times from the distribution of the parameter of
interest pðuiÞ.

2 Order sampled values such that

u
ð1Þ
i \u

ð2Þ
i \ . . . \u

ðK�1Þ
i \u

ðKÞ
i .

3 for k ¼ 1 to K do

4 for j ¼ 1 to J do

5 Sample u
ðj;kÞ
�i from the conditional distribution of the

remaining parameters, pðu�ijuðkÞi Þ(the same parameter
uncertainty distributions are assumed as in PSA).

6 Evaluate the incremental net benefit function for each

d and store INBdðuðkÞi ;u
ðj;kÞ
�i Þ.

7 end
8 Compute and store inner loop mean for each of the

alternative strategies d ¼ 1; . . . ;D,

INB
ðkÞ
d ¼ 1

J

PJ
j¼1 INBdðuðkÞi ; u

ðj;kÞ
�i Þ. These are estimates of

the conditional expected value Eu�ijui
½INBdðuðkÞi ;u�iÞ�.

9 Set INB
ðkÞ
d ¼ 0 for the ‘‘baseline’’ decision option d ¼ 0.

10 Determine the policy option with the highest expected

INB given u
ðkÞ
i , dðkÞ ¼ arg maxdINB

ðkÞ
d .

11 end

12 Determine any value(s), k�, such that dðk
�Þ 6¼ dðk

�+ 1Þ (see
note).

13 Each k� will define a threshold value u�i that lies in the

interval u
ðk�Þ
i \u�i \u

ðk�+ 1Þ
i .

Note: There may be no values of k�, in which case there are no

threshold values, and the optimal health care strategy does not depend

on the value of the input parameter ui considered. There may be a

single value of k�, in which case, there is a single threshold value, u�i .

Or, there may be multiple values of k� and therefore multiple

threshold values. We approximate u�i by the midpoint of the interval

u
ðk�Þ
i ; u

ðk�+ 1Þ
i

n o
. This is justified as long as sufficient values are

sampled from the distribution of ui.

672 Medical Decision Making 40(5)



evaluate the incremental net benefit function K 3 J

times.14–16 Ideally, K should span the range of the para-
meter of interest ui, and K and J should be large. In
practice, a stepwise approach can be used to determine
the area of the input parameter (outer loop) containing
the threshold value. Indeed, due to the complexity of the
chosen health economic evaluation (section ‘‘A Real-
World Example’’), we were only able to sample 7 values
from pðuiÞ (K ¼ 7) in order to keep J large (J ¼ 10; 000).
At first, we used a broad range of ui and narrowed the
range until we had a precise (up to 3 decimals) parameter
threshold value. Since we performed only a limited num-
ber of outer iterations, we refer to this approach as the
adjusted 2-level Monte Carlo approach. Last, we recom-
mend the values of J be varied until a stable u�i is
obtained.

Regression-Based Approach Using a Generalized
Additive Model

As an alternative to the 2-level Monte Carlo approach,
we propose a meta-model approach, based on a GAM,
summarizing the relationship between the inputs and the
outputs postsimulation. This regression-based approach
only requires the PSA sample to correctly estimate u�i
while satisfying the conditions in (3) and (4).

A GAM allows for flexible specification of the rela-
tionship between the INBd and the input parameters u
for each health care strategy under consideration. Hence,
detailed parametric specifications are not needed. First,
we define the PSA sample as a set of K samples from the
joint distribution of the model input parameters,
fu1; . . . ; uKg, and the corresponding evaluations of the
INB function fINB dðu1Þ; . . . ; INBdðuKÞg for each
health care strategy d ¼ 1; . . . ;D compared to a baseline
option d0. In general, a GAM is defined as follows:

INBd(u
k
i )=Eu�ijuk

i
½INBd(u

k
i , u�i)�+ ek ð8Þ

= gd(u
k
i )+ ek , ð9Þ

where equation (8) expresses the INBd as the sum of the
conditional expectation we require and a mean-zero
error term e, and equation (9) reexpresses the conditional
expectation as an unknown function of ui. See Strong
et al.14 for a detailed derivation.

We do not know the form of the unknown function
gdðuiÞ, but we do expect it to be smooth, so we choose to
model it using a GAM. Different choices can be made
for the smooth function sð�Þ (equation (10)), but a typical

choice is a third-order polynomial spline. A third-order
polynomial spline is a curve constructed from sections of
cubic polynomials that are joined together end to end at
a series of ‘‘knots.’’ Any cubic spline can also be repre-
sented by the weighted sum of a series of ‘‘basis’’ func-
tions (in the same way that any sound wave can be
constructed from the sum of a series of sine waves of dif-
ferent frequencies) Thus, we can write

gdðuiÞ ¼ sðuiÞ ¼
XL

l¼1

blblðuiÞ; ð10Þ

where blð�Þ are basis functions, with corresponding
weights bl that are estimated from the data. The value L

and smoothing parameter control the model’s smooth-
ness. The latter adds a penalty to the likelihood of the
spline to suppress overly flexible terms. In the implemen-
tation of the GAM in the mgcv package in R, the optimal
penalty is by default learned from the data using cross-
validation, while the value L must be prechosen and is
fixed to be large.17 In our example, we chose cubic regres-
sion splines with dimension 20 and smoothing parameter
obtained using cross-validation to model the data. We
obtained the basis and the dimension after a sensitivity
analysis. Changing both the basis and the dimension did
not influence the threshold value. Therefore, we opted
for a combination of basis and dimension that provided
a stable threshold value and was not too computationally
demanding at the same time (for a detailed overview, see
Appendix C, available online). For a more extended
explanation on GAMs, we refer to other sources.14,17

We propose algorithm 2 to obtain the parameter
threshold value, u�i , using a GAM.

Quantification of Uncertainty

We use a bootstrap procedure to provide a measure of
precision and accuracy of the parameter threshold value
in the presence of possible model violations. We opted
for a nonparametric bootstrap because it does not rely
on asymptotic normality and hence will be applicable for
a wider range of applications. If asymptotic normality
holds, Strong et al.14 described a method to obtain the
standard errors directly from the GAM. The nonpara-
metric bootstrap relies on sampling with replacement
from the observed PSA sample fu; INBg. We sample B

times from the PSA sample, generating b ¼ 1; . . . ;B
bootstrap sampled versions of the PSA sample
fub; INBbg. For each of the bootstrap samples, the para-
meter threshold value, u�b, is calculated using algorithm
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2. The uncertainty about the threshold value can then be
expressed through a ð1� aÞ% interval from u�ða=2Þ to
u�ð1�a=2Þ where u�ða=2Þ represents the a=2 percentile of the
bootstrap values u�b.19,20

Depending on the bootstrap sample, a different num-
ber of parameter threshold values might arise compared
to the original PSA sample, particularly when the input
parameter does not influence the cost-effective strategy
(i.e., low expected value of obtaining perfect information
[EVPPI] value). To acknowledge this type of uncertainty
about the number of threshold values, we denoted the
number of bootstrap samples resulting in the same num-
ber of threshold values as the original PSA sample as
Bretain. The lower Bretain, the more uncertainty there is
about the number of threshold values. If a bootstrap
sample produces a different number of threshold values
than the original PSA sample, then this bootstrap sample
is discarded before calculating the bootstrap uncertainty
interval.

A Real-World Example

We chose a health economic evaluation comparing
typhoid conjugate vaccination strategies in Gavi-eligible
countries as a real-world example, in which there is a
nonlinear and even nonmonotone relationship between
some of the uncertain input parameters and the corre-
sponding cost-effectiveness of the typhoid vaccination
program. This example allowed us to illustrate the vari-
ous possible outcomes of threshold analysis. The health
economic evaluation aimed to inform decision makers
on the cost-effectiveness of 3 different vaccination strate-
gies compared to each other and to no vaccination (no
vac; d0): routine vaccination of infants at 9 months of
age or routine vaccination at 9 months with a catchup
campaign up to either 5 years (RC5) or 15 years of age
(RC15). In this article, threshold values were determined
for an evaluation comparing only 2 health care strategies
(vaccination strategy RC15 compared to the baseline
option [no vac]) and for an evaluation comparing 3
health care strategies (vaccination strategies RC5 and
RC15 v. the baseline option [no vac]), since routine vac-
cination without catchup was never the optimal strategy
in the original analysis.8

We chose to obtain threshold values for uncertain
input parameters for 3 countries (Nicaragua, Uganda,
and Cambodia), assuming WTP values per DALY
averted that allowed us to illustrate different possible
outcomes (no threshold value, a single threshold value,
and more than 1 threshold value).

We assessed parameter threshold values for 3 uncer-
tain input parameters: typhoid case fatality risk when
hospitalized (CFRhosp), the probability of hospitalization
for typhoid fever (PrðhospÞ), and the duration of illness
for patients seeking medical care (DOIcare) (Table 1). The
case fatality risk and probability of hospitalization were
chosen because in some settings, they had a nonlinear,
respectively, nonmonotone relationship with the cost-
effectiveness outcome and had a big impact on the opti-
mal health care strategy (i.e., they had the highest
EVPPI), for the countries and WTP values we consid-
ered. Hence, threshold values for these parameters
informed changes to the optimal strategy. The parameter
duration of illness was chosen because it had a much
lower EVPPI value for the countries and WTP values
considered and hence less impact on the optimal strategy.
This parameter was chosen to illustrate the performance
of the different threshold methods when a threshold
value was not necessarily expected.

Table 1 shows the uncertainty distributions for the 3
input parameters considered in this article. The uncer-
tainty distributions around the expected case fatality risk

Algorithm 2 Regression-Based Scheme for Estimating
Threshold Value u�i for Parameter ui

1 Sample K times from the joint distribution of all
parameters pðuÞ.

2 Order sampled values of u with respect to ui such that

u
ð1Þ
i \u

ð2Þ
i \ . . . \u

ðK�1Þ
i \u

ðKÞ
i .

3 for k ¼ 1 to K do
4 Evaluate the incremental net benefit function for each d

and store INBdðuðkÞÞ. This is the standard ‘‘PSA’’ sample.
5 end
6 for d ¼ 1 to D do

7 Regress INBdðuð1;...;KÞÞ on u
ð1;...;KÞ
i using a GAM (R code

available in Appendix A, available online).

8 Compute the regression fitted values, dINB
ð1; ... ;KÞ
d . These

are estimates of the conditional expected values

Eu�ijui
½INBdðuð1; ... ;KÞi ;u�iÞ�.

9 end
10 for k ¼ 1 to K do

11 Set dINB
ðkÞ
d ¼ 0 for the ‘‘baseline’’ decision option d ¼ 0.

12 Determine the policy option with the highest expected

INB given u
ðkÞ
i , dðkÞ ¼ argmaxd

dINB
ðkÞ
d .

13 end

14 Determine any value(s), k�, such that dðk
�Þ 6¼ dðk

�+ 1Þ (see
note).

15 Each k� will define a threshold value u�i that lies in the

interval u
ðk�Þ
i \u�i \u

ðk�+ 1Þ
i (A function, written in R,18 is

available in Appendix A, available online).

Note: There may be no values of k�, in which case, there are no

threshold values. There may be a single value of k�, in which case,

there is a single threshold value, u�i . Or, there may be multiple values

of k� and therefore multiple threshold values. We approximate u�i by

the midpoint of the interval u
ðk�Þ
i ; u

ðk�+ 1Þ
i

n o
.
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and probability for hospitalization are right skewed.
Their means and standard errors are estimated from a
random-effects meta-analysis. As a consequence of the
logistic regression model, the standard errors are only
available on the logit scale. After sampling from the nor-
mal distribution on the logit scale, the values are trans-
formed to their original scale using the inverse logit
( ex

1+ ex). The mean and standard error of DOIcare are also
estimated using a random-effects meta-analysis. Since
DOIcare is Poisson distributed, we sample from a Gamma
distribution. The sampled values are rescaled such that
DOIcare is expressed in years.8

Results

The appropriate method to perform threshold analysis
depends on the features of the health economic model.
Figure 1 presents a flowchart describing the most suit-
able method to carry out parameter threshold analysis.

A GAM would be the most suitable method to obtain
parameter threshold values in our example due to the
nonlinear relationship between the uncertain input para-
meters and INBd . However, we perform all 3 methods—
a deterministic threshold analysis, an adjusted 2-level
Monte Carlo method, and a GAM—to compare the
threshold value(s) obtained by each method. Table 2
shows the parameter threshold values for different sce-
narios. We kept the size of the samples equal in all sce-
narios and for all input parameters (K ¼ 10; 000 for
GAM and deterministic threshold analysis, K ¼ 7 and
J ¼ 10; 000 for the adjusted 2-level Monte Carlo analy-
sis). The same holds for the number of values for K that
were used in the adjusted 2-level Monte Carlo approach
(K ¼ 7) (Appendix B, available online).

Deterministic threshold analysis is computationally
faster than the adjusted 2-level Monte Carlo approach
but slower than GAM. In this example, it consistently
overestimates the value of u�i (i.e., it overestimates the

Table 1 Distributional Characteristics of the Uncertain Input Parameters

Parameter Mean Median 95% Credible Interval Uncertainty Distribution

CFRhosp 0.059 0.044 0.008–0.196 logit�1ðNð�3:07; 0:87Þ
PrðhospÞ 0.061 0.038 0.004–0.249 logit�1ðNð�3:25; 1:20Þ
DOIcare (years) 0.043 0.043 0.034–0.054 Gammað16; 2Þ=365

Is the health economic model a linear model? 

YesNo

Determinis�c threshold analysis
OR

Monte Carlo approach: instead of 
an inner loop, ‘plug in’ the 
expected values of the input 
parameter in health economic 
model.

Are none of the model input 
parameters correlated?

Yes

No
2-level Monte Carlo approach

Is the 2-level Monte Carlo 
approach too computa�onally 
expensive?

No

Yes

Generalized Addi�ve Model (GAM)
and bootstrap procedure

Is (Are) the threshold value(s) stable? 

Yes

Finished

No, then increase K or J

Figure 1 A guide for performing parameter threshold analysis.

Pieters et al. 675



T
a
b
le
2

C
o
m
p
a
ri
so
n
o
f
th
e
P
a
ra
m
et
er

T
h
re
sh
o
ld

V
a
lu
es

O
b
ta
in
ed

w
it
h
D
T
A
,
A
d
ju
st
ed

2
-L
ev
el
M
C
A
p
p
ro
a
ch
,
a
n
d
G
A
M

fo
r
D
if
fe
re
n
t
S
et
ti
n
g
sa

D
T
A

A
d
ju
st
ed

2
-L
ev
el
M
C

G
A
M

K
¼

1
0
;0

0
0

K
¼

7
,

J
¼

1
0
;0

0
0

C
u
b
ic
R
eg
re
ss
io
n
S
p
li
n
es
,

L
¼

2
0
,

K
¼

1
0
;0

0
0

u
i

E
V
P
P
I

u
� i

d
ðk
�
+

1
Þ

T
im

eb
u
� i

d
ðk
�
+

1
Þ

T
im

eb
u
� i

d
ðk
�
+

1
Þ

T
im

eb
9
5
%

C
I

B
re
ta
in
=

B
T
im

eb

N
ic
a
ra
g
u
a
,
W
T
P
=

$
1
0
0
0
,
1
h
ea
lt
h
ca
re

st
ra
te
g
y
(D
¼

1
;
R
C
1
5
)
co
m
p
a
re
d
to

n
o
va
cc
in
a
ti
o
n
(d

0
)

C
F

R
h

o
sp

7
0
0
,0
9
4

0
.0
6
2

R
C
1
5

1
6
.6

0
.0
4
0

R
C
1
5

2
3
5
.6

0
.0
3
6

R
C
1
5

0
.6

0
.0
3
5
–
0
.0
3
9

9
9
8
/1
0
0
0

1
5
9
.5

P
rð

h
o
sp
Þ

1
,2
7
6
,4
7
5

0
.0
5
2

R
C
1
5

1
4
.4

0
.0
4
3

R
C
1
5

2
2
0
.0

0
.0
4
1

R
C
1
5

0
.6

0
.0
4
0
–
0
.0
4
3

1
0
0
0
/1
0
0
0

1
6
0
.2

D
O

I c
a

re
0

N
o
n
ec

N
o
v
a
c

1
4
.6

N
o
n
e

R
C
1
5

2
3
1
.0

N
o
n
e

R
C
1
5

0
.5

N
A

3
9
1
/1
0
0
0

1
5
9
.2

N
ic
a
ra
g
u
a
,
W
T
P
=

$
1
0
0
0
,
2
h
ea
lt
h
ca
re

st
ra
te
g
ie
s
(D
¼

2
;
R
C
5
a
n
d
R
C
1
5
)
co
m
p
a
re
d
to

n
o
va
cc
in
a
ti
o
n
(d

0
)

C
F

R
h

o
sp

1
,8
6
0
,5
9
9

0
.1
1
3

R
C
1
5

1
5
.9

0
.0
6
9

R
C
1
5

2
1
9
.2

0
.0
6
4

R
C
1
5

0
.7

0
.0
6
0
–
0
.0
7
1

9
8
3
/1
0
0
0

1
9
9
.1

P
rð

h
o
sp
Þ

2
,6
6
5
,1
4
8

0
.0
9
3

R
C
1
5

1
4
.5

0
.0
7
4

R
C
1
5

2
0
7
.7

0
.0
7
0

R
C
1
5

0
.6

0
.0
6
6
–
0
.0
7
3

1
0
0
0
/1
0
0
0

1
8
9
.9

D
O

I c
a

re
0

N
o
n
e

N
o
v
a
c

1
6
.7

N
o
n
e

N
o
v
a
c

2
1
4
.3

N
o
n
e

N
o
v
a
c

0
.6

N
A

1
9
1
/1
0
0
0

1
8
9
.6

U
g
a
n
d
a
,
W
T
P
=

$
8
0
0
,
2
h
ea
lt
h
ca
re

st
ra
te
g
ie
s
(D
¼

2
;
R
C
5
a
n
d
R
C
1
5
)
co
m
p
a
re
d
to

n
o
va
cc
in
a
ti
o
n
(d

0
)

C
F

R
h

o
sp

1
8
,4
5
1
,2
3
0

0
.1
0
9

R
C
1
5

2
3
.3

0
.0
5
6

0
.0
7
0

R
C
5

R
C
1
5

2
4
1
.0

0
.0
5
8

0
.0
7
1

R
C
5

R
C
1
5

0
.6

0
.0
5
2
–
0
.0
6
1

0
.0
6
5
–
0
.0
7
6

9
6
5
/1
0
0
0

1
9
9
.2

P
rð

h
o
sp
Þ

2
5
,0
1
8
,1
2
0

0
.0
9
2

R
C
1
5

1
4
.9

0
.0
6
0

0
.0
7
4

R
C
5

R
C
1
5

2
1
4
.8

0
.0
6
1

0
.0
7
2

R
C
5

R
C
1
5

0
.6

0
.0
5
8
–
0
.0
6
4

0
.0
6
9
–
0
.0
7
5

9
9
9
/1
0
0
0

1
9
4
.5

D
O

I c
a

re
4
2
5
6

N
o
n
e

N
o
v
a
c

1
4
.9

N
o
n
e

R
C
5

2
1
7
.3

0
.0
3
3

R
C
5

0
.7

0
.0
3
0
–
0
.0
6
1

9
8
/1
0
0
0

2
0
2
.1

C
a
m
b
o
d
ia
,
W
T
P
=

$
1
0
0
,
2
h
ea
lt
h
ca
re

st
ra
te
g
ie
s
(D
¼

2
;
R
C
5
a
n
d
R
C
1
5
)
co
m
p
a
re
d
to

n
o
va
cc
in
a
ti
o
n
(d

0
)

C
F

R
h

o
sp

2
,7
8
8
,3
6
4

0
.1
1
4

R
C
1
5

1
6
.8

0
.0
5
3

0
.0
8
0

R
C
5

R
C
1
5

2
2
7
.5

0
.0
5
5

0
.0
8
3

R
C
5

R
C
1
5

0
.6

0
.0
5
2
–
0
.0
6
2

0
.0
7
6
–
0
.0
9
1

9
5
5
/1
0
0
0

1
8
8
.9

P
rð

h
o
sp
Þ

4
,8
3
7
,5
1
2

0
.0
8
3

R
C
1
5

1
6
.5

0
.0
5
9

0
.0
8
3

R
C
5

R
C
1
5

2
2
6
.8

0
.0
6
0

0
.0
8
5

R
C
5

R
C
1
5

0
.7

0
.0
5
8
–
0
.0
6
2

0
.0
8
1
–
0
.0
9
0

9
9
8
/1
0
0
0

1
9
1
.4

C
a
m
b
o
d
ia
,
W
T
P
=

$
8
0
0
0
,
2
h
ea
lt
h
ca
re

st
ra
te
g
ie
s
(D
¼

2
;
R
C
5
a
n
d
R
C
1
5
)
co
m
p
a
re
d
to

n
o
va
cc
in
a
ti
o
n
(d

0
)

C
F

R
h

o
sp

0
N
o
n
e

R
C
1
5

1
3
.7

N
o
n
e

R
C
1
5

2
1
9
.1

N
o
n
e

R
C
1
5

0
.6

N
A

9
6
6
/1
0
0
0

1
8
8
.5

P
rð

h
o
sp
Þ

0
N
o
n
e

R
C
1
5

1
4
.5

N
o
n
e

R
C
1
5

2
1
8
.6

N
o
n
e

R
C
1
5

0
.6

N
A

7
1
4
/1
0
0
0

1
9
8
.4

C
I,
co
n
fi
d
en
ce

in
te
rv
a
l;
D
T
A
,
d
et
er
m
in
is
ti
c
th
re
sh
o
ld

a
n
a
ly
si
s;
E
V
P
P
I,
ex
p
ec
te
d
v
a
lu
e
o
f
p
a
rt
ia
l
p
er
fe
ct

in
fo
rm

a
ti
o
n
;
G
A
M
,
g
en
er
a
li
ze
d
a
d
d
it
iv
e
m
o
d
el
;
M
C
,
M
o
n
te

C
a
rl
o
;
N
A
,
n
o
t

a
p
p
li
ca
b
le
w
h
en

n
o
p
a
ra
m
et
er

th
re
sh
o
ld

v
a
lu
e
is
o
b
ta
in
ed
;
N
o
v
a
c,
n
o
v
a
cc
in
a
ti
o
n
;
R
C
5
,
ro
u
ti
n
e
v
a
cc
in
a
ti
o
n
w
it
h
ca
tc
h
u
p
ca
m
p
a
ig
n
to

5
y
ea
rs
;
R
C
1
5
,
ro
u
ti
n
e
v
a
cc
in
a
ti
o
n
w
it
h

ca
tc
h
u
p
ca
m
p
a
ig
n
u
p
1
5
y
ea
rs
;
W
T
P
=

w
il
li
n
g
n
es
s
to

p
a
y
fo
r
1
d
is
a
b
il
it
y
-a
d
ju
st
ed

li
fe
-y
ea
r
a
v
er
te
d
(i
n
U
S
D
).

a
u

i
¼

p
a
ra
m
et
er

o
f
in
te
re
st
;

u
� i
¼

th
re
sh
o
ld

v
a
lu
e(
s)
,
if
p
re
se
n
t,
fo
r

u
i;

d
ðk
�
+

1
Þ
¼

h
ea
lt
h
ca
re

st
ra
te
g
y
w
it
h
th
e
h
ig
h
es
t
ex
p
ec
te
d
in
cr
em

en
ta
l
n
et

m
o
n
et
a
ry

b
en
ef
it
(I
N
B
)
a
t

u
ðk
�
+

1
Þ

i
.
If
n
o
t

m
en
ti
o
n
ed

o
th
er
w
is
e,
th
e
h
ea
lt
h
ca
re

st
ra
te
g
y
a
t

d
k
�
is
n
o
v
a
cc
in
a
ti
o
n
;

B
re

ta
in
=

n
u
m
b
er

o
f
b
o
o
ts
tr
a
p
sa
m
p
le
s
re
ta
in
ed

to
ca
lc
u
la
te

th
e
9
5
%

C
I;
E
V
P
P
I
q
u
a
n
ti
fi
es

th
e
v
a
lu
e
o
f
o
b
ta
in
in
g

p
er
fe
ct

in
fo
rm

a
ti
o
n
o
n
th
e
p
a
ra
m
et
er

o
f
in
te
re
st
.
T
h
e
E
V
P
P
I
is
ca
lc
u
la
te
d
b
a
se
d
o
n
S
tr
o
n
g
et

a
l.
1
4

b
In
d
ic
a
te

th
e
ti
m
e
n
ee
d
ed

to
p
er
fo
rm

,
re
sp
ec
ti
v
el
y
,
th
e
m
et
h
o
d
a
n
d
th
e
b
o
o
ts
tr
a
p
(G

A
M
:
ex
cl
u
d
in
g
th
e
ti
m
e
n
ee
d
ed

to
o
b
ta
in

th
e
p
ro
b
a
b
il
is
ti
c
se
n
si
ti
v
it
y
a
n
a
ly
si
s
sa
m
p
le
).

c
‘‘
N
o
n
e’
’
in
d
ic
a
te
s
th
a
t
n
o
p
a
ra
m
et
er

th
re
sh
o
ld

v
a
lu
e
w
a
s
o
b
ta
in
ed
,
m
ea
n
in
g
th
a
t
th
e
h
ea
lt
h
ca
re

st
ra
te
g
y
w
it
h
th
e
h
ig
h
es
t
ex
p
ec
te
d
IN

B
re
m
a
in
s
th
e
sa
m
e
a
n
d
is
d
en
o
te
d
u
n
d
er

d
ðk
�
+

1
Þ .

676



minimum value at which a vaccination strategy is pre-
ferred over no vaccination). Where the adjusted 2-level
Monte Carlo approach and GAM result in 2 parameter
threshold values, deterministic threshold analysis is only
able to obtain 1. According to the deterministic thresh-
old analysis, RC5 will never be the optimal health care
strategy.

GAM is able to calculate the threshold value(s) in a
fraction of the time that is needed for the adjusted 2-level
Monte Carlo approach. Although the bootstrap proce-
dure is time-consuming, GAM is still faster than the
adjusted 2-level Monte Carlo approach.

There is a good agreement between GAM and the
adjusted 2-level Monte Carlo approach. In most settings,
the 2 approaches provide a parameter threshold value
that is precise up to 2 decimals, with the exception of the
input parameter DOIcare in Uganda. In Uganda (WTP =
$800, D ¼ 2), the adjusted 2-level Monte Carlo approach
shows no parameter threshold value, whereas GAM does
suggest a threshold value; however, the 95% CI of the
threshold DOIcare in the GAM approach spans almost
the entire range of possible values for that parameter,
indicating a lot of uncertainty about the parameter
threshold value. The proportion of bootstrap samples
retained was low for DOIcare in Nicaragua and Uganda,
indicating uncertainty about whether and how many
threshold values could be identified. Therefore, we do
not recommend to interpret threshold values when the
number of bootstrap samples retained is low. For more
technical details, see Appendix D (available online).

For Cambodia, we considered 2 different WTP values,
$100 and $8000. When we considered a WTP value of
$100, both the adjusted 2-level Monte Carlo approach
and GAM find 2 threshold values. For the higher WTP
value, no parameter threshold values are found. This was
expected, since the EVPPI was low at the higher WTP
value.

Discussion

We propose GAM as a novel regression-based approach
to calculate a parameter’s threshold value(s) in health
economic evaluations. The GAM approach only requires
the PSA sample of a cost-effectiveness analysis and is
flexible, easy to use, and computationally efficient. In
our example, GAM does not provide incorrect threshold
values or fails to find threshold values (as the determinis-
tic approach does). GAM also outperforms the 2-level
Monte Carlo approach in terms of computational time.

GAM has several advantages over the existing meth-
ods. First, GAM results in the same threshold values as

the adjusted 2-level Monte Carlo approach when cost-
effectiveness measures are nonlinearly related to the
inputs, unlike the deterministic threshold analysis. Our
example (Table 2) showed that threshold values were
overestimated and that not all threshold values were
identified with the deterministic threshold approach.
Therefore, threshold values obtained from a determinis-
tic threshold analysis should not be interpreted when
there is a nonlinear relationship between inputs and out-
puts. Second, GAM is easy to use because it relies on the
PSA sample to account for uncertainty in the input para-
meters’ distribution, and there is no need to assume plau-
sible values as in the deterministic threshold approach.21

Third, GAM is computationally fast compared to the 2-
level Monte Carlo approach. In order to perform the 2-
level Monte Carlo approach, we needed at least 208 sec-
onds for K ¼ 7. The time needed to perform a GAM,
including the bootstrap procedure, was at most 199 sec-
onds (Table 2). Last, threshold values obtained by GAM
were quite robust against changes in dimension and the
smoothing function chosen (Appendix C, available
online).

There are some limitations of this work. First, we per-
formed the comparison of the 3 threshold approaches on
only 1 example. However, this proved to be sufficient to
show the incorrectness in the deterministic threshold val-
ues. Second, we were limited in the number of samples
we could use in the 2-level Monte Carlo approach
because running our health economic evaluation was
computationally too intensive. Thus, we could not per-
form a complete 2-level Monte Carlo method on a nor-
mal personal computer. The focus of this article was not
to optimize the 2-level Monte Carlo method but rather
to use it as a comparison for the alternatively proposed
GAM method. Complex evaluations, including dynamic
transmission models, numerous intervention options,
multiple countries, and considering a long time horizon,
will become more common in the future. This in itself is
an important reason for using GAM. But increasing the
computational efficiency of complex models will also be
helpful here. Third, although we use bootstrapping to
provide a measure of uncertainty about the threshold
value (and therefore avoid making assumptions of nor-
mality and homoscedasticity of the regression residuals),
the nonparametric bootstrap itself has a limitation due
to the nature of the statistic we are interested in. Due to
sampling with replacement, it is possible that more or
fewer parameter threshold values arise compared to the
number obtained from the original PSA sample.

Parameter threshold analysis provides a useful and
intuitively appealing source of information to inform

Pieters et al. 677



policy makers and developers of technology. For example,
threshold analysis can help to identify the maximum price
that a government might be willing to pay for a drug.
Such information can be used to inform research and
development prior to drug licensing or price setting prior
to marketing but also—and probably currently most
frequently—to inform price negotiations when drugs (or
other health care technology) are considered for reimbur-
sement.22 We showed that this price could be under- or
overestimated when based on deterministic threshold anal-
ysis. Furthermore, while EVPPI allows for the identifica-
tion of uncertain input parameters that affect most on the
optimal strategy,2 threshold analysis can single out more
precisely at which values of an uncertain parameter the
optimal strategy changes. This could inform the design of
new trials to obtain more information about a particular
uncertain parameter. Also, the threshold parameter value
directly informs researchers and decision makers about the
(change in) optimal strategy when a more precise estimate
becomes available for a particular uncertain parameter
based on new evidence. We believe that parameter thresh-
old analysis has a wide range of applications, even beyond
the field of health economics.

However, we recommend caution in instances where
the parameter of interest is a noninfluential parameter
(i.e., when it has a low EVPPI value). As shown in our
example for DOIcare in the setting of Uganda (WTP =
$800, D ¼ 2), it is possible to obtain a threshold value
for a noninfluential input parameter using GAM, but
knowing the threshold value may have little consequence
for policy makers, as the 95% CI covers almost the
whole range of parameter values. In general, threshold
values will be most relevant for uncertain input para-
meters that have an important impact on the optimal
strategy of choice, and although GAM works well, it
remains important to carefully interpret the results. If
Bretain is low, we do not recommend the interpretation of
the threshold value and the corresponding 95% CI due
to the uncertainty.

In conclusion, we provide a flexible, easy to code, and
fast alternative to the 2-level Monte Carlo approach for
parameter threshold analysis. The GAM method pro-
vides correct estimates of parameter threshold value(s)
when there is a nonlinear relationship between the uncer-
tain input parameter of interest and the outcome of the
health economic model. In this study, we only considered
the threshold value for a single parameter. In the future,
the GAM-based method could be extended to incor-
porate more than 1 parameter to conduct simultaneous
multiparameter threshold analysis.
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